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ABSTRACT: Herein, we report an approach for generating thionyl fluoride (SOF2) from the commodity chemicals thionyl chloride
(SOCl2) and potassium fluoride (KF). The methodology relies on a microfluidic device that can efficiently produce and dose this
toxic gaseous reagent under extremely mild and safe conditions. Subsequently, the in situ-generated thionyl fluoride is reacted with
an array of structurally and electronically differing carboxylic acids, leading to the direct and efficient synthesis of highly sought-after
acyl fluorides. Importantly, our investigation also highlights the inherent modularity of this flow-based platform. We demonstrate the
adaptability of this approach by not only synthesizing acyl fluorides but also directly converting carboxylic acids into a diverse array
of valuable compounds such as esters, thioesters, amides, and ketones. This versatility showcases the potential of this approach for a
wide range of synthetic applications, underscoring its significance in the realm of chemical synthesis.
KEYWORDS: fluorine chemistry, flow chemistry, gaseous reagents, on-demand synthesis, multistep synthesis

In contemporary synthetic laboratories, the utilization of
toxic and hazardous gaseous compounds is subject to

stringent regulations and control measures.1 The elusive nature
of gases makes handling and dosing of these reagents a
formidable challenge when employing traditional batch
equipment.2 This has prompted the scientific community to
devise engineered chemicals that can release in situ the desired
gases via a chemical reaction.3 Alternatively, some solid
reagents have been developed to serve as gas surrogates to
perform the same types of transformations.4 However, these
approaches often suffer from inefficiency due to the formation
of stoichiometric byproducts. Furthermore, they frequently
necessitate the initial use of the parent gases for the synthesis
of the reagents, overall lowering the atom economy.

In our laboratory,5 we have recently made significant strides
in leveraging the power of flow chemistry6 to directly harness
and manage various gaseous reagents.7 Within this research
framework, we have unveiled a modular flow platform capable
of producing SO2F2 from readily available, bench-stable
chemicals such as KF and SO2Cl2 (Scheme 1A) through a
Cl−F exchange process.5a The intrinsic containment properties
of this flow system ensure the safe and controlled generation of
the gaseous reagent while also facilitating precise dosing of the
reactive gas.7,8 This breakthrough has enabled the execution of

a diverse range of SuFEx (sulfur(VI) fluoride exchange)9

ligations on a wide spectrum of compounds, including small
molecules, biorelevant compounds, peptides, and proteins.

Recently, we wondered whether we could extend the range
of gases generated through this microfluidic device to thionyl
fluoride, SOF2. This gas has long been overlooked as a
deoxyfluorinating reagent due to safety concerns associated
with its handling and toxicity. Only recently, work by Sammis
and co-workers demonstrated how stock solutions of this gas
could be produced through an ex situ approach.10 However,
this strategy requires multiple manipulations due to the batch
setup in order to avoid the presence of undesired F/Cl mixed
species SOFCl and stoichiometric amounts of HCl, limiting its
practicality and potential applications. Our interest in
generating SOF2 stemmed from its ability to swiftly convert
abundant carboxylic acids into acyl fluorides, as detailed by the
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group of Sammis.10b This stands in stark contrast to the
limitations of low atom economy, limited functional group
tolerability, and high costs associated with the use of
engineered reagents like DAST, cyanuric fluoride, Deoxo-
Fluor, or Fluolead, among others (Scheme 1B).11 Acyl
fluorides are in fact an enticing class of carboxylic acid
derivatives known for their synthetic utility as well as their
enhanced stability and peculiar reactivity compared to their
chloride analogues.12 Acyl fluorides are isolable and exhibit
increased stability with respect to other acyl halides and yet
require mild reaction conditions to engage in diverse synthetic
transformations.13 Thus, when reacted with nucleophiles, they
offer a straightforward route to a wide range of valuable
products such as esters, amides, or thioesters, almost regardless
of the steric and electronic properties.14

Herein, we report the development of a strategy that
harnesses the power of a microfluidic device to form thionyl
fluoride and swiftly use it to convert carboxylic acids into acyl
fluorides (Scheme 1C). Furthermore, we demonstrate the
feasibility of a multistep flow approach15 where the carboxylic
acids are directly converted into amides, esters, thioesters, and
ketones.

