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Abstract

Research Article

Introduction

Infection with the human immunodeficiency virus  (HIV) 
continues to be a global concern affecting approximately 38 
million people with approximately 1.7 million new cases 
annually.[1] In 2006, the CDC announced an initiative for 
voluntary, routine testing of all Americans aged 13–64 during 
health‑care encounters. Despite the progress in the last decade 
since this announcement, approximately 55% of adults in 
the United States have never been tested. An estimated 15% 
of infected individuals are unaware of their status, which 
means that they can unwittingly infect others.[2] HIV is 
most infectious during initial infection stages when people 
are least likely to be aware of infection. Appropriate test 
algorithms and analytically sensitive tests that can identify 
infection early are needed to reduce HIV infection rates 
and improve outcomes.[3,4] The most analytically sensitive 
approved screening tests are fourth‑ and fifth‑generation HIV 

screening tests which test for anti‑HIV‑1 antibodies (HIV‑1 
Ab), anti-HIV-2 antibodies (HIV-2 Ab), and HIV-1 antigen 
(HIV-1 Ag). Fourth‑generation HIV (HIV4G) screens report 
one result without the ability to indicate which of the targets 
is positive, while fifth‑generation screening (HIV5G) reports 
an index value (IDV) for each of the targets.[5,6] HIV5G testing 
does not yet have a CDC recommended testing algorithm.
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The current CDC algorithm follows HIV4G‑positive screening 
tests with an additional differentiation assay to determine 
if anti‑HIV 1 or anti‑HIV 2 is positive. That screening test 
is followed by nucleic acid testing if differentiation results 
are negative or indeterminate.[7] In theory, HIV5G testing 
eliminates the need for a differentiation assay. At present, there 
is only one FDA‑approved differentiation assay and it generates 
complex results that have led the CDC to release a full‑page 
table of possible results and recommended interpretative 
comments for this testing.[8] The complexity is difficult for both 
patients and physicians and it is unclear if a second screening 
assay is needed to provide orthogonal testing for all patient 
samples positive by HIV5G testing. In addition, there is debate 
if a differentiation assay is the appropriate 2nd step in testing 
for HIV with HIV4G when a quantitative viral load assay will 
provide clinically actionable information not provided by the 
differentiation assay.[9] At a practical level, HIV5G testing is 
ongoing in an increasing number of clinical laboratories, and 
data are limited on best practices and limitations of this testing.

To add complexity to the diagnostic process, positive screening 
results must be reported to local health authorities in many 
countries including the US. Despite the high sensitivity and 
specificity of HIV4G and HIV5G (>99%), false positives are 
still common in the low prevalence populations most clinical 
laboratories serve. In addition, false positives for serologic tests 
generally and HIV serologic tests specifically are increased 
among pregnant women and those with autoimmune diseases. 
Prenatal HIV screening is considered standard of care to allow 
for early intervention to protect the fetus, further complicating 
the screening assays. There are competing needs for accuracy 
compared to time to diagnosis. Accuracy can be improved by 
incorporating orthogonal testing or reflex testing to molecular 
methods for confirmation, but this delays diagnosis. At present, 
the CDC algorithm and clinical laboratories favor increased 
accuracy at the expense of delaying diagnoses. Most clinical 
laboratories require a separate specimen type or unopened 
specimen for molecular confirmation, which requires the 
patient to return for a second blood draw or requires the 
laboratory to hold a tube in reserve on all patients undergoing 
testing. Timely reporting of true positives is vital to reduce 
transmission and speed antiretroviral treatments as early 
treatment improves outcomes.[4] Alternately, reporting of a 
false‑positive screen that is reported to public health authorities 
and requires additional testing follow‑up to determine true 
negative status is psychologically and economically stressful, 
particularly for our prenatal screening patients. We wanted 
a rapid intermediate step that could allow us to treat likely 
positive screens differently than likely false‑positive screens.

We hypothesized that machine learning could be used as an 
interim step after screening to determine the likelihood of a 
positive screen being true positive versus false positive. Using 
this classification, we could then follow separate workflows to 
balance accuracy and time to diagnosis [Figure 1]. A screen 
classified as likely true positive could be reported immediately 
to allow for the necessary notifications and clinical follow‑up. 

