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Protein-protein interaction (PPI) is an essential mechanism bywhich proteins perform their biological functions.
For globular proteins, themolecular characteristics of such interactions have beenwell analyzed, andmany com-
putational tools are available for predicting PPI sites and constructing structural models of the complex. In con-
trast, little is known about themolecular features of the interaction between integral membrane proteins (IMPs)
and few methods exist for constructing structural models of their complexes. Here, we analyze the interfaces
from a non-redundant set of complexes ofα-helical IMPs whose structures have been determined to a high res-
olution.Wefind that the interface is not significantly different from the rest of the surface in terms of average hy-
drophobicity. However, the interface is significantly better conserved and, on average, inter-subunit contacting
residue pairs correlate more strongly than non-contacting pairs, especially in obligate complexes. We also de-
velop a neural network-based method, with an area under the receiver operating characteristic curve of 0.75
and a Pearson correlation coefficient of 0.70, for predicting interface residues and their weighted contact num-
bers (WCNs). We further show that predicted interface residues and their WCNs can be used as restraints to re-
construct the structure α-helical IMP dimers through docking for fourteen out of a benchmark set of sixteen
complexes. The RMSD100 values of the best-docked ligand subunit to its native structure are b2.5 Å for these
fourteen cases. The structural analysis conducted in this work provides molecular details about the interface be-
tween α-helical IMPs and the WCN restraints represent an efficient means to score α-helical IMP docking
candidates.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Alpha-helical integral membrane proteins (IMPs) play essential
roles in biochemical and electrical signal transduction, molecular trans-
port, and energy propagation among other critical cellular processes
across the membrane. It was estimated that about one quarter of the
human genome encodes α-helical IMPs [1]. Frequently, these IMPs
function as either homo-oligomers or hetero-oligomers with other
IMPs [2–4].

Proteins can either form stable, obligate complexes via high-affinity
protein-protein interactions (PPIs) or non-obligate, transient
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complexes via low-affinity PPIs. Obligate PPIs are typically both struc-
turally and functionally obligate: the participating IMPs are typically
not found in isolation in vivo. One example is the KCNQ1 potassium
channel, which forms homo-tetramers to create the channel pore in
the center. It is believed to always bind onemember of theKCNE protein
family [5]. In contrast, IMPs that participate in transient PPIs can exist
independently and complexes of this kind are usually involved in pro-
cesses such as cellular signaling and receptor-ligand binding [6]. The
characteristics of protein interfaces between globular proteins have
been extensively studied in terms of size, amino acid composition,
physicochemical texture, conservation, as well as coevolution of inter-
subunit residue pairs. These properties usually differ for those PPIs
that are transient versus those that are obligate [7]. In general, the inter-
faces in obligate complexes of soluble proteins are larger and more
hydrophobic than those of non-obligate associations, for which, amino
acid compositions are usually not drastically different from the rest of
the protein surface [8–14]. It was also found that the interface is usually
more conserved than the rest of the protein surface [15–17], although
residues at the interfaces of obligate PPIs tend to be better conserved
and exhibit much stronger coevolution with their interacting partners
than those at the interfaces of transient PPIs [16].
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Table 1
α-helical IMP chains that form the oligomers in the data set.

Protein
subunit

TMH
count

Resolution
(Å)

Oligomeric state Obligate Reference

1m0lA 7 1.5 Homotrimer No [25]
1m56A 12 2.3 Heterotetramer Yes [26]
1m56C 7 2.3 Heterotetramer Yes [26]
1q16C 5 1.9 Homodimer No [27]
1u7gA 11 1.4 Homotrimer Yes [28]
1yq3C 3 2.2 Heterotetramer No [29]
1yq3D 3 2.2 Heterotetramer No [29]
2a65A 12 1.7 Homodimer Yes [30]
2bl2A 4 2.1 Homodecamer Yes [31]
2bs2C 5 1.8 Homodimer No [32]
2j8cM 5 1.9 Heterotrimer Yes [33]
2nq2A 10 2.4 Homodimer Yes [34]
2qtsA 2 1.9 Homotrimer Yes [35]
2uuhA 4 2.2 Homotrimer Yes [36]
2vpzC 8 2.4 Homodimer No [37]
2w2eA 6 1.2 Homotetramer Yes [38]
2wswA 12 2.3 Homotrimer Yes [39]
2yevC 7 2.4 Heterotrimer Yes [40]
2z73A 7 2.5 Homodimer No [41]
2zxeA 10 2.4 Heterotrimer Yes [42]
3b9yA 11 1.9 Homotrimer Yes [43]
3c02A 6 2.1 Homotetramer Yes [44]
3cx5C 8 1.9 Heteropentamer Yes [45]
3k3fA 10 2.3 Homotrimer Yes [46]
3klyA 6 2.1 Homopentamer Yes [47]
3m73A 10 1.2 Homotrimer Yes [48]
3oduA 7 2.5 Homodimer No [49,50]
3oufA 2 1.6 Homotetramer Yes [49]
3puwF 8 2.3 Heterodimer Yes [51]
3s8gA 13 1.8 Heterotrimer Yes [52]
3spcA 2 2.5 Homotetramer Yes [53]
3tijA 8 2.4 Homotrimer Yes [54]
4a01A 16 2.4 Homodimer Yes [55]
4bpmA 4 2.1 Homotrimer Yes [56]
4d2eA 3 2.3 Homotrimer Yes [57]
4dx5A 12 1.9 Homotrimer Yes [58]
4f4sA 2 1.9 Homodecamer Yes [59]
4jkvA 7 2.5 Homodimer No [60]
4mrsA 6 2.4 Homodimer Yes [61]
4o6mA 6 1.9 Homodimer Yes [62]
4o6yA 6 1.7 Homodimer Yes [63]
4qndA 3 1.7 Homodimer Yes [64]
4rngC 3 2.4 Homodimer Yes [65]
4u9nA 5 2.2 Homodimer Yes [66]
4wd8A 4 2.3 Homopentamer Yes [67]

