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Abstract: One of the most important challenges facing current and future generations is how climate
change and continuous population growth adversely affect food security. To address this, the
food system needs a complete transformation where more is produced in non-optimal and space-
limited areas while reducing negative environmental impacts. Fruits and vegetables, essential for
human health, are high-value-added crops, which are grown in both greenhouses and open field
environments. Here, we review potential practices to reduce the impact of climate variation and
ecosystem damages on fruit and vegetable crop yield, as well as highlight current bottlenecks for
indoor and outdoor agrosystems. To obtain sustainability, high-tech greenhouses are increasingly
important and biotechnological means are becoming instrumental in designing the crops of tomorrow.
We discuss key traits that need to be studied to improve agrosystem sustainability and fruit yield.

Keywords: outdoor farming; indoor farming; agroecology; sustainable agriculture; plant biotechnol-
ogy; plant breeding

1. Introduction

In 2019, the global annual temperature increased by 1.47 ◦C compared to the 1951–1980
normal climate period [1,2]. In 2022, the global annual temperature is forecast to continue the
series of warmest years. Current agricultural practices need to be adapted to contend with
the predicted extreme temperature increase [3] and the consequences of that increase on the
environment [4]. This global warming is of particular concern for agriculture and food supply.
Agriculture has become more invasive and destructive adversely affecting wild ecosystems,
e.g., the decline of pollinator populations and pollination efficiency [5,6], in order to keep up
with the worldwide increased demand for food due to global population growth.

Between 1990 and 2014, space dedicated to human occupation increased by more than
50% [7]. Agricultural areas have followed the growth tendency of the world’s population,
which is estimated to reach 11 billion in 2100 [8]. Of the 149 million km2 of land on Earth,
104 million is habitable and half of this portion is dedicated to agriculture [2] (Figure 1).

Based on these statistics, solutions for the future of agriculture are crucial. Crop
production must be designed to be more respectful of the environment while also producing
more food. Meeting this goal remains a problem, especially in a sub-optimal and space-
limited environment where most crops that are poorly malleable require specific growing
conditions. Fruits and vegetables are good examples of such crops. Despite representing
a small proportion of total crop production area compared to cereals and coarse grain
(respectively 7.3% and 64% in 2014) [9], their fourfold yield (135,299 hg/ha, 189,348 hg/ha
and 41,131 hg/ha, respectively, for fruits’, vegetables’ and cereals’ world production, in
2019) [2] and high added value make these crops of major concern. Fruits and vegetables
are also grown worldwide using different farming methods. However, when it comes to
biotechnological advances, fruits and vegetables are behind field crops.
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biotechnological advances, fruits and vegetables are behind field crops. 

 
Figure 1. The increasing competition for land use. Habitable land use in 2018. The surface data come 
from FAO (www.fao.org/faostat/en/#data, accessed on 27 November 2021). The values were calcu-
lated for North America, South and Central America, Europe, Africa, Asia and Oceania, relative to 
the total habitable land area, which was the sum of agricultural lands, built-up areas, and non-
aquatic forests and shrub areas that are not regularly flooded. The “Other” section contains forests 
and shrubs that are non-aquatic or regularly flooded. The “Built-up area” section represents 1% or 
less of the habitable land use for each geographic region. 

In this review, we focused our investigation on fruit and vegetable cultivation, as 
they play a central role in human nutrition and health. We also considered two agricul-
tural models: greenhouse and open field cultivations, which we referred to as indoor and 
outdoor production systems, respectively. We synthesized the major issues for both ag-
rosystems and discussed the possible solutions. For the outdoor production system, we 
identified crop geographic distribution, biodiversity, pollination services, soil quality and 
water management as crucial topics. For the indoor production system, we selected the 
topics of inputs, energy and location, and technological and biotechnological means. From 
there, we emphasized the necessity of improving plant capacities for self-defense, nutri-
tion, growth and fruit set. For all of these topics, we identified relevant keywords that we 
used to search and select more than 200 publications that we reviewed. Our research re-
sulted in a comparison of cutting-edge new methodologies and existing production tech-
niques. This allowed us to highlight promising leads for the next generation of agricul-
tural production systems. 