A screen classified as likely false positive could be followed 
up with an orthogonal screening test, which allows for use of 
the same specimen already drawn. Positivity by the orthogonal 
test could be reported, while disagreement between the initial 
and orthogonal testing could be discussed with the physician 
and the patient brought back in for molecular confirmation.

Machine learning to date has had limited application in laboratory 
medicine and specifically in HIV diagnostic processes. Existing 
machine learning methods assess patient response to HIV 
infection and treatment using laboratory, demographic, and 
other electronic medical record (EMR) inputs.[10‑18] There has 
been limited work using EMR demographic data to predict 
HIV status which could be used by health‑care systems to 
proactively encourage screening.[19‑21] One group has applied 
machine learning to laboratory testing, by using flow cytometry 
images of CD4+ cells to assess diagnosis and treatment of 
HIV,[18] providing valuable information, but not creating a 
decision support tool for the clinical laboratory.

Using support vector machines  (SVM) and 60,587  patient 
screening results, we were able to create classifiers that 
appropriately classified 94% of false positives and 92% of true 
positives. The results from this work provide the first evidence 
of an effective HIV5G screening algorithm which will reduce 
unnecessary testing and interventions, decrease the time it 
takes patients to get an accurate diagnosis, and reduce HIV 
infection spread due to delayed test results.

Methods

Study design
A retrospective analysis of the laboratory information 
system (LIS) was performed by collecting all data generated 
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Figure  1: Proposed workflow with machine learning classifiers. The 
proposed workflow allows for differential handling of likely true‑positive 
versus false‑positive screens by HIV5G. *This testing can be resulted 
as “indeterminate” before human immunodeficiency virus nucleic acid 
amplification testing, clinician consultation can be initiated, or utilization of 
the same sample for nucleic acid amplification testing can be performed
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by the BioPlex  2200 HIV Ag‑Ab assay platform  (Bio‑Rad 
Laboratories, Hercules, CA, USA; screening assay) between 
January 2, 2016, and December 31, 2018, at UPMC Clinical 
Laboratories  (Pittsburgh, PA). This work was performed 
under the auspices of the University of Pittsburgh IRB study 
#20020103.

A total dataset of 60,587 individual HIV assays was collected. 
All nucleic acid amplification testing (NAAT) for HIV‑1 run 
at UPMC was also collected from our LIS between January 
2, 2016 and December 31, 2018. In addition, chart review of 
HIV screening assay positive samples was performed to assess 
for NAAT testing by reference laboratories, and screen assay 
positive cases without NAAT results were chart reviewed for 
clinical diagnosis of HIV. HIV NAAT‑positive or negative 
testing was considered diagnostic if the patient was not on 
HIV treatment medications. NAAT and chart review combined 
to create a final disposition for each screen‑positive patient 
of HIV positive, negative, or unknown. There were a total 
of 580  specimens that were assessed by both HIV5G and 
NAAT or screened positive by HIV5G. 475/580 had NAAT 
testing, 453/580 were HIV5G screen positive (representing all 
screen‑positive specimens during this time period), 127/580 
were HIV5G screen negative. 45/580 specimens were excluded 
as they either did not have all three HIV5G screen values 
or did not have polymerase chain reaction or a conclusive 
clinical diagnosis. To create these algorithms, we used random 
sampling of 25% of the total negative cases (n = 59 913 total) to 
provide improved class balance due to the over representation 
of negative cases (i.e. low HIV prevalence).

BioPlex 2200 human immunodeficiency virus assay
The presence or absence of HIV viral antigens and antibodies 
were assessed using serum samples on the BioPlex 2200 HIV 
Ag‑Ab assay. The BioPlex HIV Ag‑Ab assay is a multiplex 
bead‑based assay that allows for the detection of HIV‑1 p24 
antigen, anti‑HIV‑1 Ab, and anti‑HIV‑2 Ab. Index values are 
generated for each individual HIV analyte. If all analytes have 
indices <1.00, the specimen is interpreted as nonreactive with 
no additional testing. If at least one analyte is equal to or >1.00, 
repeat testing is performed in triplicate. If two of the three 
tests demonstrate no analytes with index values ≥1.00, then 
the specimen is interpreted as nonreactive. If repeat testing 
demonstrates two repeats having an index value equal to 
or >1.00 for the same analyte, then the specimen is interpreted 
as reactive for the specific analyte. We refer to the interpretation 
of the assay result as the “assay disposition.” If a specimen 
is reactive for both HIV‑1 Ab and HIV‑2 Ab, and the indices 
have less than a 5‑fold difference, the interpretation is reactive, 
undifferentiated for the specimen.

