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Background: Fatigue is one of the most common symptoms of multiple sclerosis (MS),
significantly affecting the functioning of the patients. However, the neural underpinnings
of physical and mental fatigue in MS are still vague. The aim of our study was to
investigate the functional architecture of resting-state networks associated with fatigue
in patients with MS.

Methods: The sum of 107 high-functioning patients underwent a resting-state scanning
session and filled out the 9-item Fatigue Severity Scale (FSS). Based on the FSS score,
we identified patients with different levels of fatigue using the cluster analysis. The
low-fatigue group consisted of n = 53 subjects, while the high-fatigue group n = 48.
The neuroimaging data were analyzed in terms of functional connectivity (FC) between
various resting-state networks as well as amplitude of low-frequency fluctuation (ALFF)
and fractional amplitude of low-frequency fluctuations (fALFF).

Results: Two-sample t-test revealed between-group differences in FC of posterior
salience network (SN). No differences occurred in default mode network (DMN)
and sensorimotor network (SMN). Moreover, differences in fALFF were shown in
the right middle frontal gyrus and right superior frontal gyrus, however, no ALFF
differences took place.

Conclusion: Current study revealed significant functional network (FN) architecture
between-group differences associated with fatigue. Present results suggest the higher
level of fatigue is related to deficits in awareness as well as higher interoceptive
awareness and nociception.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, neurodegenerative
disease characterized by demyelination and axonal damage in
the central and peripheral nervous systems. There are four
courses of the disease and the most common one is a relapsing-
remitting form (RRMS), in which the relapses of symptoms
are followed by periods of remission with a different duration
and a break between them. The courses differ in the type
of attack by the immune system, clinical picture as well as
neurological symptoms (Filippi et al., 2018; Lassmann, 2018).
The MR image, which is partly used for diagnosis, shows focal
lesions that are triggered by chronic inflammatory processes and
cause symptoms of the disease, including mobility problems,
pain, and cognitive decline (Filippi et al., 2018). On a neuronal
level, diseased and structurally injured brain causes functional
disruption of various neural networks. Therefore, functional
networks (FNs) can be characterized with different activity in
early and late stages of the disease. Deficits and disruption in
one network are reported to cause hyperconnectivity in another
network, which compensate for the loss in the disrupted network.
It is believed hyperconnectivity represents an observable brain
response to neural network disruption (Hillary and Grafman,
2017). Functional compensatory mechanisms are especially
reported to be very common at the early, mild stages of the
MS, which can limit first clinical manifestations of the disease
until a certain threshold of damage is exceeded (Pantano et al.,
2002; Audoin et al., 2005; Mainero et al., 2006; Basile et al., 2014;
Droby et al., 2016; Castellazzi et al., 2018; Koubiyr et al., 2021).
One of the most common (occurring in up to 80% of patients)
symptoms in the early stages of MS is fatigue, influencing normal
functioning (Simionia et al., 2007; Forwell et al., 2008; Gupta
et al., 2013; Loy et al., 2017). Rudroff et al. (2016) propose the
model, where fatigue in MS is described as “the decrease in
physical and/or mental performance that results from changes
in central, psychological and/or peripheral factors.” Nevertheless,
it differs significantly from tiredness seen in healthy individuals
or other chronic disease patients and many MS patients describe
fatigue as the most debilitating disease sign (Bakshi, 2003; Kos
et al., 2007; Induruwa et al., 2012). The phenomenon of fatigue
in MS can be understood on the level of state fatigue, which
relates to psychological state in the specific moment of time or
fatigue as a trait. Enoka et al. (2021) divide trait fatigue into
perceived fatigability and objective fatigability. The former can
be operationalized from capacity to perform past, present, and
future activities, while the latter refers to limits of current actions,
manifested in voluntary activations and contractile function.

The mechanisms of fatigue could be divided into primary
ones such as involvement of immune system and altered patterns
of brain activation through lesions or secondary mechanisms,
which results from related conditions like sleep disorders or
depression (Braley and Chervin, 2010). Nevertheless, the origin
and mechanism of this symptom are still poorly understood.
However, fatigue in MS is thought to be mostly linked to
age, disability, and disease duration (Colosimo et al., 1995;
Ghajarzadeh et al., 2013; Loy et al., 2017), with some suggestion
that disability is a driving factor (Kroencke et al., 2000).