2. Solutions for Outdoor Production Systems to Reach Sustainability 
2.1. Crop Migration and Adaptivity to Face Climate Change  

The occurrence of extreme temperatures is increasing [3]. Although this phenomenon 
is currently mainly observed in tropical areas, it is predicted to become a worldwide prob-
lem [10]. Soon, a temperature that is currently the average in a certain region will become 
the average temperature of a more northern region, as global temperature increases. King 
et al. predict a northward shift of climate zones of up to 1200 km from today to 2099, 
producing new regions of arable land in northern latitudes [11]. This newly available land 
could mitigate the impact of such climate variations [12–14] by adjusting crop geographic 
distribution. However, crop reallocation may be difficult, requiring major social and po-
litical changes, especially for some fruit and vegetable crops depending on geographical 
designation (e.g., vine production) [12,15]. Tools, such as suitability land maps, have been 
developed to predict the optimal geographic localization regarding these crop varieties 
and could be extended to fruit crop species. Implementing more environmental parame-
ters and proposing scalable solutions would also be required [16,17]. Only a few studies 

Figure 1. The increasing competition for land use. Habitable land use in 2018. The surface data
come from FAO (www.fao.org/faostat/en/#data, accessed on 27 November 2021). The values were
calculated for North America, South and Central America, Europe, Africa, Asia and Oceania, relative
to the total habitable land area, which was the sum of agricultural lands, built-up areas, and non-
aquatic forests and shrub areas that are not regularly flooded. The “Other” section contains forests
and shrubs that are non-aquatic or regularly flooded. The “Built-up area” section represents 1% or
less of the habitable land use for each geographic region.

In this review, we focused our investigation on fruit and vegetable cultivation, as they
play a central role in human nutrition and health. We also considered two agricultural mod-
els: greenhouse and open field cultivations, which we referred to as indoor and outdoor
production systems, respectively. We synthesized the major issues for both agrosystems and
discussed the possible solutions. For the outdoor production system, we identified crop ge-
ographic distribution, biodiversity, pollination services, soil quality and water management
as crucial topics. For the indoor production system, we selected the topics of inputs, energy
and location, and technological and biotechnological means. From there, we emphasized
the necessity of improving plant capacities for self-defense, nutrition, growth and fruit set.
For all of these topics, we identified relevant keywords that we used to search and select
more than 200 publications that we reviewed. Our research resulted in a comparison of
cutting-edge new methodologies and existing production techniques. This allowed us to
highlight promising leads for the next generation of agricultural production systems.

2. Solutions for Outdoor Production Systems to Reach Sustainability
2.1. Crop Migration and Adaptivity to Face Climate Change

The occurrence of extreme temperatures is increasing [3]. Although this phenomenon
is currently mainly observed in tropical areas, it is predicted to become a worldwide
problem [10]. Soon, a temperature that is currently the average in a certain region will
become the average temperature of a more northern region, as global temperature increases.
King et al. predict a northward shift of climate zones of up to 1200 km from today to 2099,
producing new regions of arable land in northern latitudes [11]. This newly available land
could mitigate the impact of such climate variations [12–14] by adjusting crop geographic
distribution. However, crop reallocation may be difficult, requiring major social and
political changes, especially for some fruit and vegetable crops depending on geographical
designation (e.g., vine production) [12,15]. Tools, such as suitability land maps, have been
developed to predict the optimal geographic localization regarding these crop varieties and
could be extended to fruit crop species. Implementing more environmental parameters and
proposing scalable solutions would also be required [16,17]. Only a few studies on cereals
and vine production have assessed the true potential of growing new crops in new regions
because the value of this practice is only now being considered [11]. Crop migration is also
not sufficient to counteract strong climate variations, which are occurring more frequently
and can drastically compromise entire production cycles [18].
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2.2. Promoting Biodiversity

Another factor that must be considered when transforming crop production systems is
ecosystem health and biodiversity. Grassland conversion to agricultural lands, deforestation
and fragmentation of natural ecosystems have destroyed the habitats of many species,
leading to decreased plant and animal biodiversity [19,20]. The increase in area used for
food production and the high demand for bioresources such as biofuels are leading to
competition for land use between food and non-food crops [21].