700 B. Li et al. / Computational and Structural Biotechnology Journal 17 (2019) 699–711
These observations have been essential to our understanding of the
biochemistry and biophysics of PPIs between globular, soluble proteins.
In contrast, little is known about the characteristics of the interfaces
between α-helical IMPs. Here, we analyzed a non-redundant set of
α-helical IMP complexes whose structures have been experimentally
determined to a high resolution to answer the following questions
about IMP interfaces: 1) Is the IMP interface physico-chemically distin-
guishable from the rest of the protein surface? 2) Are residues in the in-
terfacemore conserved than the rest of the protein surface? 3) Are there
detectable coevolutionary signals across the interface? 4) How do the
interfaces in obligate complexes differ from those in transient ones?

Our work consists of three parts that build on one another:

1) The analysis of IMP PPIs: We found that inα-helical IMP complexes,
while the aqueous region of the interface exhibits similar character-
istics to interfaces between globular proteins, the interface in the
membrane region is not significantly different from the rest of the
surface in terms of average hydrophobicity. However, the interface
is significantly better conserved than the rest of the surface both in
the aqueous region and the membrane region, and residue pairs
that are in physical contact at the interface of homo-oligomeric
IMPs correlatemore strongly than pairs not in contact.We restricted
our correlation analysis on homo-oligomers because for hetero-olig-
omers, it requires construction of paired multiple sequence align-
ment (MSA) of interacting partners, and computationally, this
problem becomes difficult by itself due to the existence of paralogs
[18–20].

2) Sequence-based prediction of interface residues involved in IMP PPIs:
Based on our findings, we also developed a neural network-based
method that predicts weighted contact numbers (WCNs) of surface
residues from evolutionary information. WCN is defined as the num-
ber of neighboring residues weighted by their proximity to the focal
residue, it measures the local packing degree of residues within the
protein tertiary structure [21,22]. We find that interface residues
can be accurately identified based on the deviation of predicted
WCN from theWCN computed from the protomer structure alone.

3) Structure-based docking of IMPs: Based on our previous findings in
which we demonstrated that residue WCNs can be effectively used
as restraints to improve de novo tertiary structure prediction for α-
helical IMPs [23], we implemented an algorithm which leverages
the high discriminatory power of aWCN-based penalty score for ac-
curate docking of α-helical IMPs.

2. Methods

2.1. Data Set

A set ofmulti-passα-helical IMPswhose structures have been deter-
mined to a resolution of 2.5 Å or better and an R-free value of 0.3 or bet-
ter were extracted from the Orientations of Proteins in Membranes
(OPM) database [24] in March 2016. The data set was further refined
by using the PISCES server [101] to reduce redundancy such that
pairwise sequence identity between protein subunits is b25%. Proteins
whose structureswere not determined by X-ray crystallography or arti-
ficial chimeras were excluded from consideration. Classification of a
complex as obligate or transient and assignment of biologically relevant
oligomeric state (dimer, trimer, etc.) were carried out based on evi-
dence found in the literaturewhere the structure of the complexwas re-
ported. In summary, the data set consists of 36 obligate and nine
transient complexes (Table 1). The bias toward more obligate com-
plexes is not unexpected as the higher affinity and rigidity should facil-
itate crystallization and increase quality of the resulting structural
model. The data set consists of 15 homodimers, twelve homotrimers,
four homotetramers, two homopentamers, two homodecamers, one
heterodimer, four heterotrimers, four heterotetramers, and one
heteropentamer. It's worth mentioning that there is a spread in
transmembrane helix counts and each category of helix count is well
represented except that no subunit with nine, fourteen, or fifteen heli-
ces satisfied our aforementioned data set curation criteria (Supporting
Information Fig. S1).
2.2. Defining Interface Residues

Residue categorization was based on residues' weighted contact
numbers (WCN). The WCN of a residue is defined as the number of its
neighboring residues weighted by spatial proximity. The WCN of each
residue in the data set was computed according to a procedure previ-
ously described [68]. A residue was then categorized as surface residue
if its WCN b 8.38 and as core residue otherwise. This cutoff was deter-
mined based on a linear fit of WCN to relative solvent accessibility
(RSA) (WCN= − 9.78 × RSA+ 8.48) and residues with an RSA N 0.01
are considered solvent exposed as in a previous study [16]. Interface res-
idues were defined as those surface residues whose WCN increases by
at least 1.0 upon the formation of a complex (see Fig. 1 for an example).
Although some previouswork has classifiedwhether a residue is on the
surface or in the core according to its solvent accessibility [16,69–72],
we classified residues based on their WCN for two practical reasons.
On the one hand, computing residue WCN is computationally less



Fig. 1. Defining interface residues according to residue weighted contact number (WCN).
A surface residue is defined as an interface residue if its WCN increases by at least 1.0
(ΔWCN ≥ 1.0) upon the formation of a protein complex. This figure shows interface
residues, represented as spheres, identified according to the above criterion for the
trimeric bacteriorhodopsin (PDB ID: 1m0l).
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demanding than computing residue solvent accessibility. This makes it
feasible to compute residue WCNs on the fly and use them directly for
scoring in protein structure prediction and protein-protein docking pre-
dictions where an enormous amount of conformational space must be
sampled [23]. On the other hand, we had previously developed a ma-
chine-learning framework that allowed accurate prediction of residue
WCNs for α-helical IMPs [68].