The researchers have been already looking for structural and
functional correlates of fatigue in MS, however, metaanalyzes
show that most of the studies focus on MS patients with
moderate or severe disability status (Loy et al., 2017; Moss-
Morris et al., 2021). So far, Wilting et al. (2015) using voxel-
based morphometry revealed thalamic alterations associated with
fatigue in the early stage of relapsing-remitting MS. Functional
abnormalities of the brain could be distinguished by resting-state
fMRI (rs-fMRI), which enables studying functional interactions
in the state of rest, without any explicit task performance
(Smith et al., 2013). These interactions and their alterations are
determined in healthy individuals in various conditions and
clinical approaches, including patients with MS. The previous
research on MS indicated diminished synchronization in the
cerebellum, thalamus, or insula with other brain regions (Zhou
et al., 2013; Tona et al., 2014). Moreover, the alterations in
functional connectivity (FC) in MS are correlated with the
disability progression (Faivre et al., 2016; Tommasin et al., 2020).
Zhou et al. (2016) also revealed disturbances in brain atrophy, a
new approach to investigate brain temporal dynamics, in patients
with MS compared to healthy subjects. Several studies associate
resting-state FC with MS-related fatigue (e.g., Bisecco et al.,
2017; Jaeger et al., 2018; Stefancin et al., 2019), demonstrating
divergent results.

The disturbances of FC were so far revealed mainly in DMN
(Bonavita et al., 2011, 2016; Zhou et al., 2014) and salience
network (SN) (Cruz-Gómez et al., 2013; Manca et al., 2019).
Moreover, the previous research revealed altered amplitude of
low-frequency fluctuation (ALFF) in, i.e., motor, cerebellar, or
frontal regions (Liu et al., 2011; Mansoory et al., 2018; Plata-Bello
et al., 2018).

The aim of the current study is to determine the fatigue-
related FC disturbances in default mode network (DMN), SN,
and sensorimotor network (SMN) as well as whole brain ALFF
and fractional amplitude of low-frequency fluctuations (fALFF)
in the mild stage of RRMS. Based on the previous literature, we
hypothesize hyperconnectivity in DMN, SN as well as SMN as a
sign of compensation mechanisms in networks which are thought
to be disrupted during the progression of MS. Moreover, we
hypothesize altered ALFF, fALFF and graph measures in frontal,
motor, and cerebellar regions.

MATERIALS AND METHODS

Subjects
The recruitment strategy was based on a collaboration with the
Multiple Sclerosis Treatment Center of Jagiellonian University
Hospital. All patients meeting the criteria of relapsing-
remitting type of the disease, the Expanded Disability Status
Scale (EDSS) score no higher than 4, no flu-like symptoms,
no contraindications for MRI scanning (pregnancy, use of
electrostimulator or pacemaker, non-removable prosthesis in the
body made from ferromagnetic material, claustrophobia) were
invited to take part in the study. The invitation was given
by their doctor during their routine, seasonal follow up visit.
The Institute of Applied Psychology Ethics Committee of the
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Jagiellonian University approved the study, and an informed
consent was obtained from all participants in accordance with the
Declaration of Helsinki.

Due to the compromised quality of MRI scans, data from 6
participants needed to be removed from further analysis, the final
research sample consisted of 101 participants (37 men) aged from
20 to 59 (M = 36.67; SD = 8.04). The mean EDSS score for all
patients was M = 1.34; SD = 0.95.

Basic Information and Short Medical
Interview
Information about participants’ age and gender as well as their
current EDSS score was provided by the recruiting physician.
Short medical interview was conducted with each participant and
information of the first occurrence of MS symptoms and the
beginning of MS related treatment was gathered by the doctor.