Increasing the arable land area to increase food production is only a temporary solution,
and research aimed at improving agricultural efficiency should be favored. The promotion
of biodiversity could be conducted using growing practices such as intercropping [22]
(Figure 2).
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vation, increases soil fertility [24], biodiversity and carbon dioxide sequestration capacity 
and offers biological and mechanical protection to crops [25]. However, the main barriers 
to agroforestry expansion are the reduction of cultivation space for crops and light oc-
culted by the tree canopy [26]. Changing agricultural practices requires time and money 
for farmers and harvesting fields can be more complex in the case of intercropping. 

Figure 2. A sustainable agro-ecological system. The promotion of biodiversity includes the protection
of various pollinator species and plant species in a given agro-ecological system. The reduction in
chemical inputs implies that pest control and the use of fertilizers should be replaced by genetic
improvement and alternative crop practices. Created with (BioRender.com).

Currently, the most common intercropping systems grow cereals with legumes, as
the latter improve the nitrogen level in the soil, but there are also encouraging results
with assays of intercropping fruit and vegetable [23]. Agroforestry, or crops and tree
co-cultivation, increases soil fertility [24], biodiversity and carbon dioxide sequestration
capacity and offers biological and mechanical protection to crops [25]. However, the main
barriers to agroforestry expansion are the reduction of cultivation space for crops and light
occulted by the tree canopy [26]. Changing agricultural practices requires time and money
for farmers and harvesting fields can be more complex in the case of intercropping.

2.3. Safeguarding Pollinators

Fruit yield is dependent on flower fertilization, so the decline of pollinators, which
confer an annual pollination service estimated to be about USD 235–577 billion in 2016 [27],
directly impacts productivity [6]. A consequence of the harmful effect of pesticides on
pollinators is the significant reduction of flower visitation, which has been shown to be
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correlated with a lower yield of marketable fruits in many crop species [28]. It has also
been reported that for some species there is flowering three days early per 1 ◦C increase in
the monthly temperature [29]. Consequently, asynchrony is emerging between pollinators
and the flower life cycle, leading to a decrease in the effectiveness of pollination [30]. In
an effective agro-ecological system model, pollination should be entirely performed by
an abundance of various insect pollinators, and farmers should avoid the addition of
chemicals. The most well-known crop pollinators are bees, but numerous other insect
families, all functionally different, are involved in plant pollination [31]. Among 100 of the
most consumed insect-pollinated fruits and vegetables, bees from the Apidae, Megachilidae
and Halictidae families visit the largest amount of crop species (respectively, 93, 53 and 61).
Still, more than half of these crops (56) are also pollinated by Syrphidae and a third (33) by
Formicidae [31]. Positive correlations between an increase in pollinator biodiversity and
fruit set, seed set and fruit quality were reported in various species worldwide [32–36]. The
total area of crops pollinated by honeybees increased by 17% between 2005 and 2010, which
was more than twice the increase rate of the honeybee population during the same period,
showing that agriculture is more dependent than ever on pollinators [37]. Thus, better
ecological management of land use, including the promotion of floral species’ diversity
and reduction of chemical use, is required to maintain the biodiversity and the abundance
of pollinators [38–40] (Figure 2).

2.4. Preserving Soil Health

Healthy ecosystems also include healthy soils. Soil is the habitat of complex asso-
ciations of microorganisms. These microorganisms constitute the soil microbiome and
are responsible for organic matter decomposition and carbon and nitrogen cycle regula-
tion [41]. In agriculture, soil contamination mainly comes from chemical fertilizers, which
pollute soils with their heavy metal content [42] (e.g., mercury, cadmium, and arsenic).
Pesticide residues also add to soil contamination [43]. Phytoremediation, or the use of
plants to remove pollutants, is a solution to decontaminate soils [42,44]. However, this
technic suffers from low efficiency. To reduce soil damage in agriculture, investigations
on clay-humic complexes, which control the mobility of toxic metals and the nutrient
availability for plants [45,46], led to the development of humic products [47–49] or bios-
timulants [50]. Technologies such as alternative fertilizers, e.g., biochar and brown coal
waste, are also being tested with promising results [51–53]. Alternative crop practices,
such as conservation agriculture, regroup other solutions to limit soil nutrient depletion
and soil compaction: a reduced or an absent tillage, crop rotation [54], crop cover [55–60]
and integrated nutrient management [61,62]. In fruit and vegetable production, organic
farming is increasingly developed. This eco-friendly system increases soil quality [60] but
remains contested regarding its impact on yield [63–66]. Because microbiome composition
has a major impact on crop yields, complementing the soil microbiota could be another
means to improve soil quality. Metagenomic analyses can be used to identify associations
of microorganisms present in a soil sample [67]. With such knowledge, the soil could be
improved by inoculating specific microorganism species [48,68] and better understanding
the association between plants and beneficial microbes in the rhizosphere [69] (Figure 2).
However, plant–soil interactions are complex and highly dependent on environmental
parameters. External inputs can be easily diluted or leached, making soil microbiome
stabilization difficult to achieve. Soil conservation and reducing chemical pollution are also
major issues for improving water use efficiency and reducing freshwater pollution.

