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Human preimplantation embryo development is susceptible to high rates of early embryo
wastage. We determined the miR-21 expression of extracellular vesicles (EVs) in fertilized
eggs and embryos of varying stages and their response to miR-21 microinjection. Sexually
mature female and male mice were mated. Next, the expression and immunohistochem-
istry intensity of surface markers (CD9 and CD63) of EVs were detected in pregnant and
non-pregnant mice. Exosomes were co-cultured with embryos for detection of blastocyst
formation rate, and embryo apoptosis. Moreover, the expressions of Bcl-2 associated X pro-
tein (Bax), B cell lymphoma 2 (Bcl-2), and octamer-binding transcription factor-4 (Oct4) were
determined. Finally, we detected miR-21 expression in EVs of uterus in pregnant mice, in
embryos after embryo implantation and after embryo co-cultured with exosomes in uterine
luminal fluid. MiR-21 was up-regulated in EVs of uterus, and higher immunohistochemistry
intensity of CD9 and CD63, suggesting more EVs secreted in uterine luminal fluid in preg-
nant mice. After microinjection, miR-21 inhibitor suppresses embryo development of mice.
Moreover, embryos co-cultured with exosomes display higher blastocyst formation rate, re-
duced apoptotic rate of embryos in pregnant mice. In addition, miR-21 was down-regulated
with the development of embryos after embryo implantation, while miR-21 expression in
embryos was up-regulated by exosomes in uterine luminal fluid in the pregnant mice. In-
creased miR-21 expression in EVs of uterus and increased miR-21 expression after implan-
tation, which indicate the key role in the growth of fertilized eggs and embryo development
in mice.

Introduction
Fertilization, implantation, and embryo development in the early stages are complicated processes that
are highly dependent on communication between cells and tissues [1]. Sperm obtains the ability for fertil-
izing an oocyte gradually during the transition through the epididymis, the interaction with the seminal
fluid, passage in the vagina, connection with the epithelium of the oviduct, and fusion with the oocyte
[2]. After the growing embryo moves into the uterus, a successful implantation is conducted by the oc-
currence of apposition, subsequent adherence of the blastocyst to the endometrial luminal epithelium,
and the following endometrial invasion [3]. Extracellular vesicles (EVs) are membrane-bound vesicles,
which play a key role in intercellular communication by carrying and transferring regulatory molecules,
for example miRNAs (miRs) and proteins, acting as vehicles for transportation between cells and tissues
[4]. Composition of the EV cargo is complicated, containing a great number of proteins, lipids, DNA, and
many small RNA species like miRs [5,6], which are believed to regulate temporal and spatial gene expres-
sion by 30–70% [7]. Though we still know little about the functioning patterns and target genes of most
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miRs, it is recently reported that miRNAs are involved in the processes of embryogenesis and the development of
embryos along with the cell proliferation, pluripotency, differentiation, organogenesis, apoptosis, and growth [8].

With the increasing knowledge about miR mechanisms together with the participation in many processes of
post-transcriptional regulation, miRs are notable candidates which control the maternal transcripts when in early
embryos [9]. Complete development of embryos relates to the proliferation and differentiation of embryonic cells at
the early stage, therefore miRs not only play an important role in somite formation, but also are involved deeply in
regulating the complete development of embryos [10]. In 2004, several regulatory regions of miR-21 were discovered,
since then overexpression of miR-21 has been shown in a variety of pathological conditions containing most kinds
of cancers [11]. The first indication of the aberrant expression of miR-21 derived from the miR profiling of human
glioblastoma, the most fatal brain tumor of glial origin [12]. Researchers in many kinds of fields such as development,
oncology, stem cell biology, and ageing have paid attention to miR-21, and the high expression of miR-21 is found in
cancer cells, pathological cell growth, or cell stress [13]. In our study, we made our points on further investigation for
the effects of miR-21 expression in EVs on the growth of fertilized eggs and embryo development.

Materials and methods
Ethics statement
The experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published
by the National Institutes of Health [14] and followed by the approval of the Animal Committee of Central South
University.