Early, mild stage of the disease was defined due to the severity
of the disease rather than due to the time from the beginning of
the treatment or from the onset of first symptoms. As a results,
doctors recruited patients whose EDSS score was no higher than
4 (M = 1.34; SD = 0.95). Patients up to that stage are self-sufficient
and able to walk without rest or support for at least 500 m (Çinar
and Yorgun, 2018). Above criteria are presumably more objective,
since first onset of symptoms as recalled by patients can be biased
and the beginning of treatment depends on the patient’s own
subjective decision of when the symptoms were severe enough
for them to seek medical advice. Moreover, after 10–20 years,
many patients with relapsing-remitting MS develop secondary-
progressive MS, where impairment accumulates over time (Moss-
Morris et al., 2021). Above fact may contribute to the statement
that current study investigates MS patients in early stages.

Fatigue Severity Scale Assessment
All participants filled in the Fatigue Severity Scale (FSS) (Krupp
et al., 1989). The method is a one-dimensional questionnaire
consisting of nine statements about the feeling of fatigue
experienced during last week. Seven-point Likert scale is used
to rank the level of agreement with every statement from 1 –
strongly disagree to 7 – strongly agree. Overall score is a sum
of all questions divided by nine. Score of 4 and greater is
considered to indicate a substantial level of fatigue (Andreasen
et al., 2011; Learmonth et al., 2013). Fatigue Severity Scale is
a method widely used in studies on MS and is characterized
with good psychometric properties with Cronbach’s alpha of 0.93
(Amtmann et al., 2012). According to Enoka et al. (2021) it allows
to quantify perceived fatigability.

In the current study participants filled out Polish version of
the questionnaire used previously in another study conducted
on Polish population (Goła̧b-Janowska et al., 2016). Scale was
translated from English by a team consisting of a neurologist and
a translator and then back-translated by an independent bilingual
person. Any inaccuracies were discussed and corrected.

Expanded Disability Status Scale
Prior to the study all participants were assessed on the EDSS
which is a tool widely used to measure disability level in patients

with MS (Çinar and Yorgun, 2018). It is based on structured
interview and clinical examination. The final score of the scale
ranges from 0 – normal neurological examination to 10 – death.

MRI Acquisition
MRI data was acquired using 3T Siemens Skyra MR System
(Siemens Medical Solutions, Erlangen, Germany). Structural
images were obtained using sagittal 3D T1-weighted MPRAGE
sequence. Total of 13 min and 20 s rs-fMRI EPI images
were acquired using gradient-echo single-shot echo planar
imaging sequence with the following parameters: TR = 800 ms;
TE = 27 ms; slice thickness = 0.8 mm, voxel size = 3 mm3,
with no gap using 60-channel coil. Total of 52 interleaved
transverse slices and 1000 volumes were acquired. During
the acquisition, participants were instructed to keep their
eyes open and not to think about anything in particular.
Simultaneous-multi-slice (SMS) acquisition was acquired in
order to enhance the sensitivity of hemodynamic response
by acquiring two or more slices simultaneously and as a
consequence, decreasing TR to 0.8 s.

Imaging Data Preprocessing
The rs-fMRI data processing was performed using Data
Processing & Analysis for Brain Imaging (DPABI) V6.0 (Yan
et al., 2016) as well as SPM 12 (Wellcome Trust Centre for
Neuroimaging, UCL, London, United Kingdom) both working
under MATLAB version R2018a (The MathWorks, Inc., Natick,
MA, United States). Firstly, 10 time points were discarded due
to signal equilibration and then slice timing was conducted.
Next, realignment with assessment of the voxel specific head
motion was conducted. Six participants displayed movements
above 3 mm or 3◦ in one or more of the orthogonal directions
and therefore had to be disqualified from further analysis. Then,
using standard EPI template functional images were linearly
normalized in DARTEL to Montreal Neurological Institute
(MNI) space and spatially resampled to 2 × 2 × 2 mm voxel
size. The 24 motion parameters derived from the realignment
step, white matter as well as cerebrospinal fluid signals and five
principal components were removed using principal components
analysis integrated in a component based noise correction
method (Behzadi et al., 2007). The global signal was included due
to its potential to provide additional valuable information (Liu
et al., 2017). The signal was then band-pass filtered (0.01–0.08 Hz)
to reduce high-frequency noise and low-frequency drift, such as
the respiratory and cardiac rhythms. The data was not smoothed.