Nucleic acid amplification testing human immunodeficiency 
virus‑1 RNA assay
For patients considered reactive on the BioPlex 2200 HIV 
Ag‑Ab assay, the viral load of HIV RNA was assessed 
in‑house using the Abbott RealTime HIV‑1 assay on the 
m2000 system (Abbott Laboratories, Chicago, IL, USA) or 

sent to commercial reference laboratories. The linear range 
of the in‑house assay is 40 copies/mL (1.6 log copies/mL) to 
10 million copies/mL (7.0 copies/mL).

Retrospective chart analysis
A subset of the data, which included all individual HIV assays 
with at least one reactive analyte, was identified for the final 
HIV clinical diagnosis identification (we refer to this as clinical 
disposition). An HIV assay is considered a true positive in the 
presence of (1) any history of HIV viral load demonstrating 
detection of circulating HIV viral copies and/or (2) any history 
of treatment with HIV antiretroviral therapies. An HIV assay 
is considered a true negative in the presence of (1) a follow‑up 
HIV viral load demonstrating no detection of circulating HIV 
viral copies in the absence of antiretroviral therapy or (2) in 
the absence of a follow‑up viral load, a follow‑up nonreactive 
fourth or fifth‑generation HIV screening assay. In the context 
of the study, HIV preexposure prophylaxis identified by 
chart review is not considered antiretroviral therapy for final 
disposition categorization. If an individual sample did not meet 
the above criteria, it was categorized as unknown. Unknown 
samples were excluded from this analysis.

Classification for the identification of false assay positives
As mentioned above, in this study, we develop an ML‑based 
method to distinguish between true and false assay positives. 
Our method uses the three assay results from HIV5G (HIV‑1 
Ab, HIV‑1 Ag, and HIV‑2 Ab) and assay and clinical 
dispositions  (as defined above) in the following 3‑step 
approach. Our method is implemented on MATLAB R2019b.

Step 1: In the 1st step, we develop two different SVM‑based 
HIV‑positive versus HIV‑negative classifiers for feature 
extraction using  (i) clinical and  (ii) assay dispositions as 
the ground truth. We apply 10‑fold cross validation to learn 
the parameters of the radial basis function (RBF) kernel, we 
utilize for SVM classification. Furthermore, during the cross 
validation, for each fold for each classification problem, we 
learn the SVM scores. The SVM scores from each classifier 
for each assay result are then concatenated to form a 
two‑dimensional feature vector to be used in the next steps of 
our method. In addition, for the clinical classifier and the assay 
classifier, we also report the confusion matrix and present the 
accuracy, specificity, and sensitivity.

Step 2: In the 2nd  step, we apply principal component 
analysis  (PCA) using all the two‑dimensional features 
extracted from Step 1 and project these samples on the principal 
components  (PCs). This transforms the two‑dimensional 
features from Step 1 and results in two orthogonal features 
PCs for each positive assay result.

Step 3: In the 3rd step, we use the PC transformed features for 
the positive assay results together with the clinical disposition 
in an SVM‑based classifier to distinguish between true‑positive 
and false‑positive assay results. Here, clinical dispositions are 
used as the ground truth to develop an SVM‑based classifier 
with RBF kernel through 10‑fold cross validation. In addition, 
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in this step, we consider feature selection. Specifically, during 
10‑fold cross validation, we consider a cost function that is a 
weighted summation of the true and false‑positive accuracies 
and learn the optimum weight for each PC transformed feature 
separately. Accordingly, we choose one of the PCs from Step 
2 as the optimum feature to be used for false‑positive vs. 
true‑positive assay classification. In our cost function, we 
define:

True‑positive accuracy = (correctly identified true positives)/
(total number of true positives)

False‑positive accuracy = (correctly identified false positives)/
(total number of false positives)

Results

A positive HIV screening assay should be followed by 
molecular confirmation of HIV infection; however, the initial 
screen result is psychologically stressful and is reported to 
public health agencies. Therefore, false‑positive screen results 
carry consequences that are best mitigated where possible. We 
considered that it may be possible to create a classification 
algorithm that could appropriately determine false positive 
from true‑positive screening results, allowing for alternate 
workflows on possible false versus true‑positive screens.