Experimental animals
Sexually mature female C57B6/J mice aged 4–5 weeks (n=134) and male C57B6/J mice aged 11–15 weeks (n=134)
were purchased from Hunan SJA Laboratory Animal Co., Ltd., (Changsha, Hunan, China). Mice were normally fed for
3 days, and then intraperitoneally injected with 10 IU pregnant mare serum gonadotropin (PMSG) (Ningbo Second
Hormone Factory, Ningbo, Zhejiang, China) at 5 p.m. on the fourth day, followed by injecting with 10 IU human
chorionic gonadotropin (HCG) (Ningbo Second Hormone Factory, Ningbo, Zhejiang, China) after 48 h. Following
this, these female and male mice were mated at a ratio of 1:1 overnight. The pregnancy conditions were observed
next morning. Successful mating was confirmed by the detection of a vaginal plug. And 2-cell stage was determined
from 22 to 24 h after injection of HCG according to the development time of mouse’s fertilized eggs, and at this
time 30 pregnant female mice were killed. Then, bilateral fallopian tubes were removed from the abdomens carefully.
After that, the fimbriae of fallopian tubes were injected with PBS solution under a dissecting microscope (1.9 mM
monobasic potassium phosphate, 8.1 mM dibasic potassium phosphate, 75 mM sodium chloride, pH = 7.4). Then,
the fertilized eggs were flushed out and placed in M2 medium with 12 h of pre-equilibration. After microinjection,
the fertilized eggs were washed twice by M16 medium with preheating, again resuspending in M16 medium with
preheating and maintained in culture dish under the coverage of mineral oil. Finally, the fertilized eggs were cultured
in the incubator with 5% CO2 at 37◦C with saturated humidity.

Cell grouping and cytoplasmic microinjection
The mimic (AUCGAAUAGUCUGACUACAACUAAAAAA) for mature fragment of miR-21 (Genbank number:
NR 029738.1) was synthetized by Sangon Biotech Co., Ltd. (Shanghai, China), and miR-21 inhibitor was purchased
from Qiagen (219300, Qiagen, Valencia, CA, U.S.A.). RNA was dissolved and the concentration was adjusted to 25
mmol/l by trace element (TE) solution (10 mmol/l Tris/HCl, 1 mmol/l EDTA, pH = 8.0). In vitro fertilized eggs in
2-cell stage were divided into the blank group (without microinjection), experimental group (microinjection with
miR-21 or miR-21 inhibitor), and negative control (NC) group (microinjection with TE solution). During the mi-
croinjection into the cytoplasm, the cell surface of fertilized eggs in 2-cell stage was found under an inverted micro-
scope of low magnification. The cytoplasm was slowly injected with 10 pl TE solution or miR-21 and miR-21 inhibitor
solution dissolved in TE solution, carefully and precisely by a microinjector. The fertilized eggs were cultured and ob-
served for the development at 12, 24, and 36 h under an inverted microscope.

Isolation of EVs and immunohistochemical staining
The pregnant female mice and the non-pregnant female mice were classified as the pregnancy group and the
non-pregnancy group, respectively. According to Manipulating the mouse embryo: a laboratory manual [15], the
period from 76 to 78 h after HCG injection was speculated as the early stage of blastocyst. At this time, eight pregnant
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female mice and eight non-pregnant female mice were killed. Uteruses were removed from abdomens of mice care-
fully, and uterine luminal fluid was flushed out with 1 ml PBS solution. Cell debris was removed by centrifugation at
21000 g for 15 min at 4◦C, and the supernatant was filtered by 0.22-μm nylon membrane. The EVs were extracted by
standard method of total EV extraction kit (BD Biosciences, Franklin Lakes, NJ, U.S.A.). Exosome TEM, SEM, and
particle-size analysis were conducted by Shanghai XP Biomed Co., Ltd., (Shanghai, China).

