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Objective: Chemotherapy-related brain impairments and changes can occur

in patients with lung cancer after platinum chemotherapy and have a

substantial impact on survivors’ quality of life. Therefore, it is necessary to

understand the brain neuropathological alterations and response mechanisms

to provide a theoretical basis for rehabilitation strategies. This study aimed to

investigate the related brain morphological changes and clarified their

correlation with clinical and pathological indicators in patients with lung

cancer after platinum chemotherapy.

Methods: Overall, 28 patients with chemotherapy, 56 patients without

chemotherapy, and 41 healthy controls were categorized in three groups,

matched for age, sex, and years of education, and included in the cross-

sectional comparison of brain volume and cortical thickness. 14 matched

patients before and after chemotherapy were subjected to paired

comparison for longitudinal observation of brain morphological changes.

Three-dimensional T1-weighted images were acquired from all participants,

and quantitative parameters were calculated using the formula of the change

from baseline. Correlation analysis was performed to evaluate the relationship

between abnormal morphological indices and clinical information of patients.

Results: Brain regions with volume differences among the three groups were

mainly distributed in frontal lobe and limbic cortex. Additionally, significant

differences in cerebrospinal fluid were observed in most ventricles, and the

main brain regions with cortical thickness differences were the gyrus rectus and

medial frontal cortex of the frontal lobe, transverse temporal gyrus of the

temporal lobe, insular cortex, anterior insula, and posterior insula of the insular
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cortex. According to the paired comparison, decreased brain volumes in the

patients after chemotherapy appeared in some regions of the frontal, parietal,

temporal, and occipital lobes; limbic cortex; insular cortex; and lobules VI-X

and decreased cortical thickness in the patients after chemotherapy was found

in the frontal, temporal, limbic, and insular cortexes. In the correlation analysis,

only the differentiation degree of the tumor and duration after chemotherapy

were significantly correlated with imaging indices in the abnormal brain

regions.

Conclusions: Our findings illustrate the platinum-related brain reactivity

morphological alterations which provide more insights into the

neuropathological mechanisms of patients with lung cancer after platinum

chemotherapy and empirical support for the details of brain injury related to

cancer and chemotherapy.
KEYWORDS

chemotherapy-related brain impairment, lung cancers, platinum chemotherapy,
three-dimensional T1-weighted imaging, differentiation degree of the tumor
1 Introduction

Chemotherapy-related brain impairment and cognitive

abnormalities are frequent consequences in patients with lung

malignancies after chemotherapy, especially with platinum drugs

(1). A growing number of studies have shown that lung cancer

survivors are at risk for cognitive dysfunction, which is usually

characterized by various mental and/or psychological disorders,

particularly affecting working memory, attention, and executive

function (2). Chemotherapy-related brain changes may accelerate

brain morphological changes; however, empirical evidence

supporting this theory is limited (3, 4). Accordingly, it is urgent

to understand the neurological morphology that can provide a

theoretical basis for rehabilitation treatment strategies in

survivors (5).

Over the past 20 years, research on the neuro-mechanism of

platinum-based chemotherapy in patients with lung cancer has

increased (6–8). In addition, some studies have explored the

biological mechanism of the cognitive effects of chemotherapy

drugs in small animals (9, 10). Neuroimaging plays an important

role in neuropathology mechanistic research (11, 12), and with the

development of magnetic resonance imaging (MRI) techniques,

the detection of related morphological changes has become more

convenient and contributed to understand some of

chemotherapy-related cognitive impairment (CRCI) (13–15). An

increasing number of neuroimaging studies have shown that the

pathological cognitive symptoms of patients are particularly

related to the altered structure of gray matter (GM) and

abnormal brain volume, although the relationship between brain

aging in patients with CRCI and biomarkers of neuroimaging is
02
still only the tip of the iceberg (16). There is growing evidence that

decreases in either the cortical surface area or thickness of the non-

central nervous system cancers were found in multiple brain

regions of interest, primarily within the frontal and temporal

lobes (16, 17). Cortical thinning is a recognized imaging

biomarker for brain injury in patients with breast cancer (18).