Our investigation commenced with an exploration of the
feasibility of SOF2 generation by flowing a solution of SOCl2 in
CH3CN through a packed bed reactor filled with a 1:1 mixture
of KF and glass beads (see the Supporting Information for

details). We observed efficient and consistent formation of the
coveted gaseous reagent regardless of the residence time of the
solution within the packed bed reactor. Interestingly, the
reactor cartridge itself has a reduced lifespan when decreasing
the residence time of the solution within it (see the Supporting
Information for details). We reasoned that higher flow rates
might lead to the formation of preferred flow channels, which
prevent SOCl2 from reacting with the remaining KF present in
the packed bed reactor.16 This issue can be effectively
addressed by using relatively low flow rates (up to 15 mmol
of SOF2 was produced by a single cartridge at 0.1 mL/min; see
the Supporting Information for further discussion). Sub-
sequently, we coupled the thionyl fluoride generator to a
stream of CH3CN solution containing a mixture of model
substrate 4-phenylbenzoic acid 1 and Et3N and studied the
influence of the stoichiometry and flow rates of the different
feeding solutions (Table 1).

This process demonstrated exceptional efficiency, as the acyl
fluoride formation occurred in high yields when employing 4,
2, and 1.1 equiv of thionyl chloride with respect to the
carboxylic acid (entries 1−3). Increasing the amount of the
Et3N did not diminish the acyl fluoride formation (entry 4).
Furthermore, the reaction displayed impressive speed, with
optimal yields achieved even at reduced residence times in the
second reactor of 90, 45, or as little as 36 s (entries 5−7). In
the case of entry 4, the productivity of this process amounts to

Scheme 1. (A) In-Flow Generation of Sulfuryl Fluoride from Sulfuryl Chloride Enables the Rapid and Direct Synthesis of
Fluorosulfates and Sulfamoyl Fluorides; (B) Selection of Reagents Capable of Converting Carboxylic Acids into Acyl
Fluorides; (C) In-Flow Generation of Thionyl Fluoride Allows the Rapid and Direct Synthesis of Acyl Fluorides

Table 1. Optimization of the Reaction Conditionsa

entry flow rate 1st reactor (mL min−1) flow rate 2nd reactor (mL min−1) SOCl2/acid ratio yield (%)b

1 0.400 0.500 4:1 >95
2 0.333 0.500 2:1 >95
3 0.262 0..500 1.1:1 84
4c 0.333 0.500 2:1 >95
5 0.600 1.00 1.5:1 94
6 1.20 2.00 1.5:1 >95
7 1.50 2.50 1.5:1 92

aReactions performed on a 0.5 mmol scale of carboxylic acid 1, using 2.5 equiv of triethylamine and 4−1.1 equiv of thionyl fluoride. bYields were
determined by 19F NMR analysis, using 1,2-difluorobenzene as the internal standard. cReaction performed using 3 equiv of Et3N.
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0.792 g h−1, and the space-time yield amounts to 149 g L−1

h−1.
To showcase the robustness and versatility of this process,

we selected the conditions detailed in entry 4 and varied the
carboxylic acid partner (Scheme 2). We began by examining a
wide array of aromatic carboxylic acids. The reaction is not
very sensitive to the electronic nature of the substituents or
their position on the aromatic ring. Indeed, electron-rich (2,
3), electron-neutral (4), and electron-poor derivatives (5, 6),
as well as acids with substituents on the ortho (7) and meta
(8) positions, were swiftly converted into the corresponding
acyl fluorides (79−93% yields). As a limitation to this method,
highly encumbered carboxylic acids did not afford the desired
acyl fluoride (see the Supporting Information for further
discussion). Moreover, the reaction also took place when

heteroaromatic (9−11) or ferrocenyl (12) derivatives were
used (60−91% yields). Subsequently, we assessed the
generality of the process in terms of alkyl carboxylic acids.
Primary (13), secondary (14), and tertiary (15) carboxylic
compounds all yielded the corresponding acyl fluorides in
good-to-excellent yields (78−95% yields). Similar success was
observed when an α,β-unsaturated carboxylic acid was used
(16, 81% yield). Moreover, several Boc-protected α-amino
acidic derivatives, such as glycine (17), alanine (18), leucine
(19), proline (20), and phenylalanine (21), as well as non-
natural structures such as cyclovaline (22) and
azabicyclo[2.2.1]heptane-3-carboxylic acid (23), were
smoothly converted into the targeted acyl fluoride derivatives
(41−97% yield) with very little erosion of their enantiopurity
(see the Supporting Information). Finally, we demonstrated