Immunohistochemical staining was used to determine the expressions of such surface markers as CD9 and CD63
on EVs. The endometrial sections of pregnant and non-pregnant mice were taken out, fixed with 4% formaldehyde,
embedded with paraffin, and conventionally dewaxed to water. The activity of endoperoxidase was blocked by 3%
hydrogen peroxide for 1 h. Then the specimens were washed three times with PBS solution (2 min per time), and
added with a drop of rabbit anti-mouse CD9 (1:100, product ID: ab92726, Abcam PLC, Cambridge, U.K.) and a drop
of rabbit anti-mouse CD63 (1:100, product ID: GTX37555, GeneTex, Irvine, CA, U.S.A.), respectively. After 1 h of
incubation at 37◦C, the specimens were washed three times with PBS solution (2 min per time) and added with sec-
ondary antibody EnVision (Zhongshan Goldenbridge Biotechnology Co., Ltd., Beijing, China). After incubation at
room temperature for 30 min, the specimens were again washed three times with PBS solution (2 min per time),
and colored with DAB chromogenic reagent (Zhongshan Goldenbridge Biotechnology Co., Ltd., Beijing, China).
The reaction was terminated by running water when yellow precipitate appeared. After coloration, nucleuses were
re-stained with Hematoxylin. The sections were dehydrated in conventional gradient alcohol after bluing, permeabi-
lized in xylene and then mounted with neutral balsam. The results of immunohistochemical staining were scored by
three readers. Scores of staining were 1–4 points (low coloration, medium coloration, high coloration, and extremely
high coloration).

Western blot analysis
The tissue samples (30 mg) were taken out and ground into fine powder in liquid nitrogen. Next, the samples were
added with protein lysate solution and protease inhibitor (A37989, Thermo Fisher Scientific, CA, U.S.A.), and placed
on the ice for 20 min. The lysate was centrifuged at the rate of 12000 rpm for 20 min for obtaining supernatant. The
concentration of total proteins was measured using BCA kit (23227, Thermo Fisher Scientific, CA, U.S.A.). After
detection of protein concentration of extracted exosome, the 25 μg protein was used for experiment. The protein (50
μg) was extracted and dissolved in 2× SDS loading buffer and boiled at 100◦C for 5 min. Next, the samples were
treated with SDS/PAGE (12% gel), and transferred on to PVDF membrane using the wet transfer method. Then,
the membranes were blocked in 5% dried skimmed milk for 1 h at room temperature, followed by washing with
TBS for 15 min. Subsequently, the PVDF membrane was incubated with the diluted primary antibody, and rinsed
with TBS and Tween 20 (TBST) three times, and incubated with the secondary antibody goat anti-rabbit labeled
with horseradish peroxidase (HRP) (1:5000) for 1 h. After rinsing with TBST three times (15 min per time), the
membrane was developed by electrochemiluminescence (ECL), exposed by X-ray, and photographed. The experiment
was repeated three times.

Co-culture of exosome and embryo
The obtained fertilized eggs in the 2-cell stage in vitro were classified into the control (normal culture embryos),
non-pregnancy (exosome added with 5 μl uterine luminal fluid of non-pregnant mice), and pregnancy (exosome
added with 5 μl uterine luminal fluid of pregnant mice) groups. The exosome and embryo were cultured into the
blastocyst stage. Next, the blastocyst formation rate was recorded, and the embryo apoptosis rate and blastocyst inner
cell mass/trophectoderm (ICM/TE) ratio were detected.

Embryo collection
According to Manipulating the mouse embryo: a laboratory manual [16], 18, 22–24, 40–42, 54-56, 62–64, 69–71,
76–78, and 82–86 h after injection of HCG were speculated as the period of mononuclear cells, 2-cell stage, 4-cell
stage, 8-cell stage, 16-cell stage, morula and mature blastocyst of fertilized eggs. After injection of HCG for 142–156
h, embryo implantation happened. After 22–24, 40–42, 54–56, 62–64, 69–71, and 82–86 h of HCG injection, eight
pregnant female mice were killed respectively. Then the bilateral fallopian tubes were removed from the abdomens
carefully and 1 ml PBS solution was inserted by a pipette through one side of the fallopian tubes. After that the fer-
tilized eggs in 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage together with morula and blastocyst were obtained
for further experiments. The day of plug detection was considered as the first day of pregnancy, and embryo implan-
tation happened on the 6th day of pregnancy. Five embryos were collected on the 6th, 9th, 12th, 15th, and 18th days
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of pregnancy, respectively. Reverse-transcription quantitative PCR (RT-qPCR) was adopted to determine the miR-21
expression in these embryos.