Some studies have shown that the cortex gradually thins from 1

month to 1 year in patients with breast cancer after chemotherapy,

and cortical thickness is positively correlated with language

learning ability. Additionally, patients with chemotherapy have a

greater reduction in temporal lobe volume than those without, and

this was associated with a decrease in oral reading recognition

scores (14, 19, 20). Hippocampal deformation or volume

reduction is another abnormal change in patients receiving

chemotherapy, and these changes are related to memory, long

education years, poor self-reported cognitive function evaluation,

and even a significant increase in inflammatory immune specific

interleukin-6 and tumor necrosis factor-a (21–24). A recent study

using gray matter density (GMD) as a parameter indicated that

GMD decreased in the left inferior frontal gyrus, right middle

frontal gyrus, right fusiform area, and both cerebellums in patients

after chemotherapy. The number of chemotherapy cycles is

negatively correlated with the general cognitive performance of

patients (25). Although there are many confounding factors that

cause brain dysfunction in clinical patients after chemotherapy,

the application of neuroimaging technology makes it possible to

noninvasively understand the neuropathological mechanism

related to malignancies and chemotherapy and provide potential

imaging biomarkers for early detection or prediction of brain

injuries (26).
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At present, brain structural data from magnetic resonance

three-dimensional T1-weighted imaging (3D-T1WI) are mostly

used to evaluate patients with brain trauma or Alzheimer’s

disease-related cognitive impairment but have not been applied

in malignancy-associated morphological changes with or without

chemotherapy (27, 28). In this study, we hypothesized that

patients with lung cancer would exhibit abnormal volume and

cortical thickness in different brain regions after platinum

chemotherapy, and that these morphological changes would be

related to the clinical information of the patients. Our study aimed

to verify this hypothesis with volume and cortical thickness

indexes based on high-resolution 3D-T1WI. The association

between altered morphology indexes and clinical data of

patients was also evaluated.
2 Methods

2.1 Study population

This study was approved by Medical Ethics Committee of

the Nanjing Drum Tower Hospital. The patients/participants

and written informed consent was obtained from each

participant. All participants were retrospectively identified at

our hospital between January 2019 and December 2020. The

inclusion criteria were as follows: 1) all patients were first

diagnosed with cancer without metastasis; 2) patients

diagnosed with lung cancer based on the final pathological

results who had a chemotherapy; 3) patients with at least one

high-resolution 3D-T1WI was performed before or after

chemotherapy; 4) patients with no other brain and psychiatric

diseases and no history of psychotropic drug use; 5) patients

without obvious cerebral atrophy and a Fazekas score of chronic

ischemic hypoxia<grade II after evaluation by two radiologists

with >5 years of work experience; and 6) right-handed patients.

The exclusion criteria were as follows: 1) patients with a duration

after chemotherapy of<30 days; 2) patients with non-platinum

chemotherapy; 3) patients without 3D-T1WI; and 4) patients

with brain metastasis, stroke, arterial aneurysm, cerebral

hemorrhage, or use of psychotropic drugs.

We conducted a cross-sectional observation of the brain

volume and cortical thickness between three groups, including

28 patients with chemotherapy, 56 patients without

chemotherapy, and 41 healthy controls (HC), in which the

three groups were matched for age, sex, and years of

education. The inclusion criteria for HC were: 1) absence of

brand and systemic diseases and neurological symptoms and

signs; 2) absence of psychiatric diseases and history of

psychotropic drug use; 3) normal head MRI and 3D-T1WI

findings; 4) absence of obvious cerebral atrophy and a Fazekas

score of chronic ischemic hypoxia<grade II after evaluation by

two radiologists with >5 years of working experience; and 5)

right-handed patients. In addition, for the longitudinal
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observation of brain morphological changes, we compared 14

paired patients before and after chemotherapy. The inclusion

criteria are summarized in Figure 1.
2.2 Image acquisition

Imaging data were acquired using a 3.0T MRI scanner (Ingenia

CX, Philips) with a dStream head 32-channel coil. The 3D-T1WI

images were acquired using three-dimensional fast-spoiled

gradient-echo sequences. The parameters were set as follows:

repetition time/echo time, 6.6/3.0 ms; flip angle, 8°; field of view,

250 × 250 × 180 mm3; matrix size, 250 × 250 × 180; voxel size, 1.00

× 1.00 × 1.00 mm3 with no gap; and number of signal average, 1.
2.3 Image processing and morphological
analysis