2.3. Site-specific Rate of Evolution

Site-specific rate of evolutionwas estimated using the Rate4Site pro-
gram [73]. The input multiple sequence alignment (MSA) of homologs
to each monomer was obtained by running HHblits on the Uniprot20
sequence database [74]withminimum coverage of query sequence (se-
quence of themonomer) being set to 75%, maximum sequence identity
to query sequence being set to 90%, maximum pairwise sequence iden-
tity being set to 90%, and e-value cutoff for inclusion in result alignment
being set to 10−5.

2.4. Mutual Information

We model a sequence site as a discrete random variable X, which
takes on one of an alphabet of 20 possible letters AX = (A,C,D,⋯,W,Y)
with probabilities (pA,pC,pD,⋯,pW,pY), with PðX ¼ xÞ ¼ px; px ≥0
and ∑x∈AX

px ¼ 1. The alphabet AX contains one letter for each amino
acid. Alignment gap was not considered because it introduces spuri-
ously high conservation for alignment columns containing a high per-
centage of gaps. px is estimated by the relative frequency fx of amino
acid residue x at the column of an MSA:

f x ¼
1
20

λþM λþ
XM
i¼1

δ x;Xið Þ
" #

where M indicates alignment depth (the number of sequences aligned
at position i), δ is the Kronecker delta function such that it evaluates
to 1 if x= Xi and 0 otherwise. fx is adjusted by a pseudocount parameter
λ=1.
Given two MSA columns X and Y, the mutual information I(X,Y) be-
tween them is defined as

I X; Yð Þ ¼
X20
i¼1

X20
j¼1

pij xi; yj

� �
log

pij xi; yj

� �
pi xið Þpj y j
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I(X,Y) is a general measure of association between two random vari-
ablesX and Y (int this case, two alignment columns in anMSA), it equals
zero if and only if X and Y are independent, and it is positive otherwise.
Intuitively, I(X,Y) can be thought of as the average reduction in uncer-
tainty about X that results from knowing the value of Y, and vice versa.

To correct for bias in I(X,Y) that may arise from phylogeny [75], en-
tropy of the MSA columns [76], or background noise [77], and test for
significance, we implemented a permutation test in which, for each
pair of columns, one column was selected and permuted 200 times.
This procedurewas described in [78] in detail. Briefly, amutual informa-
tion was calculated for the pair after each permutation. If the number of
permutations for which the mutual information is greater than that of
the original column pair is ≥2 (1% of the total number of permutations),
we reject the hypothesis that the column pair is correlated, and its mu-
tual information is set to 0. Otherwise, the bias-corrected mutual infor-
mation for the pair was computed by subtracting the average mutual
information of the 200 permutations from that of the original column
pair.

2.5. Training a Neural Network for Predicting WCN

We trained a neural network for predicting residue WCN from
amino acid sequence. The target WCNs used in the training were com-
puted from the structure of oligomers in the data set, using the proce-
dure previously described [68]. Each residue was numerically
described by rate of evolution of the sequence site, entries in a window
of size 15 from the position-specific scoring matrix (PSSM) computed
from anMSA of homologs of the protein family as previously described
[79]. The output layer of the neural network consists of a single node for
the residue-specific WCN. The hidden layer consists of 64 neurons. The
neural network was regularized using the “dropout” technique [80]
where 5% of units in the input layer and 50% of neurons in the hidden
layer were randomly silenced during the presentation of each training
case. Connection weights were iteratively tunedwith back-propagation
of errors [81] with the learning rate η being set to 0.1 and momentum
factor α being set to 0.1. The accuracy of WCN prediction was assessed
by the Pearson correlation coefficient (PCC) and the mean absolute
error (MAE) of predictedWCNs from targetWCNs, computed as follows

PCC ¼
Pn

i¼1 xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi−xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi−yð Þ2

q

MAE ¼
Pn

i¼1 j yi−xi j
n

where xi and yi denote the target and predicted WCNs of residue i, re-
spectively, and n denotes the number of residues in the data set.

2.6. Predicting Interface Residues

Note that the WCN of a residue may be different depending on
whether it is computed from the structure of the individual protomers
or the complex. To make the distinction straightforward, we refer to
WCNs computed from individual subunits as protomeric WCNs and
those computed from complexes as oligomericWCNs. For predicting in-
terface residues, it is reasonable to assume that an experimental struc-
ture of each of the individual subunits is available, and as such, true
protomeric WCNs can be computed from the structures of individual
subunits. A surface residue is then predicted to be an interface residue
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if its neural network-predicted oligomeric WCN is higher than its true
protomeric WCN by at least 1.0.

The performance of the neural network on predicting interface
residues was assessed by the area under the receiver operating charac-
teristic curve (ROC) [82], or AUC. TheAUCwas estimated through cross-
validation where the data set was partitioned into subsets such that
proteins from the same SCOP superfamily [83] were placed in the
same subset. Each subset was used exactly once as the test set for eval-
uating the performance of the neural network trained on the remaining
of the data set. Effectively, a value of AUC was computed from each test
subset. The final estimate of the AUC was computed as the mean of all
the AUCs. The true positive rate (TPR), true negative rate (TNR), and
positive predictive value (PPV) [84] were calculated using 1.0 as the
threshold,where a true positive is defined as a correctly predicted inter-
face residue and a true negative is a correctly predicted non-interface
residue.