2.5. Preserving Water Availability and Quality

Water availability is becoming more and more of a major concern for both rain-
fed and irrigated growing systems. Although the intensification of drought and flood-
ing episodes [70–75] increases crop water requirements [76–78] and causes water stress-
associated yield loss [79–81], anthropic pressure is the main factor of increased water
demand [82]. Crop irrigation constitutes roughly 85% of global freshwater consump-
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tion [83], and the increase in the planting area is proportional to the water demand [82].
About 70 to 96% of fruit is water [84], and, thus, its availability is a limiting factor for
fruit crop cultivation [85]. Although irrigated productions avoid yield loss due to water
stress conditions [86], converting all current rainfed cropland to irrigated ones would
not be possible given the water availability and water requirement ratio [87]. However,
the impact of water availability could be reduced if crop water use efficiency (WUEc)
is improved [88]. Moreover, nitrogen fertilization and crop evapotranspiration can lead
to freshwater pollution [89] and salinization [83]. A sustainable agro-ecological system
should both reduce water pollution and improve its WUEc. Less-polluting crop practices
should be implemented; nitrogen recycling through wastewater treatment is one possi-
bility [89]. This could be supplemented by desalinization [90] and wastewater reuse for
crop irrigation, which would a priori confer a fruit production with a similar yield and
quality [91]. More studies are required, though, to assess the potential risk of chemical and
biological contamination in soil and food [92]. Water savings could also be obtained by
building supplementary water harvesting structures [83,93]. Improving soil infiltration
and retention capacity [94] can be achieved through the management of soil conservation
practices, such as soil structure-adapted tillage [95], mulching, cover crop and canopy
management [96]. The limit remains currently mitigated or lacking results on the effect
of such practices on WUEc. To improve plant water absorption from the soil, another
promising agricultural technique is grafting—already widely extended in solanaceous and
cucurbits growing—where an increase in WUEc is obtained [97,98], though conferring
mitigating results in the vineyard [96].

Better evaluation of crop water needs [99] also enabled the optimization and the
development of more efficient irrigation. Crop vigor has been successfully improved by
regulated deficit irrigation or partial root drying [93,100] in fruit trees and vines, where
even improved fruit quality and more rapid fruit maturation were obtained [96,101,102].
Still, other species such as melon endured significant yield loss with this technique [103].
Surface irrigation, the most currently used technology, could also be replaced by higher
efficiency irrigation systems [83] such as drip irrigation [83,104,105] or optimized subsurface
systems [106]. These systems can, however, be unadapted for crops with high irrigation
needs and require regular maintenance. Precision irrigation [107] and irrigation scheduling
are also arising, with the development of plant-based indicators such as sap flow or stem
diameter which estimate vegetable crop water stress, and also soil-based and weather-based
indicators [85,108]. These parameters can be measured with innovative sensors, but this
remains challenging in a fluctuating environment [85,109]. Such technologies are thereby
up-and-coming for indoor agriculture.

3. Solution in Indoor Production Systems to Reach Sustainability

To develop climate-independent agriculture, in the 1950s indoor production was
rapidly adopted, mainly for vegetable production. The four major species cultivated in
greenhouses are tomato, pepper, cucumber and lettuce [110]. Such isolated systems enable
optimized plant growth, yielding more marketable fruits than those produced in fields due
to the controlled environmental parameters.