RT-qPCR
Total RNA of EVs and mouse embryonic cells were extracted by an RNA extraction kit (Tiandz Gene
Technology Co., Ltd., Beijing, China). The cDNA was produced through reverse transcription us-
ing RT-qPCR kit (Bioer Technology Co., Ltd., Hangzhou, Zhejiang, China). Then, RT-qPCR was used
for detecting the target mRNA expression in specimens. The primer sequences were as follows. For-
ward primer of miR-21 was 5′-ATGGTTCGTGGTAGCTTATCAGACTGA-3′ and reverse primer was
5′-GCAGGGTCCGAGGTATTC-3′. U6 RNA was regarded as internal reference. Forward primer of U6 RNA
was 5′-GCTTCGGCAGCACATACTAAAAT-3′ and reverse primer was 5′-CGCTTCACGAATTTGCGTGTCAT-3′.
Forward primer of Bcl-2 associated X protein (Bax) was 5′-TCCCACATAACTCCCTCGACA-3′ and reverse
primer was 5′-GGCGAAGCCAGCGAGAAGTCCC-3′. Forward primer of B cell lymphoma 2 (Bcl-2) was
5′-GACAGAAGATCATGCCGTCC-3′ and reverse primer was 5′-CTTTGATGTCACGCACGATTTC-3′. Forward
primer of octamer-binding transcription factor-4 (Oct4) was 5′-GAGAGGTCCAACGGAGAGTG-3′ and reverse
primer was 5′-ACATGAGGAGCCAGGGTAAG-3′. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
regarded as the internal reference. Forward primer of GAPDH was 5′-TTCACCACCATGGAGAAGGC-3′ and
reverse primer was 5′-GGCATGGACTGTGGTCATGA-3′. Quantitative PCR instrument (7500, Applied Biosystems
Inc., Foster City, CA, U.S.A.) was used for RT-qPCR, and RT-PCR mixture was purchased from Bio-Rad (Hercules,
CA, U.S.A.). The conditions of PCR were predenaturation at 94◦C for 5 min, denaturation at 94◦C for 30 s, annealing
at 58◦C for 30s, and extension at 72◦C for 20 s, with 40 cycles. The difference in mRNA expression between the
experimental group and control group was expressed by n=2−��C

t [17].

Exosome absorption and inhibition
The obtained fertilized eggs in the 2-celled stage in vitro were classified into the blank (the fertilized eggs without
exosomes and inhibitors), exosome (the fertilized eggs added with exosomes of uterine luminal fluid of pregnant
mice), and exosome + inhibitor (the fertilized eggs added with exosomes of uterine luminal fluid of pregnant mice,
and exosome absorption inhibitor Pitstop 2 (ab120687, Abcam Inc., Cambridge, MA, U.S.A.) and genistein (S1342,
Selleck Chemicals, TX, U.S.A.) groups. The embryos in the 2-cell, 4-cell, and 8-cell stages were selected for RT-qPCR.

Statistical analysis
SPSS 21.0 software (IBM Corp, Armonk, NY, U.S.A.) was applied for data analysis. The measurement data were
expressed as mean +− S.D. and normality test was performed. Comparisons of measurement data were conducted
by t test, and the Chi-square test was used for the comparisons of enumeration data. P<0.05 was considered to be
statistically significant.

Results
More EVs secreted in uterine luminal fluid in pregnant mice
Uterine luminal fluid of pregnant mice and non-pregnant mice was separated and the EVs in uterine luminal fluid
were extracted. Electron microscope and particle-size analysis showed that the diameter of exosomes was between
60 and 150 nm, and Western blot analysis was performed to detect the markers of EVs, CD9 and CD63. The results
revealed that the expressions of CD9 and CD63 were higher in the pregnancy group than those in the non-pregnancy
group, indicating that pregnant mice secreted more EVs. The immunohistochemical staining was used to analyze the
expressions of such surface markers as CD9 and CD63 in EVs. EVs were observed both in the pregnancy group and
the non-pregnancy group. Compared with non-pregnant mice, the staining intensity of CD9 and CD63 in pregnant
mice was higher (P<0.05), indicating that there were more EVs generating in the uterine luminal fluid of pregnant
mice (Figure 1).