K-Means Clustering
K-means is considered to be the mostly used clustering technique
for vector data (Thirion et al., 2014). It results in the partition of
n observations into k clusters, where each observation belongs
to the cluster with the nearest mean, described as cluster
centers. In current study, supervised k-means algorithm was
used. Participants were divided into 2 clusters according to
overall FSS score. According to the literature, the score of fatigue
which is 4 or higher is considered to indicate substantial level of
fatigue (Andreasen et al., 2011; Learmonth et al., 2013). As a result
of k-means clustering, a low-fatigue group (M = 2.41; SD = 0.74)
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consisted 53 subjects while the high-fatigue group (M = 4.64;
SD = 0.77) had 48 subjects in it.

Analyzes Rationale
In order to investigate functional architecture of neural networks,
three types of fMRI analyzes were conducted. Firstly, FC
within DMN, SN, and SMN was calculated. Secondly, whole-
brain analyzes were explored. Conventional (ALFF) and fALFF
were calculated with the use of typical, universal frequency
band of 0.01–0.08 Hz. Moreover, topological properties of FN
were investigated on a global and local level with the use
of graph metrics.

Functional Connectivity Analysis
First level FC analysis was calculated within five sets of regions
using an ROI-to-ROI approach. Five regions of interests (ROIs),
such as DMN, SN, and SMN were chosen based on the regions
defined by Stanford University. All ROIs can be downloaded
in author’s website.1 ROIs include: dorsal DMN, ventral DMN,
posterior SN, anterior SN and SMN. Raw time courses were
extracted from each subject using “ROI Signal Extractor” module
in DPABI V6.0 (Yan et al., 2016) working under MATLAB version
R2018a (The MathWorks, Inc., Natick, MA, United States)
and SPM 12 (Wellcome Trust Centre for Neuroimaging, UCL,
London, United Kingdom). The two-sample t-tests comparing
FC values in both groups were performed for every ROI, the
significance level was set to p < 0.05, with FDR correction
(Benjamini–Hochberg procedure) for multiple comparisons.

Amplitude of Low-Frequency Fluctuation
and Fractional Amplitude of
Low-Frequency Fluctuations Analysis
Amplitude of low-frequency fluctuation allows to estimate the
neural component from the BOLD signal, showing the content
of the power is in the low-frequency range. ALFF is a whole-
brain analysis, which enables focusing on each voxel of the brain,
making it a complementary method to FC (Wang et al., 2016).

Fractional amplitude of low-frequency fluctuations, on the
other hand, measures the power within a specific frequency range
divided by the total power in the entire detectable frequency
range which is 0–0.25 Hz (Zou et al., 2008). Noteworthy, it is
considered as more sensitive to neural origins of low-frequency
fluctuations (Bijsterbosch and Beckmann, 2017), making the
analysis of low frequency fluctuations more comprehensive.

Amplitude of low-frequency fluctuation as well as fALFF were
calculated using DPABI v 6.0 (Yan et al., 2013). The time series
for each voxel was transformed to the frequency domain with
the use of a fast Fourier transform. The square root of the power
spectrum was calculated, then averaged across 0.01–0.08 Hz, and
standardized to z-score by dividing the subject-level maps by the
standard deviation. For standardization purposes and to reduce
the influence of individual variation in ALFF values, the ALFF of
each voxel was then divided by the global mean of ALFF values
for each subject within the default brain mask from the DPABI,

1https://findlab.stanford.edu/research

removing background and other signals which were not from
brain tissue. As a result, a standardized whole-brain ALFF map
was created. Both ALFF and fALFF were calculated in the typical
frequency band of 0.01–0.08 Hz. ALFF and fALFF statistical
analyses were conducted at the voxel-level of p = 0.001.