Our current rules‑based approach uses a cutoff of ≥1.00 for 
reactivity, using this cutoff to assess all cases with a clinical 
disposition (n = 535), we found a baseline accuracy of 73.5%, 
and a specificity of 47.2% [Figure 2a]. This subset of cases 
was chosen as all screen‑positive cases and any additional 
cases that had both HIV5G and NAAT, as such the sensitivity 
is expected to be 100% [Figure 2a]. We began with a SVM 
classifier that was trained on negative cases and all cases 
with clinical disposition. This clinical classifier utilized the 
clinical disposition as the ground truth and found reasonable 
performance with 119 false positives correctly classified as false 
positive [Figure 2a and b] when using the classifier to assess 
cases with clinical disposition. We considered if there could 
be added value from assessing the assay disposition as ground 
truth and found poor detection of screen false‑positive results 
with only 9 of 142 false positives detected [Figure 2a and c].

We graphed the SVM scores  for  assay‑posi t ive 
cases (n = 408) and the score distribution to assess for further 

information [Figure 3]. The clinical classifier demonstrated that 
most true positives had a score <0 and most correctly predicted 
false positives had a score >0 as demonstrated by the distribution 
probability [Figure 3b]. The false positives that were missed 
by the clinical classifier had a score <0 which overlapped 
with the true positives. The assay classifier demonstrated that 
most true‑positive results had a score between −1 and −1.5 as 
shown by the distribution probability [Figure 3a], and all false 
positives that were caught by the assay classifier had a score 
of >0. These results indicated that both the assays and clinical 
classifiers appeared to have several areas of further separation 
possible to improve the false‑positive classification with a data 
transformation [Figure 3].

We used PCA to transform the SVM scores from both the 
assay and clinical classifiers for assay‑positive cases and found 
when PC1 versus PC2 were graphed against each other that 
there appeared to be reasonable separation by PC1 [Figure 4]. 
Assessment of each of the PCs using an accuracy evolution 
plot determined the optimal SVM classifier through the 
selection of hyperparameter C that balances between true and 
false‑positive accuracies in the classification optimization 
cost function [Figure 4c]. That is, we used the hyperparameter 
C which weights classification of false‑positive versus 
true‑positive accuracy. When C is equal to 1, correct 
classification of true positive and correct classification of false 
positive are equally weighted. By shifting this parameter, we 
can optimize correct classification of false‑positive cases. We 
created an accuracy evolution plot to determine the optimal 
value of C to maximize the correct identification of false 
positives and found the optimal value of C to be 1.5 for PC1 
and 4 for PC2.

Using PC1 and PC2 each as an input for new classifiers 
with the clinical disposition of screen‑positive cases as the 
ground truth, we were able to optimize accuracy. The PC1 
classifier provided significantly more accurate results than the 
PC2 classifier [92.6% vs. 84.6%, respectively, Figure 5]. To 
ensure the accuracy, sensitivity, and specificity did not vary 
significantly between iterations of the algorithm, we assessed 
10 repetitions of 10‑fold cross validation and assessed the 
average and standard deviation for these. We found the standard 
deviations to be small, indicating high reproducibility and high 
generalizability [Figure 5].
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Conclusions

Here, we demonstrate the usefulness of machine learning to 
aid in triaging positive HIV screens for further assessment. 
We had observed that in our low prevalence population, 
approximately one‑third of HIV5G‑positive screen results 
confirmed by NAAT or clinical diagnosis as negative, 
highlighting the limitations of this rules‑based approach. We 
had also observed that many of these screens appeared to have 
interference as there would be results >1.0 for HIV‑1 Ab, HIV‑1 
Ag, and HIV‑2 Ab or had low index values. We considered 
that machine learning classification systems could aid us in 

creating a workflow that would maximize turnaround times for 
true‑positive cases to prevent further unknowing HIV spread 
and reduce the false‑positive cases reported by appropriately 
reflexing testing.

