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A deep database of medical 
abbreviations and acronyms for 
natural language processing
Lisa Grossman Liu   1,4 ✉, Raymond H. Grossman2,4, Elliot G. Mitchell1, Chunhua Weng1, 
Karthik Natarajan   1, George Hripcsak1 & David K. Vawdrey1,3

The recognition, disambiguation, and expansion of medical abbreviations and acronyms is of upmost 
importance to prevent medically-dangerous misinterpretation in natural language processing. To 
support recognition, disambiguation, and expansion, we present the Medical Abbreviation and 
Acronym Meta-Inventory, a deep database of medical abbreviations. A systematic harmonization 
of eight source inventories across multiple healthcare specialties and settings identified 104,057 
abbreviations with 170,426 corresponding senses. Automated cross-mapping of synonymous records 
using state-of-the-art machine learning reduced redundancy, which simplifies future application. 
Additional features include semi-automated quality control to remove errors. The Meta-Inventory 
demonstrated high completeness or coverage of abbreviations and senses in new clinical text, a 
substantial improvement over the next largest repository (6–14% increase in abbreviation coverage; 
28–52% increase in sense coverage). To our knowledge, the Meta-Inventory is the most complete 
compilation of medical abbreviations and acronyms in American English to-date. The multiple 
sources and high coverage support application in varied specialties and settings. This allows for cross-
institutional natural language processing, which previous inventories did not support. The Meta-
Inventory is available at https://bit.ly/github-clinical-abbreviations.

Background & Summary
Natural language processing (NLP) is becoming essential to health and healthcare1,2. NLP translates free text 
and speech into standardized data3, which can help clinicians make decisions4, predict health outcomes5, pre-
vent adverse events6, and improve quality-of-care1,2. In the past few years, artificial intelligence breakthroughs 
using pre-trained transformer architectures have revolutionized NLP7. These breakthroughs have empowered 
researchers to build generalizable language models and apply them to achieve superior accuracy on subsequent 
downstream tasks8. Since then, pre-trained transformer architectures have become mainstream for language tasks 
involving contextual long-distance dependencies, and have been incorporated into commercial services such as 
Google Search9 and Amazon Alexa10.

Despite these recent advancements, clinical abbreviations and acronyms (hereafter, ‘abbreviations’) persis-
tently impede NLP performance and practical application in health and healthcare11–19. Abbreviations constitute 
30–50% of the words in clinical text, such as doctor’s notes20, compared to <1% in general text, such as news 
media21. As such, recognizing, disambiguating, and expanding abbreviations is central to clinical NLP, and even 
small advancements would improve performance and practical application11–19. Furthermore, recognizing, dis-
ambiguating, and expanding abbreviations can help physicians, nurses, caregivers, and patients understand them, 
which studies have shown prevents medically-dangerous misinterpretation22–26.

Recognition, disambiguation, and expansion of abbreviations relies on sense inventories, defined as data-
bases of abbreviations and their meanings or senses. Large sense inventories can be publicly obtained online 
(e.g., Unified Medical Language System [UMLS], nlm.nih.gov/research/umls) but they can be incomplete13,19,27,28, 
because they were generated using biological research corpora such as research papers, not clinical corpora such 
as electronic health records13,29. Due to this limitation, several institutions have engineered their own smaller, 
more clinically-oriented sense inventories30–36. These inventories are sufficient for institution-specific tasks, but 
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have been inadequate for cross-institutional (interoperable) tasks, because abbreviations vary substantially based 
on medical specialty and setting23–26. Sadly, creating inventories at every US healthcare institution is not feasible, 
especially without fully automated methods which do not exist.