Graphs Metrics
GraphVar 2.02b (Kruschwitz et al., 2015) and MATLAB version
R2018a (The MathWorks, Inc., Natick, MA, United States) were
used in order to examine the topological properties of functional
brain network at global and local levels. Global measures were
used to describe macroscale organization and integration of
all nodes in the brain network and included: mean clustering
coefficient and assortativity. Local properties were calculated
for each individual node (region) separately and reflecting
the nodal centrality in the network. In this study, common
local properties such as clustering coefficient and eigenvector
centrality were calculated (the measures are discussed in detail
in https://sites.google.com/site/bctnet/measures/list). Data used
for graph measures were not smoothed during preprocessing
steps. For each subject, 116 ROIs were defined according to the
AAL atlas (Tzourio-Mazoyer et al., 2002). In order to obtain
a 116 × 116 undirected binary correlation matrix, mean time
course for each region was extracted and then the Pearson
coefficients between each pair of ROIs were calculated. In order to
exclude the spurious links in interregional connectivity matrices
(Power et al., 2011), we adopted a thresholding procedure
based on the strongest connections, removing the weaker ones
(van den Heuvel et al., 2017). Above procedure enabled to
compare network topology between as well as within participants
(Gamboa et al., 2014). Network edges were defined using a
sparsity thresholding procedure ranging from 0.1 to 0.5 in steps
of 0.05, universal for all of the subjects. Both age and EDSS scores
were used as a nuisance covariate.

RESULTS

Cluster 1 consisted of 53 patients (20 men) aged from 20 to 56
(M = 35.06; SD = 7.87). Mean FSS score (M = 2.41; SD = 0.74),
EDSS score (M = 1.15; SD = 0.79), years since onset of first MS
symptoms (M = 8.06; SD = 4.73) as well as years since the start
of MS related treatment (M = 5.43; SD = 3.23) were calculated.
Cluster 2 consisted of 48 patients (17 men) aged from 25 to 59
(M = 38.46; SD = 7.91). Mean FSS score (M = 4.64; SD = 0.77),
EDSS score (M = 1.54; SD = 1.06), years since onset of first MS
symptoms (M = 9.81; SD = 4.62), and years since the start of MS
related treatment were calculated (M = 6.98; SD = 3.5). Clusters
differed significantly in age [t(2,99) = 2.16; p = 0.033] and the
older patients were placed in the Cluster 2. Moreover, patients
from Cluster 2 also obtained significantly higher scores in FSS
[t(2,99) = −14.79; p < 0.001], EDSS [t(2,99) = 2.083; p = 0.04],
and were treated for MS longer than participants from Cluster
1 [t(2,99) = 2.308; p = 0.023]. Clusters showed no significant
difference in gender χ2 = (1, n = 101) = 0.058; p = 0.809 and years
from the first onset of MS symptoms t(2,99) = 1.882; p = 0.063. All
demographic values are showed in Table 1.
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TABLE 1 | Demographic and medical data of patients in clusters.

Cluster 1 Cluster 2 Test result p

Gender M:20 F:33 M:17 F:31 χ2 = (1, n = 101) = 0.058 0.809

FSS M = 2.41 SD = 0.74 M = 4.64 SD = 0.77 t(2,99) = 14.79 <0.001

Age M = 35.06 SD = 7.87 M = 38.46 SD = 7.91 t(2,99) = 2.16 0.033

EDSS M = 1.15 SD = 0.79 M = 1.54 SD = 1.06 t(2,99) = 2.083 0.04

Years since the onset of first symptoms M = 8.06 SD = 4.73 M = 9.81 SD = 4.62 t(2,99) = 1.882 0.063

Years since the start of treatment M = 5.43 SD = 3.23 M = 6.98 SD = 3.5 t(2,99) = 2.308 0.023