The 3D-T1WI data in NIFTI format were analyzed using the

online software vol2Brain (https://www.volbrain.upv.es), which

divides the human brain into >100 subregions to automatically

calculate their volume and cortical thickness (29). The

preprocessing process includes a nonlocal noise reduction filter,

nonuniformity correction, MNI spatial registration, intensity

normalization, and intracranial cavity extraction. Then, the

volume results of global tissues, GM, white matter, and

cerebrospinal fluid (CSF) and the results of macro and

subcortical structures were calculated. The whole brain was

substantially segmented into the frontal, parietal, temporal, and

occipital lobes, limbic cortex, insular cortex, CSF, and cerebellar

vermis. Each region was separately divided into several subregions

in which the volume and cortical thickness (except for the CSF

and cerebellar vermis) could be calculated (total, right, and left),

the data processing flow is shown in Figure 2.

Variations in the brain volume and cortical thickness were

quantified by calculating the rate of change for a better

evaluation of brain morphological changes in this study

(Figures 3–9). The quantitative parameters were calculated

according to the following formula:

Change   from   baseline   %ð Þ = A − B
A

� 100

where A represents the data before chemotherapy for the 14

paired patients or HC, and B is the data after chemotherapy for

the 14 patients after chemotherapy in longitudinal analysis or

patients with/without chemotherapy in the cross-section analysis.
2.4 Statistical analysis

The demographic and clinical data of the participants were

analyzed using SPSS (version 26, IBM Corp.) and Gretna
frontiersin.org

https://www.volbrain.upv.es
https://doi.org/10.3389/fonc.2022.903249
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2022.903249
package software (https://www.nitrc.org/projects/gretna/). A

one-way analysis of covariance was used to compare

differences in the volume and cortical thickness between the

three groups with age, sex, and years of education as covariates.

Then, a two-sample t-test was performed between every two

groups to identify the source of differences. The paired t-test was

performed in the 14 paired patients to evaluate the volume and

cortical thickness changes before and after chemotherapy.

Correlation analysis was mainly used to evaluate the

relationship between abnormal imaging indices and clinical

information (the tumor size, tumor stage, and degree of

differentiation), and it was performed only for brain regions

with significant differences between the groups. Statistical

significance was set at P< 0.05.
3 Results

3.1 Clinical data

The results indicated no significant differences in sex, age, and

years of education between the three groups (all, P > 0.05). The

average number of chemotherapy cycles was 10.53 ± 8.93 and

6.00 ± 1.41 for the chemotherapy and paired groups, respectively.
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The average duration after chemotherapy was 793.60 ± 693.65

and 221 ± 59.4 days for the chemotherapy and paired groups,

respectively. The main pathological types of cancer were

squamous cell carcinoma and adenocarcinoma in both patient

groups with and without chemotherapy. The demographic and

clinical data are shown in Table 1, while the abbreviations of

brain regions are shown in Supplemental Table 1.
3.2 Cross-sectional analysis of the
three groups

3.2.1 Comparison of volume indexes
The main brain regions with volume differences between the

three groups were the gyrus rectus (total, right, and left) of the

frontal lobe and anterior cingulate gyrus (total and left) of the

limbic cortex. In addition, a significant difference in the

subregions of CSF occurred in the inferior lateral ventricle

(total, right, and left), lateral ventricle (total and right), and

third and fourth ventricles (Supplemental Table 2).