2.7. Integral Membrane Protein Docking

One of the advantages of modeling IMP complexes is that the mem-
brane reduces the search space by imposing a restraint on the position
of the subunits in the membrane. We designed a docking-based algo-
rithm called BCL::MP-Dock for predicting structure of complexes
where both binding partners areα-helical IMPs. The algorithm assumes
that both docking partners are IMPs and requires that their tertiary
structures be available. The input structures to BCL::MP-Dock are a
structure of the “receptor” and a structure of the “ligand”, both oriented
in themembrane using the Positioning of Proteins in Membrane (PPM)
server [24]. Generation of docking candidates begins with a random ro-
tation of the ligand about the z-axis (e.g. the membrane normal) and
translation of the ligand in the membrane to create a glancing contact
with the receptor. The ligand is then randomly moved with respect to
the receptor using a Monte Carlo search [85]. Translation along the z-
axis is limited to b5.4 Å (one winding of an alpha-helix) and the step
size of the tilt angle from the z-axis is limited to 0.05 rad (or ~2.8 de-
gree). The baseline scoring function of BCL::MP-Dock consists of a
clashing term that represents van der Waals repulsion, a residue-pair
contact potential term for interface interaction, and a radius of gyration
term that favors compact packing between the two docking partners,
which were described in detail previously [86].

While the analysis of the characteristics of interface residues com-
pared to the rest of surface residues was conducted on a diverse set of
non-redundant IMP oligomers, the BCL::MP-Dock algorithm is designed
to work primarily with dimers. In the current study, we tested the idea
of using predicted interface residues and their predicted WCNs as re-
straints for scoring docking solutions on a set of 16α-helical IMP dimers
Table 2
Summary of the benchmark set of IMP complexes for testing the docking algorithm.

Protein ID Resolution (Å) Oligomeric state Obligate Protein name

1q16_CF 1.9 Homodimer No Nitrate reductase A
2a65_AB 1.7 Homodimer Yes LEUTAA
2bs2_CF 1.8 Homodimer No Quinol fumarate reductas
2nq2_AB 2.4 Homodimer Yes Putative metal-chelate ty
2vpz_CG 2.4 Homodimer No Polysulfide reductase from
2z73_AB 2.5 Homodimer No Squid rhodopsin
3odu_AB 2.5 Homodimer No CXCR4 chemokine recept
3puw_FG 2.3 Heterodimer Yes MBP-Maltose transporter
4a01_AB 2.4 Homodimer Yes H1-Translocating Pyroph
4jkv_AB 2.5 Homodimer No Human smoothened rece
4mrs_AB 2.4 Homodimer Yes Bacterial Atm1-family AB
4o6m_AB 1.9 Homodimer Yes CDP-alcohol phosphotran
4o6y_AB 1.7 Homodimer Yes Cytochrome b561
4qnd_AB 1.7 Homodimer Yes Bacterial homologue of S
4rng_AC 2.4 Homodimer Yes Bacterial homologue of S
4u9n_AB 2.2 Homodimer Yes Mg(2+) channel MgtE

Protein IDs are denoted as four-letter PDB ID followed by the chain IDs of the two subunits c
homodimers + one heterodimer) from the data set used in our analysis of membrane protein
(Table 2). This benchmark set consists of all α-helical IMP dimers satis-
fying our data set curation criteria (see Methods). The constituting sub-
units have as few as three and as many as sixteen transmembrane
helices, and most of the subunits have moderate sizes with five, six, or
seven transmembrane helices.

2.8. Computation of Enrichment

The enrichment was used to measure how capable a scoring func-
tion is to select themost accurate docking solutions from a pool of solu-
tions. To calculate enrichment, a given set S of docking solutions are
sorted by their RMSD100 values. The top 10% of the solutions with the
lowest RMSD100 [102] values are put into the set T (true) and the rest
of the solutions are put into the set F (false). The solutions in S are
then sorted by their evaluated score. The top 10% of solutions with the
lowest score are put into the set P (positive) and the rest are put into
the set N (negative). The intersection of sets T and P are solutions that
are correctly identified by the scoring function and referred to as TP
(true positives). The intersection of sets F and P are solutions that are in-
correctly identified by the scoring function and are referred to as FP
(false positives). The enrichment value is then computed using the fol-
lowing formula:

Enrichment ¼ TP
TP þ FP

=
P

P þ N

Intuitively, P
PþN represents that probability of obtaining a native-like

model when choosing a model from S at random, whereas TP
TPþFP repre-

sents the probability of obtaining a native-like model when choosing
from a set of models below an energy cutoff. By our experimental de-
sign, P

PþNhas a constant value of 0.1, so the enrichment values cannot ex-
ceed 10.

3. Results

Each protomer is divided into three disjoint regions: protein core, in-
terface, and non-interface surface with no overlapping residues; and
each region is further divided into two parts: the aqueous region and
the membrane region based on the atomic coordinates and the calcu-
lated hydrophobic thickness of the membrane in which each complex
resides, bothwere obtained from theOPMdatabase [24]. The hydropho-
bic thicknesses provided by OPM were calculated by the PPM method,
whose accuracywas thoroughly tested for a large set of IMPswhose ori-
entations with respect to the lipid bilayer or membrane binding affini-
ties have been experimentally studied [87].
TMH count in subunit
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WEET transporters 3
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5

omprising the complex. Note that this benchmark set consists of all the dimers (fifteen
interfaces.



Fig. 2.Amino acid composition of the core, interface, and the rest of the surface. (A) Amino acid composition in the aqueous region; just as amino acid composition in globular proteins and
protein complexes, the relative frequencies of residues of hydrophobic nature increases in going from surface, to interface, and then to protein core, whereas those of residues of
hydrophilic nature follows the opposite trend. (B) amino acid composition in the membrane region; due to its hydrophobic nature, the residue relative frequencies follow trends
opposite to those in aqueous portion.
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3.1. Amino Acid Composition and Interface Propensities