3.1. Needs for New Sustainable Indoor Growing Systems

Greenhouse production enables the use of optimized inputs in reduced quantities.
Water consumption is decreased due to highly efficient water absorption and reduced leaf
transpiration in enclosed spaces [111]. It should be noted that current indoor agriculture
relies on high levels of plastic use and energy consumption [112,113]. The “Sea of Plastic” in
Almeria, Spain, is the most illustrative example of plastic usage; in 2009, greenhouses with
plastic coverings had a surface area of about 27,000 ha in this locale [111]. Polymers offer
the advantages of light diffusion and a low weight [111], and the extension of their service
life could increase their sustainability. In less sun-filled regions, the problem becomes that
most sophisticated structures consume large amounts of electricity to regulate lighting and
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temperature [112]. In addition, current indoor production locations are frequently located
far from consumer areas [111,114], raising food supply prices due to transportation and
contributing to CO2 emissions. Urban agriculture using optimized greenhouses to reconcile
increased food needs and urbanization has been proposed and implemented, for instance, in
Montreal with the world’s largest urban rooftop greenhouse (https://montreal.lufa.com/,
accessed on 20 September 2022) [115–118]. Innovative indoor systems such as vertical farm-
ing with multiple horizontal or vertical growing surfaces could provide a high production
yield and close proximity of food supply to consumers while decreasing environmental
consequences [119,120]. New growing systems such as aeroponic culture, an in-air water
culture with nutrient-enriched spraying [121,122], or aquaponic culture, the growing of
aquatic organisms with plants mainly fed by their wastes [123,124], would then facilitate
the further development of indoor agriculture. Such soilless production can achieve higher
and more consistent yields with less input [121,123]. Aquaponic systems have been elab-
orated mainly for leafy vegetables [125–127], and tomatoes in some cases [128], though
assessing aquatic and plant species compatibility and providing optimal crop nutrient
quantity remains challenging in this system [122]. In comparison, aeroponic systems en-
able a strict control of crop inputs and growing conditions, a greater yield in some crops,
and they have been performed on a larger diversity of plant species while requiring less
expertise [121,124,129–132]. However, further research should aim for a cost reduction of
this system [124]. A sustainable urban production area could combine vertical farming
systems with soilless production, all using non-fossil energy sources [133] (Figure 3). Only
a few crop species are currently adapted for such an isolated system, and, to date, few life
cycle cost analyses of urban greenhouses have been published. Thereby further research is
needed to improve productivity and establish cost-effective indoor agrosystems [134,135].

3.2. High-Tech Indoor Agriculture

The optimization of indoor growing depends on precise environmental monitoring.
Artificially controlled environments open the possibility of growing crops in any country,
regardless of the climate. High-tech greenhouses enabled the Netherlands, a country with
non-optimal weather for tomato or cucumber cultivation, to reach the highest production
per hectare for the two species in the world in 2019 [2]. Various types of sensors and
wireless technologies enable real-time control of the general greenhouse environment,
such as temperature, humidity, solar radiation, substrate pH and irrigation [136,137].
Nanotechnologies applied to agriculture are also producing encouraging results for pest
control [138], fertilization [139], plant health monitoring [140] and yield increase [141,142].
Algorithms have been developed to analyze the values reported by greenhouse sensors and
to assist the farmer in regulating the growing parameters [143]. Deep learning and artificial
intelligence (AI) are also increasingly being exploited to diagnose plant diseases [144],
monitor crop growth and control fruit harvest [145]. While the idea of producing fruits
and vegetables around the clock is appealing, the cost of production and environmental
implications must be thoroughly examined. Some emerging technologies require hazardous
base materials to manufacture and use. They can be also expensive to produce and energy
intensive. Recycling them also adds new issues. Photovoltaic panels, for example, have a
25–30-year average lifespan and will be responsible for about 78 million tons of waste by
2050. Recycling the highest proportion of photovoltaic components, which are aluminum,
silver, glass, copper, and rare metals (e.g., indium and gallium), although costly, is possible.
However, from the recycling residues remain heavy metals (e.g., cadmium and lead)
coming from batteries and solar cells, which then become hazardous waste, thereby being
of major concern [146–148]. Another consideration is that little is known about the potential
risks posed to plants [149], ecosystems or human health [138] when nanomaterials are
released into the environment. According to current knowledge, nanoparticles can cause
phytotoxicity due to crop uptake, translocation and accumulation into plant tissues and
biotransformation of these highly reactive particles [139,150]. They can also decrease
soil biomass [151–153], and the first safety margins are only being evaluated in some