Compared with the HC group, the chemotherapy group

showed significantly decreased volumes in the gyrus rectus

(total, right, and left) and medial frontal cortex (right) of the

frontal lobe, and anterior cingulate gyrus (left) of the limbic
FIGURE 1

Flow diagram of the inclusion criteria for the study population.
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cortex, except for the increased volume of the entorhinal area

(total). The CSF volume was significantly increased in all brain

chambers in the chemotherapy group. Compared with the HC

group, the non-chemotherapy group showed significantly

increased volumes in the gyrus rectus (total, right, and left) of

the frontal lobe, anterior cingulate gyrus (total and left) of the

limbic cortex, and transverse temporal gyrus (left) of the

temporal lobe. The CSF volume was significantly increased in

the inferior lateral ventricle (total and left), lateral ventricle

(right), and third ventricle in the non-chemotherapy group.

Compared to the non-chemotherapy group, the chemotherapy

group showed significantly increased volumes in the third

ventricle (Supplemental Tables 3–5).
3.2.2 Comparison of cortical thickness indexes
The main brain regions with cortical thickness differences

between the three groups were the gyrus rectus (total, right, and

left) and medial frontal cortex (total and right) of the frontal lobe;

transverse temporal gyrus (total and left) of the temporal lobe;

and insular cortex (right), anterior insula (left), and posterior

insula (total) of the insular cortex. The mean cortical thickness

was ranked from high to low as follows: HC, non-chemotherapy,

and chemotherapy groups (Supplemental Table 6).
Frontiers in Oncology 05
Compared with the HC group, the chemotherapy group

showed a significantly decreased cortical thickness in the gyrus

rectus (total, right, and left), medial frontal cortex (total and right),

and posterior orbital gyrus (left) of the frontal lobe; transverse

temporal gyrus (total and left) of the temporal lobe; occipital

fusiform gyrus (total and right) of the occipital lobe; and insular

cortex(total and right), posterior insula (total, right, and left), and

frontal operculum (total, left) of the insular cortex. Compared

with the HC group, the non-chemotherapy group showed a

significantly decreased cortical thickness in the gyrus rectus

(total, right, and left) of the frontal lobe and an increased

cortical thickness in the opercular inferior frontal gyrus (total

and left) of frontal lobe. Compared to the non-chemotherapy

group, the chemotherapy group showed a significantly decreased

cortical thickness in the medial frontal cortex (right) of the frontal

lobe and anterior insula (total and left) and frontal operculum

(total) of the insular cortex (Supplemental Tables 7–9).
3.3 Analysis of the paired groups

3.3.1 Comparison of volume indexes
Decreased brain volumes in the patients after chemotherapy

appeared in the frontal lobe (total, right, and left), gyrus rectus
FIGURE 2

The preprocessing of 3D-T1WI data with online software vol2Brain. Nonlocal noise reduction filter, nonuniformity correction, MNI spatial
registration, intensity normalization, and ICC extraction were included. The results of global tissue estimation (GM, WM, and CSF) following the
segmentation results of macro structure and subcortical structure outputs automatically.
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(total, right, and left), orbital inferior frontal gyrus (total and

right), medial frontal cortex (total and right), middle frontal

gyrus (total, right, and left), posterior orbital gyrus (total and

right), precentral gyrus (total, right, and left), and precentral

gyrus medial segment (total and right) of the frontal lobe; parietal

lobe (total and left), postcentral gyrus (total and left), precuneus

(right), and supramarginal gyrus (total, right, and left) of the

parietal lobe; temporal lobe (total, right, and left), planum

temporale (total, right, and left), inferior temporal gyrus (right),

middle temporal gyrus (total, right, and left), superior temporal

gyrus (total, right, and left), and transverse temporal gyrus (total)
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of the temporal lobe; occipital lobe (total and left), cuneus (right),

lingual gyrus (right), middle occipital gyrus (total and right), and

occipital pole (total, right, and left) of the occipital lobe; limbic

cortex (total and right), anterior cingulate gyrus (total, right, and

left) of the limbic cortex; anterior insula (left), frontal operculum

(total, right, and left) of the insular cortex; and lobules VI-VII,

lobules VIII-X. There was no statistically significant difference in

the CSF volume in both patient groups before and after

chemotherapy; however, the CSF volume increased after

chemotherapy based on the calculation of its change from

baseline (Supplemental Table 10).
A

B

FIGURE 3

The changes in brain volume and cortical thickness from baseline in the frontal lobe. (A) represents the results of 14 subjects and (B) shows the
results of the three groups. Solid and shaded histograms represent volume and cortical thickness, respectively. The coronal with red is the
significant difference subregion for volume, and the blue for thickness. Green, orange, and pink on behalf of total, right and left. Black* and red*
indicate a statistically significant difference (P<0.05) in volume and cortical thickness, respectively (The labels appearing in this figure and their
interpretation are the same as those in the Figures 4–9).
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3.3.2 Comparison of cortical thickness indexes
Decreased cortical thickness in patients after chemotherapy

