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Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the
disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or
mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines.
Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used
neuroblastoma cell lines. These data can be used to perform differential expression analysis based
on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation
status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation).
Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis
across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is
performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional
targets as well as regulatory (enhancer or repressor) elements in neuroblastoma.
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Background & Summary
An estimated 15,780 children were diagnosed with cancer in 2014 In the United States, and per year
globally, this number is nearly 250,000 (ref. 1). Although the 5-year survival rate of pediatric cancers is
~80%, many of the most commonly diagnosed childhood cancers: brain tumors, Wilms tumor,
rhabdomyosarcoma, and high-risk neuroblastoma, have devastatingly low rates of survival1,
demonstrating the continued need for research progress in these areas. Here, we focus on neuroblastoma,
the most common extracranial solid tumor in children. This disease has an estimated incidence of 1 in
8,000 to 10,000 births2 and a 5-year survival rate of >95% for children in the low and intermediate risk
groups. However, children with high-risk disease have only a 40% likelihood of survival2. Culturing of
neuroblastoma cell lines dates back to the 1940s (ref. 3), during which the sole purpose of culturing was
for diagnosis. However, producing cell lines from neuroblastoma tumors quickly became routine (see
review4) and today, they are commonly-used, highly-characterized models used in laboratories across the
world. Neuroblastoma cell lines nicely model a tumor’s histopathology, gene expression, aneuploidy, and
drug sensitivity, thus they are routinely used to investigate oncogenes or signaling pathways
pharmacologically (drug screens, drug sensitivity/resistance) and/or genetically (siRNA, shRNA,
CRISPR).

The genomics of neuroblastoma cell lines have been previously characterized using SNP5,
methylation5,6, and/or mRNA expression microarrays7–9, however, there has not been an effort to
profile a large panel of these cell lines with high-throughput sequencing techniques. The motivation
behind this study was to comprehensively profile the mRNA and non-coding RNA transcriptome of
commonly-used neuroblastoma cell line models with a major goal of using this information as
a complement to the epigenomic data currently available and the many data in the process of being
generated. Integration of RNA expression patterns with histone and/or transcription factor chromatin
immunoprecipitation (ChIP) sequencing is necessary for inferring transcriptional regulatory events.
Neuroblastomas can be classified into various groups based on genetic lesions, for example: MYCN copy
number amplification, harboring an activating ALK mutation, harboring a chromosomal loss (e.g.,: 1p,
3p, 11q) or gain (17q), TERT rearrangements (for review of neuroblastoma genomics, see ref. 10).
Utilizing a panel of cell lines which harbor a mixture of these characteristics enables differential
expression analyses on the basis of a genetic lesion, mutation of interest, or expression of a gene
of interest.

These data have reuse value to inform selection of cell lines for experimental investigation of putative
neuroblastoma oncogenes and/or tumor suppressors. For example, choice of knock-down or over-
expression studies require a priori knowledge of basal expression of the gene of interest for rational
experimental design. These data allow the experimenter to quickly determine which cell lines are high,
mid, or low expressers of a gene of interest without requiring tedious quantitative, real-time PCR analysis
or western blotting of multiple cell lines prior to initiating a gene over-expression or knockdown
experiment.

Here, we describe transcriptome-wide profiling of 39 neuroblastoma cell lines, the hTERT-
immortalized retinal pigmented epithelial cell line, RPE-1, and pooled human fetal brain tissue. Careful
and stringent technical design at each experimental stage has allowed generation of a high-quality
RNA-Seq dataset which has tremendous reuse value for the neuroblastoma community. An overview
of the study design is depicted in Fig. 1. Briefly, cell lines were thawed, grown, and collected at
60–80% confluency over a two-month period. Once all cell lines were pelleted, RNA extractions were
performed, quality of RNA inspected, and RNA sequencing was performed. Raw FASTQ files were
generated and are publicly-available for reuse (see Data Citation 1). Additionally, we provide a processed
file of gene-level mRNA abundances for each sample. We anticipate this data being a valuable tool for the
neuroblastoma research community as we continue investigation into oncogenomic mechanisms of this
disease.