https://montreal.lufa.com/
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products [154]. As a result, comparative studies of the life cycle of these technologies and
their impact on the environment are required to assess their utility.
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Figure 3. Model of an urban agriculture system. The scheme represents an indoor high-tech growing
structure located on top of a building containing accommodation and a food shop. It highlights the
benefits of indoor agriculture in an urban area, which includes avoiding food exportation. The sensors
and input delivery system illustrate the use of nanofertilizers (on the roots, in gray), nanosensors
and nanopesticides (on the leaves, in purple). The curved arrows symbolize the reduction in water
transpiration losses. The solar panel illustrates the use of non-fossil energies; the beehives, an increase
in insect pollination; and the red arrow, the short transition from the production area to consumption
places. Created with BioRender.com.

3.3. New Crop Traits for Indoor Farming

Taking all of this into consideration, identifying plant needs for indoor growth seems
to be a key point in enhancing productivity. Indeed, growing in restricted and isolated
spaces requires new characteristics of fruits and vegetables. First, to grow plants in a
smaller area, limiting crop size without lowering yield is necessary [120]. Second, rapid
growth is desired to reduce the time to reach fruit maturity [120,155,156]. Third, in a
controlled environment, plants should face fewer biotic and abiotic stresses but should still
have optimized disease and pest resistance to avoid yield loss. The last standard for indoor
crops relates to consumers. Growing fruits and vegetables with a limited shelf-life in an
urban growing environment would shorten the commute from the production zone to the
market, reducing waste [155]. Consumers also expect homogeneous product appearance
(e.g., size, color, shape, firmness and absence of external defects) and taste [157–159], which
would be more easily obtained inside a controlled environment [160,161].
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4. Genetic Improvement of Cultivated Fruits and Vegetables

For decades, breeding and genetic engineering have been providing multiple possibil-
ities for plant improvement, and current investigations could make vegetables and fruits
more suitable for growth in future agriculture systems.

4.1. Improving Plant Defense Mechanisms

Plant defense mechanisms are the most extensively studied subject of plant biology
(Figure 4a). The number of patents relating to improving plant resistance outnumbers
those relating to other biological features (Figure 4b). Almost all transgenic plants culti-
vated today are modified for disease or herbicide resistance, owing to the economic costs
associated with crop losses caused by pests and pathogens. These losses can be as high
as 30% of the yield of some of the world’s most important crops [162]. Pesticide use, on
the other hand, almost doubled between 1990 and 2018 [2]. Genetic resistance could be a
leading solution for reducing chemicals in agriculture. Resistant plants could be developed
by conventional breeding or biotechnological means. The most famous type of engineered
resistance is Bt crops, producing the Bacillus thuringiensis toxin that is lethal to insect pests.
Genome editing has also led to the development of effective resistance against powdery
mildew [163] in tomatoes, potyviruses in cucumbers, and citrus canker [164]. Despite many
breakthroughs, genetic resistance is often broken by emerging strains, highlighting the
need for polygenic resistance.
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Crop tolerance against abiotic stressors, such as extreme temperatures, flooding, drought
and soil salinity [165], also needs to be developed. Thermo-tolerance has been obtained
by regulating proteins (e.g., heat shock proteins) or using microRNA [166–168]. Transgenic
plants such as tomatoes [169] and cabbage [170] with improved water absorption [170], leaf
transpiration regulation or antioxidant enzyme levels [169] have demonstrated enhanced
drought tolerance abilities. Similarly, salt stress tolerant vegetables [170,171] and fruits [172]
have also been developed. The ability of a plant to cope with environmental variation, known
as plasticity, is a trait that has not been well investigated in crop plants. Root plasticity
has been improved in some species [173], but plasticity that extends to all plant organs still
needs to be investigated. Given that climate change is expected to have an impact on plant
disease resistance [174], it is instrumental to develop plants that are resilient both to biotic and
abiotic stresses.