was observed in the medial frontal cortex (total and left), lateral

orbital gyrus (total, right, and left), posterior orbital gyrus (total

and right), superior frontal gyrus medial segment (total, right,

and left), and superior motor cortex (right) of the frontal lobe;

planum polare (total), planum temporale (total and left), middle

temporal gyrus (left), superior temporal gyrus (total and left),

and transverse temporal gyrus (total and right) of the temporal

lobe; limbic cortex (total, right, and left), anterior cingulate gyrus

(total, right, and left), middle cingulate gyrus (total, right, and

left), and posterior cingulate gyrus (right) of the limbic cortex;

and frontal operculum (total, right) of the insular cortex

(Supplemental Table 11).
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3.4 Correlation analysis

3.4.1 Three groups
For brain regions with significant differences between the

chemotherapy and HC groups, the cortical thickness in the medial

frontal cortex (total and right), insular cortex (total), posterior insula

(total and right), and frontal operculum (total and left) showed a

positive correlation with the degree of tumor differentiation degree

(P< 0.05). The CSF volume of the third ventricle showed a negative

correlation with the differentiation degree of the tumor when

analyzed between the chemotherapy and HC groups and the

chemotherapy and non-chemotherapy groups (both, P = 0.01).

For the brain regions with significant differences between the

chemotherapy and non-chemotherapy groups, the cortical
A

B

FIGURE 4

(A, B) The changes in brain volume and cortical thickness from baseline in the parietal lobe. Black * and red* indicate a statistically significant
difference (P<0.05) in volume and cortical thickness.
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thickness in the medial frontal cortex (right) of the frontal lobe,

anterior insula (total), and frontal operculum (total and left) of

the insular lobe showed a positive correlation with the degree of

tumor differentiation degree (P< 0.05) (Supplemental Table 12).
3.4.2 Paired groups
Significant differences in brain volumes were positively

correlated with the duration after chemotherapy (P< 0.05) in

the precentral gyrus medial segment (total and right) of the

frontal lobe, postcentral gyrus (total) of the parietal lobe, and

occipital pole (total, right, and left) of the occipital lobe.

Significant differences in brain volumes were positively

correlated with the degree of tumor differentiation degree

(P< 0.05) in the planum temporale (total and left) of the

temporal lobe.
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Significant differences in cortical thickness were negatively

correlated with the duration after chemotherapy (P< 0.05) in the

medial frontal cortex (total), posterior orbital gyrus (total and right),

and superior frontal gyrus medial segment (total and right) of the

frontal lobe; planum polare (total), middle temporal gyrus (left),

and superior temporal gyrus (total and left) of the temporal lobe;

anterior cingulate gyrus (total and right) of the limbic cortex; and

frontal operculum (total, right) of the insular cortex. The significant

difference in cortical thickness was positively correlated with the

degree of tumor differentiation degree (P< 0.05) in the medial

frontal cortex (left) and lateral orbital gyrus (total, right, and left) of

the frontal lobe and superior temporal gyrus (left) of the temporal

lobe. However, the significant difference in cortical thickness was

negatively correlated with the degree of tumor differentiation degree

(P< 0.05) in the superior motor cortex (right) of the frontal lobe

(Supplemental Table 13).
A

B

FIGURE 5

(A, B) The changes in brain volume and cortical thickness from baseline in the temporal lobe. Black * and red* indicate a statistically significant
difference (P<0.05) in volume and cortical thickness.
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4 Discussion

Cancer survivors account for an increasing proportion of

patients. It is important to understand the neuropathological

mechanism and neuroanatomical basis of alterations related to

chemotherapy (11, 18). Therefore, in this study, we identified early

abnormal volumes and cortical thicknesses in different brain

regions and altered CSF volumes in different brain ventricular

spaces in patients with lung cancer with or without chemotherapy

using 3D-T1WI. Most results supported the decrease in brain

volume in both the observational comparison results of the three

groups and the matched comparison results of the two groups.