Methods
Cell lines and culturing
Cell line stocks were obtained from the Children’s Oncology Group (COG) Cell Culture and Xenograft
Repository at Texas Tech University Health Sciences Center (www.COGcell.org), the American Type
Culture Collection (Manassas, VA), or the Children’s Hospital of Philadelphia (CHOP) cell line bank.
Several of the COG-derived cell lines were established direct-to-culture in parallel with a patient-derived
xenograft model11 that are being characterized separately (see Table 1 (available online only)). All cell
culturing for this experiment was performed at CHOP. Each cell line was thawed for 2–3 min in a 37 °C
water bath, added to a 15 ml tube containing its respective growth medium, and pelleted by
centrifugation at 300 × g for 3 min. The supernatant was discarded to remove the DMSO-containing
freezing medium. Cells were re-suspended in 1 ml of growth medium and transferred into a T75 flask
containing an additional 10 ml of growth medium. Once cells were ~70–80% confluent, they were
transferred to a 150 mm dish. At ~70–80% confluency, cells were split into two 150 mm dishes and at
~70–80% confluency, each dish of cells was pelleted, washed 3x with 1X PBS, and frozen at −80C until
nucleic acids were extracted. See Table 1 (available online only) for a complete listing of cell lines,
whether a matched patient-derived xenograft (PDX) exists, and their growth medium. Cell lines
appended with ‘nb’ were grown in serum-free neurobasal medium. The following were purchased from
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Thermo Fisher Scientific (Waltham, MA): Iscove’s IMDM (Cat# 12440053), RPMI 1640 with 25mM
HEPES (Cat# 22400089), Neurobasal-A Medium (Cat# 10888022), L-glutamine (Cat# 25030081),
antibiotic/antimycotic (Cat# 15240062), 50X B-27 serum-free supplement (Cat# 18504044), 100X N-2
supplement (Cat# 17502048). The following growth factors were purchased from VWR (Radnor, PA):
rhFGF (fibroblast growth factor, Cat# PAG5071) and rhEGF (epidermal growth factor, Cat# PAG5021).
Insulin/Transferrin/Selenium (ITS) premix culture supplement was purchased from Corning Life
Sciences (Tewksbury, MA, Cat# 354351). Hyclone Fetal bovine serum was purchased from Fisher
Scientific (Cat# SH30071.03) and the lot remained consistent across the different medium formulations
throughout the duration of the experiment. Of note, SK-N-BE(2)-C is a subclone derived from the
parental SK-N-BE(2) cell line12 and SH-SY5Y was derived from the SH-SY subclone of the parental
SK-N-SH cell line13.

Throughout the duration of the study, randomization was implemented to ensure unbiased data
production. Cell lines were thawed in random order, nucleic acid extractions were performed randomly,
and library preps and sequencing were performed randomly. Phenotypic characteristics of each cell line
were also assessed as quality control during the cell growth stage. No unusual morphologies or growth
rates were noted.

DNA extraction and STR profiling
From separate cell pellets, DNA was extracted using the DNeasy Blood & Tissue Kit (Cat# 69504, Qiagen,
Valencia, CA). DNA was quantitated using the Nanodrop 1000 (Thermo Fisher Scientific)
and Short Tandem Repeat (STR) profiling employed either the AmpFLSTR Identifiler PCR Amplification
kit (Applied Biosystems, Foster City, CA) by the Children’s Hospital of Philadelphia Nucleic Acids
and Protein Core or the PowerPlex Fusion kit (Promega, Madison, WI) by Guardian Forensic
Sciences (Abington, PA). All cell line STRs matched publicly-available references listed at http://strdb.
cogcell.org/.

RNA extraction
Control human fetal brain total RNA (Cat# 636526, Lot#1605061A) was purchased from Clontech
Laboratories (Mountain View, CA). This RNA was a pool of normal brain tissue from 21 spontaneously
aborted male/female Caucasian fetuses of ages 26–40 weeks and was isolated using a modified
guanidinium thiocyanate method14. For all cell lines, RNA was extracted using the miRNeasy Mini kit
(Cat# 217004) from Qiagen (Valencia, CA) according to the manufacturer’s protocol. RNA purity
was assessed using the Nanodrop 2000 (Thermo Fisher Scientific) and quantitated with the Qubit
2.0 Fluorometer (Thermo Fisher Scientific). Quality and RNA integrity numbers (RINs) were assessed
using the TapeStation 2200 (Agilent Technologies, Santa Clara, CA). Each cell line RNA sample had
a RIN≥ 8.7 and the RIN for the fetal brain RNA was 7.6, thus all RNA was of high quality.