The current CDC algorithms for testing do not yet include 
HIV5G which, unlike HIV4G, allows the laboratory to 
screen and differentiate which analyte is positive (HIV‑1 Ag, 
HIV‑1 Ab, HIV‑2 Ab), potentially eliminating the need for a 
separate differentiation step. It remains unclear if an orthogonal 
screening test is necessary for all positive HIV5G screens. 
Given that, regardless of the result of the differentiation 

Figure 3: Normalized histograms of support vector machines scores of assay‑positive cases assuming (a) assay and (b) clinical dispositions as the 
ground truths, respectively. Green and red bars demonstrate the true and false human immunodeficiency virus‑positive cases, respectively. Scores for 
each assay‑positive sample are also illustrated as a scatter plot. Samples corresponding to true and false human immunodeficiency virus positives 
correctly identified by each classifier are demonstrated by green circles and red triangles, respectively. Samples corresponding to false human 
immunodeficiency virus positives falsely identified as positive by each classifier are shown by red circles

b

a

Figure 4: Principal component analysis and classification performance. (a) Joint and (b) individual scatter plots of principal components corresponding 
to the support vector machines scores obtained in the 2nd step of the classification method. Red and green circles represent the principal component 
values for true and false assay‑positive samples. (c) Optimization of the true versus false‑positive classification by selecting the sensitivity penalty 
factor using the (top) first and (bottom) second principal component as the feature in the classifier. Propagation of classification accuracy, specificity, 
and sensitivity as a function of the sensitivity penalty factor are shown in each figure
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assay, an HIV5G screen with any analyte ≥1.0 will need to be 
confirmed with NAAT either to resolve the discrepancy or a 
viral load result will be needed to baseline therapy, it seems the 
orthogonal testing may be simply a delay in patient diagnosis 
and additional laboratory cost.[9]

Our institution requires a different sample type and an unopened 
tube for HIV nucleic acid testing compared to screening, and 
many institutions send out HIV NAAT. Therefore, creating 
an algorithm that optimizes true‑positive screening results 
with minimal delay and reduced need for patients to return for 
testing is desirable. Conventionally, to establish appropriate 
reference intervals, we use numeric thresholds as cutoffs based 
on Gaussian statistical models, most often in the form of a 
95% or 99% healthy population threshold. When sufficient 
healthy samples are not available, expert evaluation and 
biological basis of disease can also be used to infer a reasonable 
reference interval. However, these methods by definition 
eliminate outliers, which are often the cases of most import. 
Utilizing machine learning allows us to create models that can 
assess both normal and outlier cases simultaneously. Machine 
learning allows us to extract additional information above a 
single numeric value in isolation and assess them against a 
higher dimensional space classification which includes the full 
historical data. Data‑driven decision rules reduce the limitations 
of existing decision rules which are based on a limited cohort 
or specialist knowledge. This reduces potential human error, 
cohort biases, and accounts for shifts in reagents and patient 
population when data are used in an ongoing data stream. We 
can use these algorithms to flag results that may be problematic, 
highlight instrument errors, or assess trends in assays as tools 
to support decision‑making among clinical experts.[22‑24]

This current algorithm serves as a proof of principle for 
improved HIV screening, and an additional assessment on 

inter‑institutional data is desirable. While we have a large 
multi-year dataset the low prevalence of HIV in our population, 
while key to the sensitivity issues we experience, also limits 
our sample size. In machine learning, imbalanced classes are 
handled with corrections, but due to the low threshold for risk 
in both medicine and HIV testing, independent assessment of 
this algorithm in a similar or larger data set is required.

Continued work to refine this classifier and full testing 
algorithm include recruiting additional datasets and exploration 
of other laboratory tests where machine learning can serve 
as an aid to workflow and provide decision support. Our 
classifier provides robust prediction of false‑positive test 
results for HIV5G testing. Future work should also assess 
the incorporation of other available laboratory tests to further 
improve the robustness of this classifier.
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