Deep data refers to high-quality, complete, and relevant data with an internal structure that may be 
large-scale37,38. A deep sense inventory that is high-quality, complete, relevant, and non-redundant could solve 
the problems of interoperability and generalizability. Generating such an inventory would require extraction, 
collation, and organization of numerous source inventories. Collating a deep sense inventory is challenged by two 
major obstacles. First, errors have been recognized in several sources20,39, necessitating quality control to remedy 
them. Second, because abbreviations vary based on specialty and setting, numerous individual sense invento-
ries from different specialties and settings are needed. Using numerous inventories increases the likelihood of 
considerable redundancy, necessitating cross-mapping (internal structure) to remove redundancy and simplify 
future application. This cross-mapping is prohibitive to perform manually due to the combinatorial nature of the 
problem, as the number of comparisons increases exponentially with the number of records.

Here, we present a deep database of medical abbreviations and acronyms, which harmonizes multiple source 
sense inventories from varied corpora, medical specialties, and medical settings into one Meta-Inventory. The 
Meta-Inventory has two major features that address the challenges stated above: [1] semi-automated quality con-
trol using heuristics to identify errors and improve reliability, and [2] automated cross-mapping of synonyms 
using state-of-the-art machine learning to remove redundancy and simplify future downstream tasks.

Additional features include lexical normalization of non-standard to standard text, assignment of unique 
identifiers to streamline maintenance and use, and transparency to prevent information loss secondary to har-
monization. As NLP is increasingly used in healthcare, the Meta-Inventory will be an essential resource to better 
recognize, disambiguate, and expand medical abbreviations across multiple institutions, specialties, and settings.

Methods
Data sources.  We included inventories from government sources, online repositories, and peer-reviewed 
scientific literature. Government sources included the UMLS Lexical Resource for Abbreviations and Acronyms 
(UMLS-LRABR)40, and online repositories included Another Database of Abbreviations in Medline (ADAM)41. 
Since UMLS-LRABR and ADAM were generated using biological research corpora, we augmented these data 
sources with more clinically-oriented inventories, including Berman’s abbreviations42, Wikipedia43, and invento-
ries from Vanderbilt University Medical Center44 and Columbia University Irving Medical Center45. The clinical-
ly-oriented inventories were generated from clinical corpora using various manual and semi-automated methods. 
Table 1 describes every sense inventory in the Meta-Inventory. We only included sense inventories with no cop-
yright for any use, without restrictions for any use (e.g., CC0), or any use with attribution (e.g., CC BY). Sources 
with copyright restrictions (e.g., All Acronyms) or with 100% overlap were not included.

Data harmonization.  The database structure was inspired by the UMLS Metathesaurus46, a 
federally-maintained repository of biomedical terms organized by concept47,48. To achieve concept-orientedness, 
the UMLS Metathesaurus cross-maps synonyms, or individual terms related to the same concept. The UMLS 
Metathesaurus offers a stable and well-known framework to guide cross-mapping and ensure full source trans-
parency, or link-back to the original sources49. Moreover, it provides standard names, definitions, and formats for 
certain data fields, which we hope will give researchers familiar with the UMLS Metathesaurus an intuition for 
the Meta-Inventory.

We included the following data fields found in each source: [A] short form, or the abbreviation (e.g., “MS”); 
[B] long form, or the spelled-out version of the abbreviation (e.g., “Multiple Sclerosis”); [C] source, or the name of 
the source inventory. Each individual record (row) represents a single abbreviation (short form) and correspond-
ing sense (long form). Then, we created the following new data fields: [D] normalized short form, or a lexically 
normalized version of each short form, intended to reduce linguistic variation; [E] normalized long form, or a 
lexically normalized version of each long form, intended to reduce linguistic variation; [F] unique identifiers for 
each individual record, each unique short form, and each unique long form, intended to facilitate future database 
maintenance and use; [G] group identifiers for each group of synonymous (i.e., cross-mapped) records, intended 
to reduce redundancy. We detail each new data field, its purpose, and its creation below. Figure 1 provides an 
overview of the data harmonization process.