4.2. Improving Plant Nutrition Mechanisms

Improving the root system is important to enhance plant performance since root ab-
sorption capacity is vital for increasing nutrient and water intake (Figure 4c). Although
increases in root hair biomass have been studied primarily in cereals, a correlation be-
tween increased root density and a higher yield was reported in some fruits and vegeta-
bles [175,176] so this trait needs further study. Stomates, which regulate water transpiration
and gaseous exchange, also significantly impact water use efficiency and resistance to
pathogenic bacteria [170,177,178]. Although it has been found that the acceleration of stom-
ata opening and closing is correlated with increased water use efficiency and growth [177],
research is mainly concerned with reducing stomate numbers or aperture to reduce transpi-
ration and fight abiotic stresses [170,178]. Another interesting area in the field of agricultural
engineering is the improvement in a crop’s photosynthetic capability. Photosynthesis is a
chain of chemical reactions catalyzed by various enzymes and initiated by photosystem
excitation. Improving the carbon dioxide (CO2) uptake by plants is currently being studied
as a means of increasing energy conversion. It has been found that increasing the concentra-
tion of the most influential enzymes involved in controlling the CO2 flux, combined with a
reduction in photorespiration, allows for higher CO2 assimilation [179]. In the model crop
Nicotiana tabacum, an increase in the plant’s photosynthetic capacity resulted in a biomass
increase of up to 37% [180]. Encouraging results were also reported in tomatoes [181] and
lettuce [182]. Last but not least, plants with improved photosynthetic capabilities would
also contribute to more carbon dioxide sequestration. Recent studies bring up the potential
of enhancing crop–root relations to reduce greenhouse gas levels [183–185].

4.3. Growth Optimization for Space-Limited Environments

Semi-dwarf cereals have been developed for many years for lodging resistance [186],
contributing to the Green Revolution. Fruit and vegetable plants could be dwarfed to better
suit indoor farming (Figure 4c). Recently, Kwon et al. made a promising CRISPR-Cas9 gene
edit in the tomato SELF PRUNING gene, responsible for short internode tomato plants. This
mutant has a compact and short stature, rapid growth cycle and early flowering, making it
suitable for indoor vertical farming [156]. A short stature and short life cycle characteristics
were also obtained in a vine mutant [187], and comparable abilities have been investigated
in melons [188], peanuts [189] and even in fruit tree species such as kiwi [190]. Currently,
mainly leafy vegetables are grown indoors. More research is needed to see if new crops
can be easily adapted. The elimination of possible secondary effects on the compacted
plant must also be verified, such as reduced photosynthetic capacity [191] and increased
pathogen development.
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4.4. Improving Flowering and Fruit Set

Plant reproduction efficiency is another key parameter in improving crop productiv-
ity. A long flowering duration, which ideally should be independent of environmental
conditions, the optimal quantity of flowers, and a high level of fertile flowers and fruit
set are among the traits that have been investigated to improve fruit yields [192,193]
(Figure 4c). For monoecious plants that develop separate female and male flowers, a
positive correlation has been found between the number of staminate flowers and the fruit
set yield. Consequently, controlling crop sex ratio is another major goal for optimizing fruit
production in several species [194]. Another example of a flower-related trait impacting
crop yield is flower fertility. Various factors can alter fertilization and lower the fruit set
yield. Low pollen fertility or pollen germination [195] under adverse temperatures and
incompatibility between pollen and pistil [196] are examples that reduce fruit set. Improv-
ing flower fertilization and fruit set under a wider range of temperatures can help achieve
year-round cropping. However, flowering remains a complex mechanism that depends
on numerous factors, such as plant nutrition, photoperiod and temperature. All of these
factors must be considered when designing a plant with an increased fruit set.