Increased miR-21 expression is identified in pregnant mice
RT-qPCR was used for analyzing the miR-21 expression in EVs of uterus between the pregnancy group and the
non-pregnancy group. The result showed that, compared with the non-pregnancy group, miR-21 expression in EVs of
uterus was significantly increased in the pregnancy group (P<0.05) (Figure 2), which suggests that miR-21 expression
was up-regulated in pregnant mice.
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Figure 1. Western blot analysis and immunohistochemical staining show more EVs secreted in uterine luminal fluid in

pregnant mice

(A) Results of electron microscope and particle-size analysis in the endometrium, pregnancy EVs, and non-pregnancy EVs, scale

bars = 100 nm. (B) Western blot analysis was adopted to detect surface markers CD9 and CD63. (C) Immunohistochemical staining

of CD9 and CD63. (D) The immunohistochemistry intensity of CD9 and CD63 using immunohistochemical staining; a, P<0.05,

compared with the non-pregnancy group; the measurement data were expressed as mean +− S.D., and single-factor ANOVA was

used to analyze the data; n=8; scale bars = 100 μm.
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Figure 3. MiR-21 inhibitor suppresses embryo development in mice after microinjection

The measurement data were expressed as mean +− S.D., and single-factor ANOVA was used to analyze the data; n=3; a, P<0.05,

compared with the NC group.

Table 1 The percentage of arrest of embryo development in each group

Treatment groups Number of oocytes 2-cell stage 4-cell stage 8-cell stage

Blank 61 18 +− 0.9 16 +− 1.21 10 +− 1.31

NC 72 16 +− 1.2 17 +− 0.71 12 +− 0.51

MiR-21 inhibitor 68 19 +− 0.7 56 +− 3.22 78 +− 2.92

Different numbers (1,2) of superscripts in the same column indicate significant difference (P≤0.05) between treatment groups.

Table 2 Effects of exosome supplementation on development of mouse embryos in vitro

Groups
Number of embryos
cultured

Number of blastocysts
(%) Apoptotic rate (%) ICM/TE (%)

Control 315 82 (26.03%) 7.1 +− 2.1 28.6 +− 3.3

Non-pregnancy 302 87 (28.8) 6.8 +− 2.3 29.5 +− 2.9

Pregnancy 311 114 (36.65%)* 2.1 +− 1.3* 38.7 +− 3.9*

*, P<0.05, compared with the control and non-pregnancy groups.

MiR-21 inhibitor suppresses embryo development in mice
The division and the development of fertilized eggs were observed under an inverted microscope amongs the three
groups. The percentage of fertilized eggs in 2-cell stage, 4-cell stage, and 8-cell stage, and the percentage of fertilized
eggs that was blocked in 2-cell stage were calculated, and the embryos that blocked and died in 2-cell stage, 4-cell stage,
and 8-cell stage were regarded as dead embryos. The results indicated that there was no difference in the percentage
of fertilized egg development blocked in 2-cell stage, 4-cell stage, and 8-cell stage between the blank group and the
NC group (P>0.05). Compared with the NC group, miR-21 inhibitor group showed that there was no significant
difference in the percentage of fertilized egg development blocked in 2-cell stage (P>0.05), while the percentage
of fertilized egg development blocked in 4-cell stage and 8-cell stage was remarkably higher (P<0.05) (Figure 3).
After injection of miR-21 inhibitor, there was no significant difference in arrest of embryo development between the
blank and NC groups, and the percentage of arrest of embryo development in the miR-21 inhibitor group was higher
than that in the blank and NC groups (Table 1). These findings suggested that miR-21 inhibitor suppresses embryo
development of mice.