Source Description Underlying Corpus
Medical 
Specialty

Last 
Updated Records

UMLS-LRABR40 Unified Medical Language System Lexical Resource for 
Abbreviations and Acronyms Biomedical research Multiple 2019 294484

ADAM41 Another Database of Abbreviations in Medline Biomedical research Multiple 2007 94657

Berman42 Manually-curated general pathology abbreviations Clinical notes Pathology 2004 12087

Wikipedia43 Publicly-curated list of medical and clinical trial abbreviations Clinical notes Multiple 2018 2952

Vanderbilt144 Semi-automatically derived from the medical record Sign-out notes Medicine 2013 2414

Vanderbilt244 Semi-automatically derived from the medical record Discharge notes Medicine 2013 2090

Stetson45 Manually-curated from the general medical record Sign-out notes Medicine 2002 765

Columbia Manually-curated from the obstetric medical record Clinical notes Obstetrics 2018 219

Table 1.  Source Sense Inventories.

https://doi.org/10.1038/s41597-021-00929-4


3Scientific Data |           (2021) 8:149  | https://doi.org/10.1038/s41597-021-00929-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Lexical normalization.  Linguistic variation can degrade the effectiveness and increase the complexity of 
NLP. Lexical normalization can reduce linguistic variation and thereby improve the recognition and identifi-
cation of abbreviations and their senses in clinical text. We performed short form normalization using Clinical 
Abbreviation Disambiguation and Recognition (CARD; https://sbmi.uth.edu/ccb/resources/abbreviation.htm), 
an open-source framework for abbreviation identification and normalization30. Briefly, CARD converted short 
forms to lowercase, stripped leading and trailing whitespace, removed periods, and standardized remaining 
punctuation to an underscore.

We performed long form normalization using the UMLS Lexical Variation Generation (UMLS-LVG; https://
nlm.nih.gov/research/umls) version 2019AB, an open-source toolset for transforming clinical text into a sin-
gle canonical (i.e., normalized) form50. We modified the standard UMLS-LVG normalization flow options to 
avoid alphabetical sorting. The final modified flow was q0:g:rs:o:t:l:B:Ct:q7:q8. Briefly, this flow standardized the 
character encoding (q0, q7, and q8), removed genitives (g), stripped plural forms (rs), replaced punctuation (o), 
removed stop words (t), converted to lowercase (l), uninflected (B), and identified synonyms (Ct). In cases where 
UMLS-LVG could not perform lexical normalization, such as chemical names, we recorded “null” values.

Unique identifiers.  We assigned non-semantic unique identifiers47,48 to facilitate database maintenance and 
future use, specifically quality control. We formatted each identifier as a six-digit number prefaced with “R” for 
individual records (e.g., R000001, R000002, …), “S” for unique short forms (e.g., S000001, S000002, …), and “L” 
for unique long forms (e.g., L000001, L000002, …). To preserve source transparency, we assigned record unique 
identifiers in the original order of the source.

Cross-mapping.  We cross-mapped synonymous records using an automated pipeline to reduce redundancy. 
To automate cross-mapping, we constructed and explored the performance of two machine learning models. 
These models were employed because previous approaches using MetaMap were inadequate20,48, as MetaMap 
only identifies 30% of the Meta-Inventory. We used a 3-step approach:

	[1]	 initial filtering to identify potentially synonymous records and generate training data;
	[2]	 construction and evaluation of potential models and ensembles for cross-mapping;
	[3]	 assign group identifiers to records cross-mapped using the best-performing ensemble.

We selected pairwise comparison as the basis for our modeling pipeline51. While many deduplication prob-
lems cannot be tackled easily with pairwise comparison due to the polynomial nature of combination, pairwise 
comparison is appropriate for this problem because only potential pairs within the same short form were consid-
ered. In other words, we paired records with: [A] the same short form, and [B] long forms with the same meaning. 
This was important to streamline future application to abbreviation disambiguation and expansion. The target for 
each pair consisted of a binary value indicating whether or not the long forms were synonyms.