Fig. 2 compares the amino acid compositions of protein core, inter-
face, and non-interface surface in the aqueous region and in the mem-
brane region. Fig. 2A shows that in the aqueous region, protein cores
have the highest frequencies of hydrophobic residues (e.g. Cys, Phe,
Ile, Leu, Met, and Val), whereas surfaces have the highest frequencies
of hydrophilic residues (e.g. Asp, Glu, His, Lys, Asn, Pro, Ser, and Trp),
similar to the amino acid compositions of soluble protein complexes
[17]. In the membrane, it is expected that hydrophobic residues are
well represented on non-interface surfaces due to the hydrophobic na-
ture of lipid tails. Interfaces and the IMP core should still be dominated
byhydrophobic amino acids. However, some fraction of hydrophilic res-
idues is expected for function, i.e. to build the polar pore in a channel or
to lend selectivity to a PPI. Fig. 2B shows that non-interface surfaces in
the membrane region have the highest frequencies of some hydropho-
bic residues (e.g. Ile, Leu, Val) as well as some hydrophilic residues (e.g.
His, Lys, and Arg), whereas some hydrophilic residues have the highest
frequencies in protein cores (e.g. Glu, Asn, Pro, Gln, Ser, and Thr). It is
Fig. 3. Interface versus surface propensity in the aqueous region and themembrane region for e
according to IPA ¼ − log f A;i

�
f A;s

, where fA, i is its fraction at the interface and fA, s is its fraction

preferentially located at the interface.
also interesting that Gly and Ala, which have the smallest side-chain
size, have the highest frequencies in protein cores both in the aqueous
part and in themembrane. This is likely because Gly andAla, which usu-
ally occur in GxxxG and AxxxA types of motifs, may facilitate more effi-
cient helix packing [88,89].

The amino acid type distribution at the interface is significantly dif-
ferent from that on the rest of the surface for both the aqueous region
(p = 1.7 × 10−11, χ2 test) and the membrane region (p = 0.011, χ2

test), albeit the difference is more pronounced in the aqueous region.
Fig. 3 shows the interface propensity of each residue type. In the aque-
ous region, residue types that prefer interface over the rest of the surface
are Phe, Ile, Leu, Met, Val, and Tyr. In the membrane, residue types that
prefer interface over the rest of the surface are Ala, Asp, Met, Asn, Pro,
Gln, Thr, and Tyr.

3.2. Hydrophobicity

Since IMPs experience both lipid bilayer and aqueous environments
at the same time, we analyzed the hydrophobicity of the interface, non-
ach amino acid type. The interface propensity of an amino acid type A, IPA, was calculated
on the surface as a whole. A negative propensity value indicates that the amino acid is
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interface surface region, and the protein core separately for these two
environments. In the aqueous region, the interface is significantly
more hydrophobic than non-interface surface region (p = 0.0020,
paired t-test), and the protein core is significantly more hydrophobic
than the interface (p= 1.2 × 10−5, paired t-test) (Fig. 4A), consistent
with the observation made on soluble proteins [70]. In the membrane
region, the protein core is significantly less hydrophobic than the
noninterface surface region (p = 9.7 × 10−6, paired t-test) (Fig. 4B),
due to the nonpolar nature of lipid tails. The protein core is also less hy-
drophobic than the interface (p=0.00077, paired t-test). No significant
difference in average hydrophobicity is found between the interface and
the rest of the surface (p=0.054, paired t-test). This may be partly be-
cause protomers of transient membrane protein complexes, when they
are not part of a complex, need their interface hydrophobic enough to
make favorable contact with lipid tails. In fact, in obligate complexes
the interface is marginally less hydrophobic than the rest of the surface
(p=0.014, paired t-test) (Fig. 4C).

3.3. The Interface is Better Conserved than the Rest of the Surface inObligate
Oligomers

The selective pressure, and likewise conservation, is expected to be
higher at the interface than the rest of the surface because molecular
recognition is often achieved by making specific contacts at the inter-
face. To test this hypothesis, we computed the average rate of evolution
of the interface and that of the rest of the surface for each complex in the
data set. A lower average rate of evolution signifies a stronger
conservation.

While the average rate of evolution of the interface is significantly
lower than that of the rest of the surface in both the aqueous region
(p = 0.0043, paired t-test) (Fig. 5A) and the membrane region (p =
0.00088, paired t-test) (Fig. 5D), we found that such difference stems
from the selection pressure on obligate complexes. In obligate com-
plexes, the interface is significantly better conserved than the rest of
the surface in both the aqueous region (p = 0.00015, paired t-test)
(Fig. 5B) and the membrane region (p = 3.3 × 10−5, paired t-test)
(Fig. 5E). In contrast, in transient complexes, the interface is not more
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conserved than the surface in either region (p=0.87 and 0.81, respec-
tively, paired t-test) (Fig. 5C and F). This confirms that, in general, the
selection pressure on obligate complexes is stronger than on transient
complexes [6,16].

We also found that while the average rate of evolution of interface
residues in the membrane region is significantly lower than that of in-
terface residues in the aqueous region (p= 0.00016, paired t-test), it
is worth noting that for many interfaces (12 out of 45 cases in our
data set), the average rate of evolution is lower in the aqueous region
than that in the hydrophobic region. This suggests that, for some mem-
brane proteins, the aqueous region may be under stronger selection
pressure than the membrane region for protein-protein interactions.
3.4. Contacting Interface Residue Pairs Show Stronger Correlation than
Non-Contacting Pairs