The patients with or without chemotherapy showed a significant

volume decrease, mainly in the frontal lobe and limbic cortex, and

an extensive increase in CSF volumes in the ventricles in the

analysis of the three groups, whereas the volumes decreased in the
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analysis of the paired groups. Moreover, patients with or without

chemotherapy showed a significant decrease in cortical thickness,

mainly in the frontal lobe, temporal lobe, and insular lobe in the

analysis of the three groups and a more extensive decrease in brain

regions in the analysis of the paired groups. Most of these altered

regions are related to cognitive, executive, emotional, and motor

functions (5, 6, 30).

Results of the analysis in the three groups showed significant

differences in brain regions in the gyrus rectus of the frontal lobe

and anterior cingulate gyrus of the limbic cortex. Furthermore,

when compared with the HC group, the chemotherapy group

also showed a significant decrease in the volume of the medial

frontal cortex and entorhinal area, and the non-chemotherapy

group showed a significant decrease in the volume of the

transverse temporal gyrus. These findings demonstrate novelty

that chemotherapy may accelerate volume reduction in relevant
A

B

FIGURE 6

(A, B) The changes in brain volume and cortical thickness from baseline in the occipital lobe. Black * and red* indicate a statistically significant
difference (P<0.05) in volume and cortical thickness.
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brain regions (18, 31, 32). However, the long-term stability of

this effect after chemotherapy is unclear (33, 34). The analysis of

the paired groups showed that decreased volumes were found in

more extensive regions, including the frontal, parietal, temporal,

occipital, limbic, insular, and partial cerebellar regions. This

result is consistent with that of previous studies (18, 35–37) and

is probably caused by the shorter duration after chemotherapy in

the patients of the paired groups, in which the brain regions were

temporarily injured and in a recovering state partly (21, 38).

Notably, a significant increase in CSF was found in the

chemotherapy and non-chemotherapy groups based on the

results of the analysis of the three groups. In the paired

groups, the amount of CSF tended to increase after

chemotherapy according to the change from baseline, although

there were no statistical differences between these two groups.

Previous studies have shown that patients with cancer but

without chemotherapy have abnormal brain changes as a
Frontiers in Oncology 10
possible mechanism of tumor-related endocrine dysfunction

and pro-inflammatory immune response (39, 40). The

decreased volume of brain regions and increased CSF volume

can be used as potential neuroimaging markers of

chemotherapy-related brain injury at an early stage because of

their high sensitivity to pharmacological toxicity (41, 42). These

factors are important findings for brain idiosyncratic

morphological alterations. However, the mechanism of

chemotherapy-related brain injury is still controversial. Some

studies have shown that chemotherapy drug are neurotoxic. The

drugs would induce after-treatment changes to overall brain

volume in both white and gray matter, and the severity of

impairment increasing with the dose increase. On the other

hand, tumors also effect the central nervous system, damage the

integrity of the blood-brain barrier. neuroinflammatory

responses including increased pro-inflammatory cytokines and

reduced anti-inflammatory cytokines which result in the
A

B

FIGURE 7

(A, B) The changes in brain volume and cortical thickness from baseline in the limbic cortex. Black * and red* indicate a statistically significant
difference (P<0.05) in volume and cortical thickness.
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increases of reactive oxidative stress and mitochondrial

dysfunction (43, 44). Macroscopically, cognitive function was

impaired and brain morphology changed. The quantitative

evaluation of cognitive function and the neurobiological

mechanism aspects after chemotherapy still need to be

further studied.