Initial filtering.  The standard Levenshtein distance ratio49, which measures string similarity, was computed 
between every long form. Pairs of long forms where ratio >0.8 with an equivalent short form were identified as 
potential positives (i.e., synonyms), and pairs where ratio >0.8 without an equivalent short form were identified 
as potential pertinent negatives (i.e., not synonyms, but similar). A clinician manually annotated 1% samples of 
each as positive or negative (~10,000 pairs). We supplemented this training data with manually-identified per-
tinent positives and negatives, lists of medical synonyms37, and synonymous relationships pre-recorded in the 
UMLS-LRABR.

Construction and evaluation.  The data preparation for the modeling pipeline consisted of three steps. First, we 
normalized the textual data by replacing unusual textual features such as roman numerals, decimals, and common 
ions with their long-form text. Subsequently, we identified potential pairs in the Meta-Inventory. Pairs that had a 
partial Levenshtein distance ratio of 0.5 or above were considered. We identified 3 million potential pairs. Finally, 
we calculated string similarity metrics to use as features, including: [1] Levenshtein distance, [2] partial Levenshtein 
distance, [3] token-sort Levenshtein distance, [4] token-set Levenshtein distance, and [5] numeric similarity.

Fig. 1  Overview of Data Harmonization.
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Then, we passed these features to a feedforward dense neural network (baseline), a gradient boosted model 
(LightGBM)52, and a transformer model (BERT)7 for training and evaluation. The baseline and LightGBM only 
used the features from the data preparation. The transformer model additionally passed the normalized text 
for each pair through BERT to generate a text embedding as additional features, and then used these features 
in conjunction with the preprocessed features to generate a prediction through a feedforward model head. We 
conducted a sensitivity analysis around the version used (BERT7 vs. Clinical BERT53), and BERT outperformed 
Clinical BERT. We cross-validated the models in a K-fold manner on the clinician-labeled training data.

The LightGBM and BERT pipelines performed comparably on the clinician-labeled training data (Table 2). 
We posit that BERT did not outperform LightGBM because LightGBM excels at finding decision boundaries in 
small-data problems, whereas dense neural networks do not. Additionally, these data samples lack context such 
as nearby clauses or sentences. An ensemble of the two models did not significantly improve the F1 score. It is 
important to note that these scores are calculated on the clinician-labeled training data which consists primarily 
of “difficult” pairs, that is, positives and pertinent negatives close to the class boundary of the problem (described 
above in the “Initial filtering” section). On the complete set of potential pairs, which included negatives that were 
very dissimilar and positives that were nearly identical, the scores increased significantly (>0.98).

Assign group identifiers.  Using the best-performing model, the LightGBM trained on string similarity metrics, 
we cross-mapped synonymous records. Each group of synonymous records received a unique identifier, prefaced 
with “G” for group (e.g., G000001, G000002, …). Records without any synonyms were assigned their own group.

Source transparency.  The Meta-Inventory should represent its sources transparently, without any informa-
tion loss due to abstraction or manipulation, to preserve attributes of each record49. Occasionally, the source sense 
inventories contained auxiliary data fields unique to that source. To preserve transparency, we created a version 
of the Meta-Inventory with every auxiliary data field. Examples of auxiliary fields include: [A] type, abbreviation 
or acronym (original source: UMLS-LRABR); [B] preferred short form, or the preferred lexical version of each 
abbreviation (original source: ADAM); [C] frequency, or how often that abbreviation takes that meaning in the 
given clinical corpora (original source: Vanderbilt).

Data Records
The latest release of the Meta-Inventory is archived on Zenodo (https://zenodo.org/record/4266962)54, and sub-
sequent releases will also be archived there. The latest release can also be downloaded from the corresponding 
GitHub repository (https://bit.ly/github-clinical-abbreviations). In addition to the Meta-Inventory, the Zenodo 
and GitHub repositories contain the open source license (Apache License Version 2.0), the version with auxiliary 
data fields, the source inventories, the training datasets, the entire code, and the documentation of modified or 
retired records. The data dictionary (Table 3) contains the documentation of the data fields and sample values.