Embryos cultured with exosomes display higher blastocyst formation
rate, ICM/TE ratio, expressions of Bcl-2 and Oct4, and lower expression
of Bax in pregnant mice
The blastocyst formation rate was used to evaluate the effects of exosomes in uterine luminal fluid on embryo devel-
opment. As shown in Table 2, compared with the control and non-pregnancy groups, the blastocyst formation rate
was obviously higher in the pregnancy group (P<0.05). Additionally, the results of RT-qPCR showed that expressions
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Figure 4. Embryos co-cultured with exosomes display higher blastocyst formation rate and ICM/TE ratio and reduced

apoptosis of embryos in pregnant mice

The measurement data were expressed as mean +− S.D., and single-factor ANOVA was used to analyze the data; n=3; *, P<0.05,

compared with the control group.

Figure 5. RT-qPCR shows that miR-21 is down-regulated with the development of embryos after embryo implantation

(A) Expression of miR-21 between advanced blastocyst and embryos; a, P<0.05, compared with the blastocyst. (B) Expression

of miR-21 in the middle and late period of embryo development. The measurement data were expressed as mean +− S.D., and

single-factor ANOVA was used to analyze the data; n=8; a, P<0.05, compared with P6; b, P<0.05, compared with P9; c, P<0.05,

compared with P12; d, compared with P15, P<0.05. Abbreviations: P6, 6th day of pregnancy; P9, 9th day of pregnancy; P12, 12th

day of pregnancy; P15, 15th day of pregnancy; P18, 18th day of pregnancy.

of Bcl-2 and Oct4 were evidently higher than those in the control and non-pregnancy groups, and the Bax expression
was significantly lower than that in the control and non-pregnancy groups (all P<0.05) (Figure 4).

MiR-21 is down-regulated with the development of embryos after embryo
implantation
The embryo implantation occurred on the 6th day of pregnancy, during which the miR-21 expression in the im-
planted embryos was compared with that in mature blastocysts. The result showed that the miR-21 expression in
the embryo after implantation was increased by nearly 20-times than that in the mature blastocyst, suggesting that
miR-21 expression was significantly activated by implantation (Figure 5A).

The miR-21 expression of embryos after implantation on the 6th, 9th, 12th, 15th, and 18th days of pregnancy was
analyzed and the result showed that miR-21 expression was remarkably activated after implantation. From the 6th
day of pregnancy to the 9th day of pregnancy, the miR-21 expression was significantly increased by nearly 20-times
again, and the expression reached the peak on the 9th day of pregnancy, then the miR-21 expression was decreased
with the development of the embryo (P<0.05) (Figure 5B).

All in all, the expression of miR-21 was remarkably increased after the implantation. And relatively high expression
of was maintained in the middle and late period of the embryo development, implying that miR-21 might play a
significant role in the development of embryos.
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Figure 6. Exosomes in uterine luminal fluid in pregnant mice elevates the miR-21 expression in embryos

The measurement data were expressed as mean +− S.D., and single-factor ANOVA was used to analyze the data; n=3; a, P<0.05,

compared with the blank group; b, P<0.05, compared with the exosome +− inhibitor group.

Exosomes in uterine luminal fluid in pregnant mice increases the miR-21
expression in embryos
The embryo culture fluid was added with absorption inhibitors Pitstop 2, an inhibitor of clathrin-dependent endo-
cytosis, and genistein, an inhibitor of caveolae-dependent endocytosis. The results indicated that compared with the
exosome group, the exosome + inhibitor group showed significantly lower miR-21 expression than the blank group
(P<0.05). The findings suggested that after uptake by embryos, the exosomes in uterine luminal fluid in pregnant
mice elevates the miR-21 expression in embryos (Figure 6).