In this study, we identified differentiated cortical thicknesses

in the frontal, temporal, and insular regions between the three

groups. Furthermore, the cortical thickness in the frontal,

temporal, occipital, and insular lobes also showed a significant

decrease in the chemotherapy group compared to the HC group,

and the cortical thickness of the frontal and insular lobes was

significantly lower in the chemotherapy group than in the non-

chemotherapy group. The statistically significant reduction in

cortical thickness mainly occurs in the frontal and temporal

lobes of patients after chemotherapy (18). These results are
Frontiers in Oncology 11
consistent with those of previous studies (18, 24, 45, 46). Results

of the analysis of the paired groups showed that decreased

volumes were found in more brain regions, including the limbic

cortex and other regions of the frontal, temporal, and insular

cortexes. These results are consistent with those in previous

studies demonstrating the prediction of brain morphological

abnormality in patients with malignancies after chemotherapy

(18, 47). The change in cortical thickness indicates that there will

be eventual accompanying clinical manifestations related to

different degrees of brain alterations. Prominently, cortical

thickness has become a reliable morphological indicator (32, 48).

Few studies have reported correlations between neuroimaging

morphological indicators and clinical data in patients undergoing

chemotherapy (49). In the present study, the cortical thickness of

the medial frontal cortex and insular regions showed positive

correlations, and the CSF volume of the third ventricle was
A

B

FIGURE 8

(A, B) The changes in brain volume and cortical thickness from baseline in the insular cortex. Black * and red* indicate a statistically significant
difference (P<0.05) in volume and cortical thickness.
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negatively correlated with the degree of tumor differentiation in

the chemotherapy group. It may be that the worse the tumor

differentiation and the longer the average chemotherapy cycles,

the more serious the damage to the medial prefrontal lobe and

insular regions, and the greater the amount of CSF in the third

ventricle (50, 51). This situation was slightly different in the paired

groups, mainly because the volumes of multiple brain regions

distributed in the frontal, parietal, and occipital lobes were

positively correlated with the duration after chemotherapy,

except that the volume of the planum temporale was positively

correlated with the differentiation degree of the tumor in the

paired groups. This result is different from that of another study

(52). It is possible that short chemotherapy cycles may have

caused edema in some regions in this study. In addition, cortical

thickness in the frontal, temporal, limbic, and insular lobes was
Frontiers in Oncology 12
negatively correlated with the duration of chemotherapy. The

longer the duration after chemotherapy, the more serious the

damage to these related regions (23, 31, 32, 36). The cortical

thickness of regions in the frontal and temporal lobes positively

correlated with the degree of differentiation of the tumor, except

the superior motor cortex in the frontal lobe showed a negative

correlation. The reason for the negative correlation of the superior

motor cortex is unclear, but is possibly due to its compensation

(25, 53).

Interestingly, we did not find a correlation between

morphological changes in the brain and tumor size, clinical stage,

or chemotherapy cycles. During the analysis process, we did not

perform a multiple regression model; therefore, the results of this

study may also reflect unknown multivariable or mediating effects.

Additionally, the sample size of patients after chemotherapy was
A

B

FIGURE 9

(A, B) The changes of volume from baseline in the CSF and cerebellar vermis. (No cortical thickness data for the CSF and cerebellar vermis).
Black * and red * indicate a statistically significant difference (P<0.05) in volume and cortical thickness.
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still small, which may have resulted in a certain degree of bias,

although we used the data of the paired groups. We did not use the

cognitive correlation scale score or correlation analysis with the

patient’s blood-related metabolite indicators in this retrospective

analysis. Finally, we could not provide internal information about

the potential biological mechanism of brain morphological changes

based on neuroimaging due to the lack of animal and biological

experiments. Future neuroimaging studies should consider adding

biomarkers and contributing additional neurobiological insights

into cancer-related brain injury.
5 Conclusion

In conclusion, this study revealed specific brain morphological

changes based on neuroimaging in patients with lung cancer with or

without chemotherapy, and the main manifestations were increased

CSF volume, decreased cortical thickness and cerebral parenchyma

atrophy; furthermore, it clarified the correlation between altered

brain morphological indexes and tumor differentiation and the

duration after treatment. Our findings provide more insights into

the neural mechanisms of patients with lung cancer after platinum

chemotherapy and empirical support for brain morphological

injury related to cancer and chemotherapy.
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