The Meta-Inventory contains 405,543 unique records (i.e., rows or source entries), increasing by 40% the unique 
records available in the major repository (UMLS-LRABR). Out of the 405,543 total records, only 107,650 (27%) do 
not have any synonymous records. This highlights the important role of cross-mapping to reduce redundancy. The 
Meta-Inventory represents 104,057 unique abbreviations (i.e., short forms) and 373,930 unique pairs, increasing 
by 45% the unique abbreviations and 28% the unique pairs available in the major repository (UMLS-LRABR). This 
highlights the benefit of augmenting the major repository (UMLS-LRABR) with clinically-oriented inventories, 
which contain more clinically-oriented and therefore unique abbreviations and pairs.

The Meta-Inventory represents 170,426 unique senses (i.e., long forms) and 183,817 unique groups. On aver-
age, each abbreviation has 1.77 (range: 1–142) possible senses after cross-mapping. Importantly, 24,090 abbrevia-
tions (23%) had more than one sense, and 7,113 abbreviations (7%) had four or more senses. The abbreviation “PA” 
had the most possible senses (142), including pancreatic adenocarcinoma, physician assistant, Pennsylvania, arte-
rial pressure, psoriatic arthritis, pseudomonas aeruginosa, and many others. This highlights the difficulty of dis-
ambiguating abbreviations in clinical NLP, as opposed to words, which have at most three or four possible senses.

Technical Validation
Quality control.  Errors have been recognized in several source inventories20,39. To address this problem and 
achieve a reliable database, we implemented a semi-automated quality control process to identify, then modify 
or retire, erroneous records. We chose to modify rather than retire where possible to maintain completeness47,48. 
Four rule-based heuristics were used to automatically identify potential errors, including [1] exact duplicates 
within the same source, [2] records with excessive or misplaced punctuation (e.g., “..MS”), [3] records where 
alphanumeric characters in the short form did not occur in the long form, and [4] records with spelling errors. 
To identify spelling errors, each long form was compared against a medical word corpus derived from the UMLS 

Model Precision Recall F1 Score

Baseline 0.788 0.759 0.773

LightGBM 0.813 0.785 0.799

BERT Architecture 0.815 0.772 0.793

Ensemble 0.828 0.801 0.814

Table 2.  Performance of Cross-Mapping Models on Clinician-Labeled Data*. *Scores calculated using the 
mean predictions of 3 runs with different random seeds.
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Metathesaurus using a Python-based spell checker (https://pypi.org/project/pyspellchecker/). After potential 
errors were flagged by heuristics, a clinician manually verified each flagged record as erroneous or not. Duplicate 
records were retired to a separate database. Non-duplicate records (i.e., those with excess punctuation, missing 
characters, or spelling errors) were either corrected by the clinician, or retired if correction was not possible. 
4312 records were corrected or retired. Corrected records were marked as “modified” in a separate data field. 
Documentation of the changes and copies of the original records can be found in the repository.

Cross-mapping validation.  To validate the cross-mapping, two clinicians independently reviewed a ran-
dom 5% subsample of synonymous groups with two or more records from difference sources (~2,000 synony-
mous groups). The clinicians evaluated non-ambiguity (at most one meaning per group)47,48. Inter-rater reliability 
was good [agreement = 99.8%; Cohen’s kappa = 0.71], and disagreements were resolved by discussion. The clini-
cians found 99.49% of groups non-ambiguous. This highlights the reliability of the cross-mapping method and 
suggests the error rate of cross-mapping is extremely low (less than 0.2%).