A one-way ANCOVA was conducted to investigate potential
between-group differences in FC of DMN, SN, and SMN
associated with the level of fatigue. The analysis revealed
statistically significant difference between patients in Cluster 1
and Cluster 2 in posterior SN, while controlling for age, disability
level, and duration of pharmacological treatment [F(2,90) = 6.093;
p = 0.016]. Post hoc comparisons using Bonferroni test indicated
that the mean FC values for the Cluster 1 (M = 0.401; SD = 0.115)
was significantly different from mean FC values for Cluster 2
(M = 0.457; SD = 0.113). These results suggests that the FC
between brain areas among posterior SN was higher in Cluster
2 in which the fatigue level was increased as compared to Cluster
1 and that this result is independent of age, disability level, and
duration of pharmacological treatment. A one-way ANCOVA
showed no significant differences between Cluster 1 and Cluster
2 in FC among anterior SN [F(2,91) = 1.858; p = 0.176], dorsal
[F(2,91) = 1.353; p = 0.248], and ventral [F(2,91) = 0.906; p = 0.344]
parts of the DMN as well as SMN [F(2,91) 0.590; p = 0.444].
Furthermore, two sample t-test showed statistically significant
between-group differences in fALFF [t(2,99) = 3.17; p = 0.027].
The threshold was set at the p-value 0.001 with cluster size of
28 voxels. Patients with higher fatigue level had lower fALFF
in right middle frontal gyrus as well as right superior frontal
gyrus. No differences were found in ALFF as well as graph
measures (p > 0.05). All of the fMRI results are FDR corrected
with p < 0.05. Visualization of above results can be found in
Figures 1, 2.

DISCUSSION

The aim of the current study was to investigate the association
of FN architecture in DMN, SN, and SMN as well as whole-
brain ALFF and fALFF with the level of fatigue in the
mild stage of RRMS.

The investigation revealed higher average FC in posterior
SN in Cluster 2 in comparison with Cluster 1. The SN
play an enormous role in attentional processes such as
its distribution and capacity (Manca et al., 2019), enabling
productive information processing as well as faster responses
to stimuli. At the same time, people with chronic fatigue
syndrome are coherently described as the ones with significant
deficits in attention (Ray et al., 1993; Holgate et al., 2011).
Accordingly, subjects from Cluster 2, who declare to be almost
twice as much tired as participants from Cluster 1, manifest
decreased attention, compared to the group with the lower

FIGURE 1 | Cluster showing whole-brain fALFF analysis differences between
both groups in (A) coronal plane, (B) sagittal plane, and (C) axial plane. The
template “Ch2bet” was obtained from MRIcroGL.

FIGURE 2 | Boxplot showing raw functional connectivity values in posterior
salience network for groups with low and high fatigue.

scores of fatigue. Therefore, higher FC in posterior SN in
RRMS patients might be a compensatory mechanism which
enables the patients to cope with deficits of attention. Many
studies point to the compensation mechanisms in MS patients,
especially in the early stages (Pantano et al., 2002; Audoin
et al., 2005; Mainero et al., 2006; Basile et al., 2014; Droby
et al., 2016; Castellazzi et al., 2018; Koubiyr et al., 2021).
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Hyperconnectivity is thought to represent an observable brain
response to neural network disruption caused by diseased and
structurally injured brain (Hillary and Grafman, 2017). However,
only short-term hyperconnectivity is considered to be beneficial,
while long-term hyperconnectivity can have bad consequences
for human brain. Increased brain metabolism, caused by a
local hyperconnectivity, is a predictor of higher amyloid beta
(Aβ) deposition, which is a well-known signature of Alzheimer’s
disease. In conclusion, chronic hyperconnectivity, performing a
function of compensatory mechanisms, can lead to a serious
progressive neurodegeneration (Vlassenko et al., 2010; Myers
et al., 2014; Hillary and Grafman, 2017). Noteworthy, the main
region of the posterior SN is posterior insula, which is widely
known to be involved in interoceptive awareness, understood as
a capability to knowingly perceive inner bodily signals (Kuehn
et al., 2016). According to Craig et al. (2000), changes in the
activity of posterior insula correlate with the graded intensity
of interoceptive stimuli, while stimulation of the same region of
interest results in interoceptive and somatic sensations (Penfield
and Faulk, 1955). Moreover, posterior insula is thought to
play a crucial role in nociception (Frot et al., 2014; Segerdahl
et al., 2015). Higher nociception in MS patients stays in line
with the literature, as chronic neuropathic pain is frequent and
very characteristic symptom of this neurodegenerative disease
(Yilmazer et al., 2020). Current study is also congruent with
the research of Chen et al. (2020), who observed increased FC
in the parts of insula which were described as an interoceptive
hub. What is more, the study concludes that hyperconnectivity
of interoceptive network is associated with experiencing of the
cognitive fatigue.