4.5. Parthenocarpic Crops as a Solution for Both Outdoor and Indoor Growing

Parthenocarpy is the ability of a plant to produce fruits without ovule fertilization.
Since pollinators and pollen are vulnerable to adverse weather conditions, both indoor
and outdoor farming would benefit from parthenocarpic plants [197–200]. In particular,
parthenocarpic cultivars could be a great choice for indoor farming systems because green-
houses are often insect-proof. Parthenocarpic fruit development could be induced by the
exogenous application of hormonal treatments (e.g., N-(2-chloro-4-pyridyl)-N’-phenylurea
(CPPU) [201,202] and gibberellic acids (GA) [201,203]). However, such practices may be
unwelcome in an era when reducing the use of chemicals in agriculture is a worldwide
objective. Breeding and genomic knowledge have enabled the selection of parthenocarpic
fruits and vegetables without exogenous treatments, and some of these products are cur-
rently available on the food market (Table 1). Species such as bananas naturally exhibit
obligatory parthenocarpy, and varieties such as Cavendish [204] were originally selected
from parthenocarpic plants only capable of vegetative propagation. Other crops exhibit
facultative parthenocarpy, which allows both sexual reproduction and parthenocarpic fruit
set, in absence of ovule fertilization. In outdoor agriculture, facultative parthenocarpy
would ensure a stable yield in poor climate conditions and remain compatible with insect
pollination. Induced mutations leading to parthenocarpy have been identified (e.g., muta-
tion of pat genes in tomatoes) [205]. Transgenic cultivars have also been created to optimize
parthenocarpic performances (Table 1). For instance, DefH9-iaaM gene fusion, which in-
duces parthenocarpy via auxin promotion, has been used in strawberry, raspberry [206],
eggplant [207] and tomato [208] plants. Positive characteristics have also been reported
in parthenocarpic crops. A yield increase was correlated with parthenocarpic abilities in
several species, both indoor and outdoor [206,207,209]. Firmer fruits [210] and earlier fruit
production [211] were also reported to be qualities induced by parthenocarpy. Additionally,
parthenocarpic tomatoes have even been shown to enhance fruit set rates under extreme
temperatures. However, issues such as fruit malformation [212,213] or reduction of fruit
size and weight [214,215] have been also reported and should be addressed in future works.
The use of parthenocarpic crops, which do not require chemicals, would greatly benefit
both outdoor and indoor agriculture. The development of more commercial parthenocarpic
varieties in the future is expected.
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Table 1. List of plant species with parthenocarpic fruit development currently on the market.

Species Germplasm Name or
Mutation Description

Source of
Parthenocarpy

Apple
Spencer Seedless, Wellington

Bloomless, Rae Ime [216]
Wickson [217]

Natural

Banana

All consumed bananas are
parthenocarpic. Examples of

variety names: Blue Java [218]
and Cavendish [204]

Natural (obligatory)

Cucumber

Camaro, Kalunga, Katrina,
Socrates, Manny, Manar,

Jawell, Picolino, Taurus, Tasty
Jade, Tasty Green, Corinto,

Lisboa, Alcazar, Sweet Success
[213]

Natural

Eggplant Talina, Galine [219] Natural

Satsuma mandarin Seedless Fallglo [220] Induced mutation

Clementine Marisol, Clemenules [221] Natural

Grape Corinto bianco [222], Black
Corinth [223] Natural

Grapefruit Henderson, Marsh, Redblush
[219] Induced mutations

Pepper Shishitoh [224] Natural

Summer squash Whitaker [225] Natural

Sweet orange US Seedless Pineapple [220] Induced mutation

5. Conclusions

As described above, a combination of the various technical and genomic methods
currently available is necessary in order to seriously develop sustainable agriculture. De-
veloping indoor production systems that do not encroach on habitable lands and editing
leader alleles enhancing yield and resilience will likely contribute to the required sustain-
ability. Specifically, the ideal fruit crop for future indoor agricultural endeavors should
include characteristics such as a rapid life cycle to improve productivity per year, a short
stature to fit in space-limited growing areas, an efficient nutrition system to lower chemical
inputs, and an optimized flowering and fruit set to ensure a high fruit yield. As an example,
some parthenocarpic cucumber varieties already have a high yield of marketable fruits
and low side-shoot growing, which reduces plant width and the need for pruning (e.g.,
Corinto [213]). Cucumbers also have a naturally short life cycle of about 50 to 90 days [226].
In this regard, the cucumber plant can serve as a model crop for fruit plant adaptation to
indoor breeding. For field crops, the challenge of sustainability is more complex. Outdoor
farming needs to reduce chemical inputs while maintaining high productivity. Establishing
soil management means to prevent agricultural land from becoming poorly productive and
improving crop resilience to cope with the deterioration of growing conditions that will
only be exacerbated by global warming are other major challenges. Outdoor sustainable
agriculture cannot exist without investigating crops’ ecological functions. Although much
is known regarding the impact of agricultural systems on ecosystems, little is known about
how crops’ ecological functions can be identified and applied to develop sustainable agri-
culture. In this regard, we have an open field of research that needs to be investigated. Since
our review considered agricultural systems globally, more specific work is also required to
identify regionalized issues and solutions for each agricultural system. Competition for
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land use between livestock, bioresources and crop production should also be studied to
consider the needs of all agricultural systems.
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