Additionally, two clinicians independently reviewed a random 0.5% subsample of short forms with five or 
more records (~100 short forms). The clinicians evaluated the percentage of groups which could have been 
grouped further (i.e., failure to remove redundancy). Inter-rater reliability was good [agreement = 92%; Cohen’s 
kappa = 0.84], and disagreements were resolved by discussion. The clinicians found that only 11% of groups 
could have been grouped further. This suggests that cross-mapping resolved most of the redundancy in the 
Meta-Inventory.

Coverage evaluation.  An important reason why we created the Meta-Inventory was to improve complete-
ness, or coverage of every abbreviation and its senses in clinical text. Evaluating coverage is critical to deter-
mine whether the Meta-Inventory achieved this goal. To evaluate coverage in clinical text, we used MIMIC-III, 
a publicly-available corpus of over 2 million de-identified critical care notes at Beth Israel Deaconess Medical 
Center55. MIMIC-III is ideal because: [1] it is unrelated to any corpora used to generate the sources, and [2] it is 
from a different geographic region and medical specialty than the sources. Therefore, MIMIC-III allowed us to 
evaluate coverage on completely new and distinct corpus of clinical texts.

We calculated coverage of both abbreviations (abbreviation coverage) and their senses (sense coverage). 
For each, we calculated macro-coverage, which computes the metric for each abbreviation or sense and then 

Data Field Name Description Example

GroupID Group Unique Identifier Identifies a group of synonymous 
records G169326

RecordID Record Unique Identifier Identifies each record (one per record) R349343

SF Short Form Abbreviated version of an abbreviation O.C.

SFUI Short Form Unique Identifier Identifies a unique short form S050750

NormSF Normalized Short Form Lexically normalized version of the 
short form oc

LF Long Form Spelled-out version of an abbreviation oral contraceptives

LFUI Long Form Unique Identifier Identifies a unique long form L121977

NormLF Normalized Long Form Lexically normalized version of the 
long form oral contraceptive

Source Source Inventory Name of the source sense inventory ADAM

Modified Modified Modified by quality control or not modified

Auxiliary*
Data Field Name Description Source Example

SFEUI Short Form Entry Unique Identifier Identifies a unique UMLS 
short form UMLS-LRABR E0319213

LFEUI Long Form Entry Unique Identifier Identifies a unique UMLS 
long form UMLS-LRABR E0044077

Type Type of Entry Abbreviation or acronym UMLS-LRABR acronym

PrefSF Preferred Short Form Preferred version of a short 
form ADAM o.c.

Count Count Number of occurrences in 
the corpus ADAM, Vanderbilt 10

Score Score Adjusted proportion of 
occurrences ADAM 0.7357

Frequency Frequency Frequency of the sense in 
the corpus Vanderbilt 0.4168

UMLS.CUI UMLS Concept Unique Identifier UMLS CUI that mapped to 
the sense Vanderbilt c0009905

Table 3.  Data Dictionary. *Auxiliary data fields are unique to a single source and found only in the “auxiliary” 
version of the Meta-Inventory available in the GitHub repository (https://bit.ly/github-clinical-abbreviations). 
Abbreviations: UMLS, Unified Medical Language System; LRABR, Lexical Resource for Abbreviations and 
Acronyms; ADAM, Another Database of Abbreviations in Medline.
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averages them, as well as micro-coverage, which treats every instance independently. Figure 2 displays formulas 
for computing all four metrics. To identify abbreviations in MIMIC-III, we used the previously-mention CARD 
framework. A clinician manually reviewed the CARD-identified abbreviations to remove obvious errors (i.e., 
non-abbreviations) such as misspellings like “folllowed” or aggregated words like “lip/chin.” To identify senses 
in MIMIC-III, a clinician manually annotated 60 randomly-selected instances of 60 randomly-selected abbrevi-
ations with multiple senses.

Figure 3 displays coverage estimates for the Meta-Inventory compared with its individual sources. The 
Meta-Inventory had high coverage, with a sense macro-coverage of 96%, sense micro-coverage of 91%, abbrevi-
ation macro-coverage of 79%, and abbreviation micro-coverage of 99%. This represents a substantial increase in 
sense coverage (28% to 52%) and abbreviation coverage (6% to 14%) over the major repository (UMLS-LRABR). 
This suggests that the Meta-Inventory is sufficiently comprehensive to recognize almost every abbreviation and 
its senses in a given clinical text in the United States.