Previously, studies have shown that residue pairs in inter-domain
interfaces in globular proteins tend to be correlated [91] and that
inter-subunit contacting residues in single-pass homo-oligomers co-
evolve strongly [92]. However, it remains unclear whether these obser-
vations hold true for multi-pass membrane protein complexes.We rea-
soned that inter-subunit contacting residue pairs in multi-pass
membrane protein complexes are also correlated more strongly than
non-contacting pairs. To test this hypothesis, we analyzed the strength
of correlation, quantified by mutual information, of contacting and
non-contacting residue pairs for all homo-oligomers in our data set. A
residue i in one subunit forming the interface is considered in physical
contact with another residue j in the other subunit if the separation be-
tween any heavy atom of i and j is ≤4.0 Å. Fig. 6 compares the distribu-
tion of mutual information between pairs of residues in contact with
that of themutual information between pairs of residues not in contact.
We observe a shift toward highermutual information (p=2.0 × 10−10,
Mann-Whitney U test) for residue pairs that are in contact. This shift
suggests that on average, at the interface of multi-pass membrane pro-
tein complexes, residue pairs that are in physical contact tend to corre-
late more strongly than those that are not in contact.
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A recent study suggests that there is a subtle trade-off between evo-
lutionary and energetic constraints in protein-protein interactions [93].
The authors showed that for some classes of protein complexes, evolu-
tionary constraints play the key role in defining the interaction surface,
whereas in others, energetic constraints emerge as more important.
While their analysis was conducted exclusively on soluble protein com-
plexes, their conclusion might as well apply to membrane protein olig-
omers. In fact, from the 32 homo-oligomers for which we were able
compute inter-subunit residue-pairmutual information, a randomly se-
lected contacting residue pair will have a higher mutual information
than that of a randomly selected non-contacting residue pair in twenty
cases (using Mann-Whitney U test and a cutoff p-value of 0.05,
Supporting Information Table S1). Whereas in the remaining twelve
homo-oligomers, other factors such as energetic constraint may play a
more important role than evolutionary constraint.
3.5. Predicting Interface Residues in the Membrane

We first evaluate the accuracy of the trained neural networks in
predictingWCNs. As shown in the scatter plot in Fig. 7, the Pearson cor-
relation coefficient between true and predicted WCNs is 0.70 and the
mean absolute error of predicted WCNs from true WCNs is 1.58. We
then evaluate the performance of the trained neural networks in
distinguishing residues at the interface from those on the rest of the sur-
face given experimental structures for the protomers. A score for a res-
idue to be at the interface is computed by subtracting its protomeric
WCN from its predicted WCN, this score is termed ΔWCN. Surface resi-
dues whose ΔWCN ≥ 1.0, a threshold chosen for consistency with the
threshold used in the definition of interface residues, are predicted to
be interface residues, resulting in a TPR of 0.88, a TNR of 0.54, and a
PPV of 0.39.



Fig. 6.Comparison on the distribution of themutual information between pairs of residues
in contact with that of the mutual information between pairs of residues not in contact.
There is a shift of the distribution of mutual information between contacting residues
toward higher values.
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Fig. 7 shows the ROC curve plotted using cross-validated predictions
fromneural networks trained to distinguish interface residues from res-
idues on the rest of the surface. While the AUC of our neural network is
0.75, comparable to a previous random forest-based protein-protein
binding site predictor formembrane proteins [69],we'd like to highlight
that ourwork addressed several limitations of themethod introduced in
[69] (Supplementary discussion).

3.6. Docking Membrane Proteins Using Predicted WCNs as Restraints

The BCL::MP-Dock algorithm was evaluated on a set consisting of 1
heterodimer and 15 homodimer structures. The results for global
searches from fully randomized starting positions and orientations are
detailed in Table 3. Of the 15 homodimer cases, BCL::MP-Dock is able
to reconstruct the structure of the complex for 14 cases where the
best RMSD100 of the docked ligand subunit to its native structure is
b2.5 Å (2.5 Å is the threshold of resolution used in creating the data
set). The two cases where the best RMSD100 of the docked ligand is
N2.5 Å are the bacterial Atm1-family ABC transporter (PDB ID:
4mrs_AB) and the heterodimeric transmembrane subunits of the
Fig. 7. Performance of the neural network-based interface residue predictionmodel trained usin
versusWCN predicted by the neural network. The Pearson correlation coefficient between true
WCN is 1.58. (B) The ROC curve for interface residue classificationwith an AUC of 0.75. The ROC
indicates the mapping between colors and classification thresholds ΔWCN.
maltose ABC transporter (PDB ID: 3puw_FG). To confirm the effective-
ness of the sampling scheme of BCL::MP-Dock, we also computed the
means of RMSD100 of the docked ligand of the top 1% models ranked
by RMSD100. Again, except for 3puw_FG and 4mrs_AB, the mean
RMSD100 is either less than or only slightly N3.0 Å. 3puw_FG is a hetero-
dimer where helices from the two subunits are domain-swapped and
4mrs_AB is a homodimerwith bulky cytosolic domains. Both pose a sig-
nificant challenge to the sampling scheme of BCL::MP-Dock.

To assess the baseline scoring function, we computed the means of
RMSD100 of the docked ligand of the 1% models ranked by score v.s.
ranked by RMSD100. Compared to the means of RMSD100 of the top
1% models ranked by RMSD100, the baseline scoring function is re-
motely effective in only three cases (2a65_AB, 2vpz_CG, and
4a01_AB). While the enrichment of the baseline scoring function is
N1.0 for eleven cases, it is N2.0 for only five cases (Table 3). These results
indicate that the baseline scoring function has difficulty in identifying
docked ligands that are top-ranked by RMSD100 in most cases.

Previously we demonstrated that residue WCNs [23] and other ex-
perimental or simulated restraints [94] can be effectively incorporated
into scoring functions to improve de novo tertiary structure prediction
for α-helical membrane proteins. Likewise, we hypothesized that a
scoring term that assigns a penalty score to docked models according
themagnitude of thedeviation theWCNsof predicted interface residues
from their predicted WCNs will also be highly effective:

Penalty score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i∈predicted
interface
residues

WCNi−WCNp
i

� �2vuuuuuuut

where WCNi is the WCN of interface residue i computed based on the
docked model, WCNi

p is the WCN of interface residue i predicted by
the neural network. The predictedWCNs of the resulting interface resi-
dues of each docking partners were used as restraints. Note that, to
avoid potential overestimation of the effectiveness of this approach,
the WCNs used as restraints in docking the partners of each complex
are predicted by a neural network trained with a data set containing
no members from the SCOP superfamily [83] of the complex being
tested for docking.