Thaw cell lines into Expand into 
150 mm dish

Harvest at 60-80% Split into two 150 
mm dishes

Wash 3x with 1X 
PBS

Freeze pellet 
at -80CExtract total RNA 

using miRNeasy 
Qiagen kit

Assess quality and 
concentration of RNA 
using Qubit 2.0 and 

TapeStation

Perform library prep 
(TruSeq Stranded Total 
RNA Library Prep Kit 
with Ribo-zero Gold)

Pool 6-8 samples 
on NextSeq 500

Trim adapters, 
Perform FastQC

Generate FPKM with STAR to 
MYCN status

Assess library 
quality with 
TapeStation

from NextSeq

Cell culture

RNA-Seq

QC/Validation

Figure 1. Experimental and data analysis workflow. Cell lines were thawed and cultured to ~60–80%

confluence before passaging and finally, pelleting. RNA was extracted, sequencing performed, and data analysis

performed as described.
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Library preparation and RNA sequencing
Libraries were prepared using 1 ug RNA according to the TruSeq Stranded Total RNA Sample
Preparation guide (Part# 15031048 Rev. E, October 2013, Illumina, San Diego, CA). Ribosomal
RNA removal was performed using the Gold rRNA Removal Mix per Illumina's recommendations.
Quality of each library assessed with the Agilent TapeStation 2,200. Six to eight libraries were pooled
(N= 6–8) and sequenced using v2 chemistry, 2 × 100 bp, on one high-output flow-cell of an Illumina
NextSeq 500 to achieve at least 50 million paired reads per sample. Upon run completion, libraries were
demultiplexed, Illumina adapters trimmed, and FASTQ files were generated using the Illumina NextSeq
Control Software version 2.02.

Sequencing quality control
First, sample reads were concatenated for each paired read group. Next, FASTQC V0.11.4 (Babraham
Institute, available for download at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was run
on all samples and inspected for sequencing quality. Next, Picard tools version 1.140 (Broad Institute,
Cambridge, MA, available for download at https://github.com/broadinstitute/picard/releases/tag/1.140)
was used to calculate insert sizes for GEO according to the following parameters:

$ java -jar picard.jar CollectInsertSizeMetrics INPUT=
Aligned.sortedByCoord.out.bam OUTPUT=filename

Alignment and generation of counts
The Spliced Transcripts Alignment to Reference (STAR) version 2.4.2a aligner (available for download at
https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.2a)15 was used to index the full hg19 genome
fasta file from UCSC using the following parameters:

$ STAR --runMode genomeGenerate --runThreadN 16 --genomeDir idx_dir
--genomeFastaFiles ucsc.hg19.fa --sjdbGTFfile refSeq_hg19_2016-03-
03.gtf --sjdbOverhang 100

The GTF file was downloaded using the genePredToGtf command from the kent utility (available for
download at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/):

$ genePredToGtf hg19 knownGene knownGene.gtf
Next, sequences were aligned and counts per gene were generated using the following parameters in

two-pass mode:
$ STAR --runMode alignReads --runThreadN 16 --twopassMode Basic --

twopass1readsN -1 --chimSegmentMin 15 --chimOutType WithinBAM --geno-
meDir dir --genomeFastaFiles ucsc.hg19.fa --readFilesIn R1.fastq.gz
R2.fastq.gz --readFilesCommand zcat --outSAMtype BAM SortedByCoordi-
nate --outFileNamePrefix $cellline. --quantMode TranscriptomeSAM Gen-
eCounts --sjdbGTFfile refSeq_hg19_2016-03-03.gtf --sjdbOverhang 100

Alignment resulted in an average of 66 million uniquely-mapped reads per sample. STAR two-pass
mode alignment was chosen as it has been shown to have 99% alignment accuracy and has nearly
20x faster processing speed compared with TopHat2 and similar processing speed as HISAT two-pass
mode16.

Generation of FPKM
A custom R script was used to generate gene fragments per kilobase of exons per million reads (FPKM)
from the count data produced from STAR. The Genomic Features Package version 1.22.13 (available for
download at https://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html) was used with
R Version 3.2.2 (Fire Safety) to make the transcriptome database and figures were produced using ggplot2
version 2.1.0 (http://ggplot2.org/).