Discussion
The culture of preimplantation embryos in vitro plays a crucial role in human-assisted reproductive technology and
animal embryo engineering, while, in mammals, most of the embryos experience a developmental blockage at the
early stage, which results in a decrease in the birth rate [18]. Embryo developmental blockage is closely associated with
genetic and environmental factors, and apoptosis acts as one of the main causes of embryo death [19]. It was previously
demonstrated that miR-21 always has anti-apoptotic effects on many cellular processes [20,21]. The previous studies
suggested that miR-21 was involved in embryo implantation [22,23]. Thus, the aim of our research was to investigate
the effect of miR-21 expression on the growth of fertilized eggs and the embryo development, trying to find a way to
overcome this blocking phenomenon and deal with the problem of high embryo death rate. Finally, all the results in
our study indicated that miR-21 positively affect the growth of fertilized eggs and the embryo development under in
vitro culture.

Initially, we studied the effect of miR-21 on the growth of fertilized eggs, and found that there was no significant
difference in percentage of fertilized egg development blocked in 2-cell stage, while the percentage of fertilized egg
development blocked in 4-cell stage and 8-cell stage were significantly higher in comparison with the NC group,
indicating that miR-21 may plays a key role in promoting the growth of fertilized eggs. Strong evidence has shown
that miRs affect cell proliferation, growth, differentiation, and apoptosis by negatively regulating gene expression
[24]. Specially, a previous study revealed that miR-21 regulates a variety of cellular and biological processes as a
main anti-apoptotic element [25]. It was also previously shown that miR-21 regulates the anti-apoptotic ability of
preimplantation embryos [26].

Second, our study showed that compared with the non-pregnancy group, the staining intensity of CD9 and CD63 in
the pregnancy group was higher. Similarly, a previous study has revealed positive CD63 protein in pregnant ewes [27].
Moreover, the findings showed that the miR-21 expression in EVs in the pregnancy group was remarkably higher than
that in the non-pregnancy group. For these reasons, we inferred that miR-21 plays an important role in fertilization.
A previous study provides evidence that miR-21 is very important in preimplantation embryo development, and the
preimplantation embryo development quality is significantly associated with the expression of apoptotic proteins,
which are regulated by miR-21 [28]. In another study, the research data indicated that low expression of miR-21 in
the placenta was always linked with poor fetal growth [18].
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Additionally, the data in present study implied that embryos cultured with exosomes display higher blastocyst for-
mation rate, expressions of Bcl-2 and Oct4, lower expression of Bax, and apoptotic rate of embryos in pregnant mice.
Qu et al. [29] have demonstrated that embryos produced in vitro from lots of mammalian species often reveal fewer
blastocyst formation, higher apoptosis index, while supplementation of exosomes in embryos could elevate blasto-
cyst formation rate, and expression of Oct-4. It is reported that increased expression of pro-apoptosis protein Bax
and reduced expression of anti-apoptotic protein bcl-2 are significant markers of apoptosis [30]. Moreover, miR-21
overexpression is identified to induce cell apoptosis [31]. A considerable amount of literature has been published on
effects of miR-21 on inhibiting apoptosis [32-34]. All these evidence are consistent with our findings.

Furthermore, as shown in our results, miR-21 expression was remarkably increased after implantation. Besides,
the miR-21 expression kept relatively high in the middle and late period of the embryo development, suggesting
that miR-21 may have effects on the whole process of the embryo development. It is reported that miR-21 is ex-
pressed during normal embryogenesis and is strictly regulated in normal development of mice [35]. A former study
has already demonstrated that IL-6, which is positively regulated by anti-apoptotic miR-21 expression, plays a role
in improving the viability of preimplantation embryos by inducing Stat3 signaling, conforming the anti-apoptotic
effect of miR-21 on preimplantation embryos [26]. In addition, a research proved that icariin, a part of the TCM
monomer, up-regulates the expression of miR-21 to increase the expression of Bcl-2 and reduce the expression of
caspase3 in preimplantation embryos, which displays anti-apoptotic effects on embryo developmental improvement,
demonstrating that the developmental quality of preimplantation embryo is closely associated with the expression of
apoptosis-related gene that is regulated by miR-21 [36].

In summary, our findings provide evidence that miR-21 have positive effects on the growth of fertilized eggs and
the embryo development, which gives a value for the prevention of the high embryo death rate. However, the specific
mechanism of miR-21 functioning in the fertilized eggs and the embryos may be influenced by many factors which
need further investigation.
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