We defined a quantity called enrichment to measure how capable a
scoring function is to select the most accurate docked models from a
g interface and surface residues in themembrane region only. (A) Scatter plot of trueWCN
WCN and predictedWCN is 0.70 and themean absolute error of predictedWCN from true
curve is colored according to classification thresholds and the scale on the right vertical axis



Table 3
Summary of the global docking of IMPs using predicted interface residue WCN as restraints.

Protein ID

# 

Interface 

residues

TPR PPV MAE

Best 

RMSD100 
(Å)

M ean 

RMSD100 of 

top 1% models 
ranked by 

RMSD100 (Å)

Mean 

RMSD100 of 

top 1% 
models 

ranked by 

score (Å)

Enrichment

∅WCN PWCN ∅WCN PWCN ∅WCN PWCN ∅WCN PWCN

1q16_CF 46 0.67 0.17 2.09 1.1 1.1 2.2 2.1 27.5 25.7 0.6 0.0

2a65_AB 65 0.64 0.14 1.74 0.7 0.8 1.4 1.4 5.3 5.9 3.0 3.1

2bs2_CF 54 0.67 0.22 1.81 1.2 1.3 2.9 2.9 28.0 33.3 0.6 0.6
2nq2_AB 81 0.92 0.28 1.89 0.7 1.1 2.9 2.2 40.0 5.1 0.4 6.6

2vpz_CG 52 0.61 0.21 2.18 0.7 0.9 2.0 1.9 10.5 24.2 2.8 0.8

2z73_AB 66 0.69 0.14 2.16 1.9 2.6 4.2 4.2 26.1 28.7 0.7 0.8
3odu_AB 81 0.86 0.07 2.50 0.9 1.2 3.5 4.1 35.2 30.0 1.1 1.3

3puw_FG 123 0.93 0.45 1.99 3.2 1.0 6.9 7.4 25.7 13.4 1.8 3.5
4a01_AB 50 0.72 0.52 1.46 0.6 0.7 2.4 2.6 5.4 4.3 4.1 8.0

4jkv_AB 58 0.70 0.28 2.14 0.9 0.5 2.4 2.1 19.8 8.0 2.2 4.4

4mrs_AB 55 0.75 0.38 1.77 2.9 9.5 16.4 15.8 29.1 26.5 0.5 1.0
4o6m_AB 24 0.55 0.50 1.46 0.6 0.9 2.3 2.2 12.4 3.4 2.1 4.8

4o6y_AB 56 0.95 0.36 1.77 1.1 0.8 2.0 1.8 21.4 5.6 1.6 5.6

4qnd_AB 30 0.81 0.70 1.70 1.7 0.9 3.0 2.9 12.7 5.3 1.8 4.6
4rng_AC 53 0.87 0.49 1.49 1.0 1.2 3.0 2.9 21.8 4.1 1.5 7.6

TPR: true positive rate; PPV: positive predictive value; MAE: mean absolute error;∅WCN indicates docking using the baseline scoring function, which lacks use of predicted ΔWCN; PWCN

indicates addingpredictedΔWCN to thebaseline scoring function. Cases forwhich theenrichment of the penalty score isb2.0 are colored in red and those forwhich the enrichment is higher
than 2.0 are colored in green.
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pool of candidates. A scoring function with an enrichment of r means
that models top-ranked by the scoring function are r times more likely
than a randomly selected set of models to contain native-like models.
As shown in Table 3, the enrichment of the WCN-based penalty score
is improved in 13 cases, compared to the enrichment of the baseline
scoring function. The number of cases where the enrichment is N2.0 is
increased from five to ten cases. The cases where the enrichment of
the penalty score is worse than that of the baseline scoring function or
b2.0 is likely due to poor classification of interface residues or poor accu-
racy ofWCNprediction. For example, cases for which the enrichment of
the penalty score is b2.0 (colored in red in Table 3) have an average TPR,
PPV, andMAE of 0.71, 0.20, and 2.09, whereas the average TPR, PPV, and
MAE for cases for which the enrichment is N2.0 (colored in green in
Table 3) are 0.80, 0.44, and 1.75, respectively. To demonstrate the effec-
tiveness of the penalty score, we plot the “score v.s. rmsd” relationship
and compare the best docked model in the 1% models ranked by this
score to the native complex structure for cases where the enrichment
is greater 2.0 (Fig. 8).

4. Discussion

Herein, we compiled a non-redundant set of oligomers of α-helical
IMPs whose structure have been determined to high resolution and
studied the properties of the interfaces in terms of hydrophobicity,
amino acid composition, interface propensity of amino acids, evolution-
ary conservation, and correlation of amino acid pairs at the interface.
We found that the aqueous portion of the interface in oligomers of
IMPs have similar characteristics to the interfaces between oligomers
of globular proteins [11,14,17,70,95]. Within the membrane, while the
average hydrophobicity of the interface is similar to the rest of the
lipid-contacting surface, however, the interface is significantly more
conserved.We also observed that contacting residue pairs across the in-
terface tend to correlate more strongly than non-contacting residue
pairs.