Scheme 2. Array of Acyl Fluorides Synthesized by Means of Our Deviceb

aThe acyl fluoride was directly isolated. bTo facilitate isolation, the solution of the acyl fluoride was treated with 1.05 equiv of N-
hydroxyphthalimide, and yields (%) refer to the corresponding esters unless otherwise indicated. The yields of the acyl fluorides, as measured by
quantitative 19F NMR, have been reported in the Supporting Information. tR1, tR2: residence times in the first and second reactors, respectively.
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how the mild conditions of this approach make it suitable for
the functionalization of structurally diverse biorelevant
compounds decorated with various functional groups, such
as ibuprofen (24), pinonic acid (25), biotin (26),
dehydrocholic acid (27), and gibberellic acid (28) (55−94%
yields). Crucially, this method enables the exclusive formation
of the acyl fluoride even in the presence of a ketone
functionality (see 25 and 27), which would be rapidly
converted into a difluorinated motif in the presence of other
deoxyfluorinating reagents such as DAST or Deoxo-Fluor.17

After having found a set of optimal conditions to promote
the formation of acyl fluorides and having assessed the
generality of the scope, we embarked upon an endeavor to
leverage the full potential of this class of compounds with this
microfluidic device. As previously described, acyl fluorides are
appealing intermediates to forge new carbon−carbon and
carbon−heteroatom bonds. Exploiting the advantages offered
by the modular flow chemistry approach, we envisioned a
device comprising three sections (Scheme 3): the first module,
in which SOCl2 is converted to SOF2 through Cl−F exchange;
the second, in which the gaseous reagent is reacted with a
carboxylic acid to yield the acyl fluoride; and the third, in
which the acyl fluoride is finally mixed with a chosen
nucleophile to furnish the target compound. This required
reoptimization of the procedure (see the Supporting
Information for details). Crucially, the equivalents of SOF2
were lowered to 1.1 to avoid subsequent undesired reactions
with the nucleophilic component within the third module. This
adjustment, in turn, mandated an extension of the residence
time within the second module to 6 min to ensure optimal acyl
fluoride formation. It is worth noting that the productive use of
1.1 equiv of SOF2 in batch conditions would be extremely
challenging to achieve, as the gas would inevitably evolve
toward the headspace of the reactor. Under these finely tuned

reaction conditions, our investigation was directed toward the
exploration of potential coupling nucleophiles. As expected, a
thiol, an amine, and an alcohol could all be employed to obtain
the corresponding thioester (29, 61% yield), amide (30, 74%
yield), and ester (31, 61% yield) derivatives of dehydrocholic
acid upon acyl substitution. Furthermore, we evaluated the
possibility of forging C−C bonds. After a brief optimization of
the reaction conditions already present in literature18 (see the
Supporting Information for details), we were able to obtain
ketone 32 in 46% yield by employing 1,3-dimethoxybenzene as
the nucleophile, TMSOTf as the additive, and ibuprofen as the
acyl fluoride precursor in a Friedel−Crafts-type acylation
reaction.

In conclusion, we have developed a microfluidic reactor
capable of safely producing SOF2, an overlooked reagent due
to its gaseous and toxic nature, starting from the commodity
chemicals SOCl2 and KF. This gas was generated in situ and
reacted with a wide variety of carboxylic acids, including
aromatic, aliphatic, and α-amino acid derivatives, to yield the
corresponding acyl fluorides in a telescoped fashion.
Furthermore, this method was capable of converting
biorelevant molecules with perfect selectivity and good
chemical yields. Finally, as acyl fluorides are attractive
intermediates for the synthesis of other acyl derivatives, we
devised a streamlined three-module flow setup, where, after the
generation of the gas and the acyl fluoride production, the
latter is directly reacted with a nucleophile to forge C−S, C−
N, C−O, and C−C bonds. Based on these findings, we believe
that this flow approach makes thionyl fluoride a convenient
reagent to convert carboxylic acids into acyl fluorides. Further
applications of this strategy are ongoing in our laboratories.

Scheme 3. Employing the Microfluidic Setup for the Synthesis of Various Acyl Derivatives by Fluorine Displacement

a3 equiv of Et3N was used in the second module for entries 29 and 31, and 2.5 equiv for entries 30 and 32. tR1, tR2, tR3: residence times in the first,
second, and third reactors, respectively.
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