Usage Notes
The Meta-Inventory is the most complete compilation of medical abbreviations and acronyms in American 
English. It includes records from varied corpora, medical specialties, and geographic regions, which is neces-
sary to support interoperability (i.e., cross- or multi-institutional recognition, disambiguation, and expansion of 
abbreviations). The Meta-Inventory’s completeness is notable because it can be applied to a diversity of clinical 
texts, not only specialty- or institution-specific ones. In addition to being comprehensive, the Meta-Inventory 
is quality-controlled and uses state-of-the-art machine learning methods to automatically reduce redundancy. 
Application of machine learning to data engineering improves speed and scale56, and our approach could be 
applied to similar problems with data harmonization, integration, and cross-mapping in the future.

Cross-mapping is critical to ensure concept-orientedness, a known requirement of controlled vocabularies such 
as the Meta-Inventory47,48. Concept-orientedness states that records “must correspond to at least one meaning 
(non-vagueness) and no more than one meaning (non-ambiguity), and that meanings correspond to no more 
than one record (non-redundancy).” Concept-orientedness is important to enhance interpretability by human 
users, and may improve processing speeds of downstream tasks. For example, in the Meta-Inventory, using group 
rather than record identifiers for recognizing abbreviations could reduce linear processing time by 55%, since the 
Meta-Inventory contains 405,543 records but only 183,817 groups. This might impact processing of extremely 
large amounts of text. In this way, the Meta-Inventory maximizes comprehensiveness while minimizing the 
potential negative impacts of redundancy and large size.

While every effort has been made to increase completeness and reduce redundancy, some limitations must 
be acknowledged. First, the Meta-Inventory does not yet contain abbreviations from every medical specialty and 
potential setting, which may limit its completeness in certain contexts. However, we envision that institutions 
could easily extend the Meta-Inventory using their own corpora and the process we have reported on. Second, 
some unresolved redundancy is present in the Meta-Inventory. An extremely high-specificity threshold was used 
when cross-mapping. This prevented any inaccurate cross-mapping, as intended, but may have also prevented 
accurate cross-mapping to some degree. We believe this was an acceptable trade-off to ensure complete confi-
dence in the cross-mapping we did perform, even though it meant that some redundancy remained.

To mitigate these limitations, we encourage users of the Meta-Inventory to participate in its improvement 
and maintenance. Please email the corresponding author or, preferably, submit a request via the GitHub repos-
itory. We welcome and greatly appreciate any efforts, including but not limited to: [1] identification of potential 
additional sources, and [2] reports of unresolved errors or redundancy. We anticipate that the Meta-Inventory 
will continue to be updated, as new literature gets published, new inventories are made, errors are identified, and 
redundancy is removed.

Fig. 2  Formulas for Calculating Coverage.
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As an important and final observation, the Meta-Inventory, although needed, cannot solve the challenge of 
abbreviations in clinical NLP alone. Recognition, disambiguation, and expansion of abbreviations is complicated 
by misspellings (e.g., LEVF vs. LVEF), variation (e.g., EtOH vs. ETOH), plurals (e.g., MRI vs. MRIs), inflection 
(e.g., D/C vs. D/C’ed), and other challenges13,57 which the Meta-Inventory does not address. Additional research 
is needed to improve methods that normalize and disambiguate abbreviations, which will support better clinical 
NLP in combination with the Meta-Inventory.

Code availability
We used the Python programming language for all activities. The entire code is permanently available in Zenodo 
(https://zenodo.org/record/4266962)54 or GitHub (https://bit.ly/github-clinical-abbreviations).

Fig. 3  Coverage Estimates for the Meta-Inventory and its Sources.
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