Differential expression analyses
Differential expression of genes based on MYCN amplification status was performed separately for cell
lines and primary neuroblastoma tumor samples using the R package, DESeq2 (version 1.10.1)17. FASTQ
files and MYCN status for patient tumors were obtained with consent through the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) Consortium (see Data Citation 2,
https://ocg.cancer.gov/programs/target/data-matrix). Next, the differentially-expressed genes’
log2-transformed mean expression and the log2 fold-change were correlated between the cell lines and
patient samples.

Code availability
R scripts for generation of FPKM and differential expression analyses are available for download at:
https://github.com/marislab/NBL-cell-line-RNA-seq.

Data Records
All raw RNA-sequencing data (paired FASTQ files) as well as the processed FPKM matrix from this study
have been deposited into the Gene Expression Omnibus (GEO) under Accession Number GSE89413
(see Data Citation 1). For associated specimen metadata, see Table 1 (available online only) and for
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associated assay metadata, see Table 2 (available online only). Raw single nucleotide polymorphism
(SNP) array IDAT files and processed Genome Studio files for 27 of the cell lines have been deposited
into GEO under Accession Number GSE89968 (see Data Citation 3). Together, these data make up the
GEO Super Series GSE89969.

Technical Validation
As a technical validation of our RNA-Seq data, we generated FPKM for all genes (See Methods and Data
Citation 1) and compared MYCN FPKM with each cell line’s known copy number amplification
status across cell lines (Fig. 2 and Table 3 (available online only)) . Of note, the tumor from which the
NLF cell line was derived was MYCN copy number amplified by the fluorescence in situ hybridization,
however, it is not amplified at the protein level18 and therefore, as expected, has the lowest MYCN FPKM
of all cell lines designated as MYCN amplified. All cell lines were concordant with known MYCN
amplification status.

Next, for both cell lines and neuroblastoma patient data, we performed differential expression
analyses based on MYCN genomic amplification status using the R package, DESeq2 (ref. 17).
We correlated the DESeq2 base mean of the common differentially-expressed genes (N= 2,395)
between cell lines and primary patient tumors, which were significantly correlated (Fig. 3a, Pearson’s
R= 0.824, t= 71.131, df= 2,393, 95% CI= 0.811–0.836, Po2.2 e-16). The fold changes of these
genes were also significantly correlated between the cell lines and patient samples (Fig. 3b, Pearson’s
R= 0.73, t= 52.231, df= 2,393, 95% CI= 0.711–0.748, Po2.2 e-16), not only supporting the technical
validity of our dataset, but also emphasizing the utility of these cell lines as a surrogate model for
neuroblastoma.

Finally, we correlated non-differentially expressed genes (DESeq2 p-adjusted > 0.20) between the cell
lines and patient tumors (N= 6,523). As expected, base mean expression of the genes correlated
significantly (Fig. 3c, Pearson’s R= 0.829, t= 119.74, df= 6,521, 95% CI= 0.821–0.837, Po2.2 e-16).
While correlating fold-change yields a significant P-value because of the large number of genes analyzed,
it is clear that the relationship is weak, as the correlation is close to zero (Fig. 3d, Pearson’s R= 0.052,
t= 4.1,766, df= 6,521, 95% CI= 0.027–0.076, Po3 e-5). This is expected, as all fold-changes of non-DE
genes are close to zero.

Usage Notes
All raw FASTQ files and the associated FPKM matrix file can be downloaded from the Gene Expression
Omnibus (GEO) under Accession Number GSE89413. STAR-Fusion (https://github.com/STAR-Fusion/
STAR-Fusion) enables detection of fusion transcripts. Alternative gene expression analyses can be
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Figure 2. Validation of MYCN genomic amplification status in neuroblastoma cell lines. Plotted are rank-
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copy number status. These data validate known MYCN amplification status for each cell line.
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performed using RSEM19 and/or transcript level analyses can be performed using kallisto20. Use of
kallisto will also allow quantification of non-coding RNA abundances. Differential expression analyses
may be performed using the common R packages, limma21 or DESeq2 (ref. 17). Differentially expressed
gene lists can be explored for enrichment in signaling pathways using Ingenuity Pathway Analysis
(Qiagen, http://www.ingenuity.com/products/ipa) and/or gene ontologies using ToppGene22 or the
Gene Ontology Consortium tool23. Finally, these expression data can be integrated with epigenomics
datasets (e.g.: ChIP-Seq, DNase-Seq/ATAC-Seq, Histone ChIP-Seq) to infer transcriptional regulation
or repression.
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