Another result from the current study revealed smaller fALFF
in RRMS patients with higher fatigue score in the cluster located
in right middle frontal gyrus and right superior frontal gyrus. In
the study of Sepulcre et al. (2009) lesion load in the exact same
regions was positively correlated with the fatigue score. Authors
concluded that lesions in aforementioned regions are associated
with the disruption of FNs responsible for cognitive and attention
processes. Other studies also point out the relation of middle
frontal gyrus and fatigue in MS (Filippi et al., 2002; Calabrese
et al., 2010). Noteworthy, both right middle frontal gyrus as well
as the right superior frontal gyrus are thought to be located at
the borderline between DMN and cognitive executive network
(Young et al., 2017), while the SN is reported to modulate the
switch between aforementioned two networks (Menon, 2015).
Above results are very promising, considering hyperconnectivity
in SN in MS patients with higher fatigue.

Noteworthy, brain regions with significantly altered FC as well
as fALFF are anatomically or functionally connected to striatal-
thalamic-frontal network, commonly known as the fatigue
network (Genova et al., 2013). Genova et al. (2013) with the use
of cognitively fatiguing task and FSS revealed that striatum as
well as thalamus, frontal regions and its interconnected regions
play significant role in perceived fatigability in MS patients.
Interestingly, the SN, which had higher FC in patients with
higher fatigue, consists regions which shows intrinsic connection
to striatum and thalamus (Menon, 2015). The same group of
patients manifested smaller fALFF in middle and superior frontal

gyrus, which overlap with the striatal-thalamic-frontal network.
Therefore, our results are partly congruent with the results of
Genova et al. (2013) pointing on neural correlates of perceived
fatigability in MS.

The current study revealed that MS patients with higher
fatigue level were characterized with significantly higher
disability status, age as well as longer pharmacological treatment.
Above results are congruent with various previous studies
(Colosimo et al., 1995; Kroencke et al., 2000; Ghajarzadeh et al.,
2013) as well as the meta-analysis of Loy et al. (2017), who
reports that MS patients with higher EDSS and longer disease
duration suffer from fatigue more than patients with lower EDSS.
Aforementioned questionnaire results, which stays in line with
other studies in the field, strengthen the fMRI results on the
neural basis of fatigue in mild stage MS.

Limitations
The study has potential limitations. For example, using
supervised k-means algorithm for dividing patients into clusters,
as k-means was traditionally used for the unsupervised
clustering. However, using unsupervised k-means clustering is
not guaranteed to group the same types of objects together.
Therefore, some supervision is needed to select objects which
have the same label into one cluster. It has also been shown
that the supervised k-means algorithm can be efficiently and
effectively applied to various data sets (Al-Harbi and Rayward-
Smith, 2006), hence we believe that using the supervised k-means
algorithm was appropriate for current study. Secondly, the EDSS
has some limitations. It provides ordinal scores and therefore
contains less information than a scale using continuous measures,
such as for example Multiple Sclerosis Functional Composite
(MSFC) (Rudick et al., 2002). It was also reported that MSFC
correlates better with brain measures and quality of life in MS
patients (Kalkers et al., 2001; Rudick et al., 2002). However,
Meyer-Moock et al. (2014) compared in their comprehensive
study psychometric properties of both forementioned scales and
concluded that both instruments display satisfying parameters.
They pointed out that EDSS have an advantage in being
internationally accepted and widely used. In addition, future
studies should consider recruiting patients with the late stage of
MS, in order to compare both stages with each other and broaden
the picture of neuronal bases of fatigue in MS. Furthermore, we
examined patients who could be treated with the medications
which cause symptoms similar to the fatigue. Future studies
should also measure pain, anxiety, and depressive symptoms as
they are significant part of MS.

In conclusion, current study revealed significant FN
architecture between-group differences associated with the
fatigue. Present results suggest that the higher level of fatigue
is related to deficits in attention as well as higher interoceptive
awareness and nociception.
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