While our results suggest that interfaces within the membrane are
not significantly different from the rest of the surface for the global
physicochemical compositions, two important questions remain: are
specific motifs of the GxxxG type enriched in the interface of multi-
pass IMP oligomers? And if so, how do such motifs contribute to
multi-pass IMP oligomerization? It is known that the GxxxG motif
plays an important role in stabilizing single-pass homodimers [88,89].
Within multi-pass IMPs, previous studies have indicated that GxxxG
motifs can be important for both folding and oligomerization and it
has been suggested that the presence of a GxxxG type of motif alone is
only a weak predictor of protein dimerization in the membrane [89].
However, we are not aware of any study that has systematically exam-
ined whether the GxxxG motifs have a higher propensity for inter-sub-
unit than intra-subunit interactions. Given the added complexities in
the process of multi-pass IMP folding and oligomerization, separate
in-depth studies are needed to answer these questions.

Based on the observation that the interface is significantlymore con-
served than the rest of the surface in the membrane, we adapted our
previously-developed neural network-basedmethod [68] to distinguish
interface residues from residues on the rest of the surface. This classifi-
cationwas based on theWCNs of surface residues predicted by the neu-
ral network.While the performance of thismethod is comparable to the
random forest-based binary classifier developed by Bordner [69], its
strength lies in that it predicts residues' real-valued WCN. Residues'
WCN is an effective restraint for improving the fraction of native con-
tacts in predicted structural models for de novo prediction of tertiary
structures of α-helical IMPs [23], and we have herein shown that it
can be further used to derive an effective score for selecting native-
like docking candidates of IMP complexes.

The sampling problem in docking IMPs is inherently more tractable
than that in docking globular proteins, due to the reduced translational
and rotational degree of freedomwith respect to themembrane normal.
Despite this simplification in sampling, docking IMPs is still a challeng-
ing problem in terms of scoring native-like poses. Intuitively, we ex-
pected that matching relatively polar patches on the IMPs
transmembrane surface, so as to shield polar regions from the mem-
brane, would be beneficial, however, we unexpectedly found that
intra-membrane interface regions do not differ from non-interface



Fig. 8. Examples of oligomers for whichWCNs helped identify the correct docking solutions. Plots onWCN restraint score v.s. RMSD100 relationship, and comparison of the best docked
model in the 1%models ranked byWCN restraint score to the native oligomer structure (pale green: native receptor subunit, pale blue: native ligand subunit, light orange: docked ligand
subunit) for cases where the enrichment of theWCN restraint score is higher than 2 using ΔWCN=1 as the threshold for classifying interface residue. The values in parentheses are the
RMSD100 of the models shown.

708 B. Li et al. / Computational and Structural Biotechnology Journal 17 (2019) 699–711



709B. Li et al. / Computational and Structural Biotechnology Journal 17 (2019) 699–711
surface regions in terms of hydrophobicity. Shape complementarity, or
packing volume is similarly of limited use due to IMPs having relatively
cylindrical shapes. Using restraints derived from evolutionary analysis
may represent an effective approach to narrowing down the set of via-
ble docking candidates for IMPs. In fact, the effectiveness of using pre-
dicted coevolving residue pairs to identify native-like docking
solutions has been demonstrated previously for globular proteins
[91,96–100] and some isolated cases of IMPs [97,98].

While coevolutionary analysis has the benefit of pinpointing specific
interacting residue pairs, it requires construction of paired MSA of
interacting partners, and computationally, this problem becomes diffi-
cult by itself due to the existence of paralogs [18–20]. We have taken
a novel approach by first predicting WCNs of surface residues from se-
quence for monomeric vs. multimeric proteins and using the difference
between these predictions to identify likely interface residues. Next, we
used the predicted interface residues as “sticky” points and their pre-
dicted WCNs as restraints for ranking docking solutions. This approach
is computationally efficient and easy to implement as it eliminates the
necessity of creating paired MSAs. We have also demonstrated the ef-
fectiveness of this approach using a benchmark set of 16 α-helical IMP
oligomers.

The effectiveness of our approach depends on the accuracy of the
prediction of WCNs and the identification of interface residues. Struc-
tural models ranked top 1% by the WCN restraint score are closer to
the native structure (lower average RMSD100) than models ranked 1%
by the baseline scoring function are when either the PPV for classifying
interface residues is above 0.28 or theMAE forWCN prediction is below
2.0 (Table 3). When the PPV drops below 0.28 and the MAE goes above
2.0, theWCN score starts to act against identifying correct docking solu-
tions.We realize that such criteria are arbitrary due to the limited size of
the benchmark set and that in a real-life scenario a user of our method
wouldn't know the PPV or MAE for their protein of interest. Thus,
we'd like to point out that non-obligate oligomers where structural or
functional constraint on the interface may be too weak to leave detect-
able evolutionary information on interface residues or incidental oligo-
mers where the interface is neither structurally nor functionally
relevant [6] are particularly challenging to our method. In fact, five out
of the six non-obligate dimers in the benchmark set have a PPV b0.28
or a MAE N2.0. This also highlights the need for both computational
and experimental studies to better understand non-obligate interac-
tions between membrane proteins and the development of more accu-
rate methods for predicting interaction sites.

Nevertheless, the current study provides important insights into the
interface of α-helical IMP oligomers and presents an effective and ro-
bust approach for docking α-helical IMPs. The statistics obtained may
give insights into the development of methods that are more accurate
in predicting interface residues, while the docking approach is valuable
for constructing structural models for α-helical IMP oligomers.

Software and Data Availability

BCL::MP-Dock has been integrated into the Biochemical Library
(BCL) software suite that is being actively developed. It is available at
http://www.meilerlab.org/bclcommons under academic and business
site licenses. The BCL source code is published under the BCL license
and is available at http://www.meilerlab.org/bclcommons. Weighted
contact numbers of amino acid residues in helical membrane proteins
can be predicted using BCL::TMH-Expo via its webserver: http://www.
meilerlab.org/servers/tmh_expo. The rawdata, processed data, andpro-
tocol capture for this work are available at http://dx.doi.org/10.17632/
cbk98yrszd.1.
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