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The visual cortex responds to repeated presentations of the same stimulus with high variability. Because the firing
mechanism is remarkably noiseless, the source of this variability is thought to lie in the membrane potential
fluctuations that result from summated synaptic input. Here this hypothesis is tested through measurements of
membrane potential during visual stimulation. Surprisingly, trial-to-trial variability of membrane potential is found to
be low. The ratio of variance to mean is much lower for membrane potential than for firing rate. The high variability of
firing rate is explained by the threshold present in the function that converts inputs into firing rates. Given an input
with small, constant noise, this function produces a firing rate with a large variance that grows with the mean. This
model is validated on responses recorded both intracellularly and extracellularly. In neurons of visual cortex, thus, a
simple deterministic mechanism amplifies the low variability of summated synaptic inputs into the large variability of
firing rate. The computational advantages provided by this amplification are not known.
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Introduction

In the primary visual cortex (V1), different trials of
presentation of an identical stimulus yield highly variable
firing rates (Heggelund and Albus 1978). This trial-to-trial
variability is not inherited from subcortical inputs, as these
respond in a much more consistent fashion (Kara et al. 2000).
Instead, variability has been related to spontaneous variations
in cortical state (Arieli et al. 1996; Buracas et al. 1998; Tsodyks
et al. 1999; Kenet et al. 2003). These variations may reflect the
perceptual effects associated with a stimulus, rather than the
presence of the stimulus itself (Ress and Heeger 2003).

A key property of trial-to-trial variability is that it depends
on the strength of the stimulus: Response variance across
trials is approximately proportional to response mean
(Tolhurst et al. 1981). An example of this effect can be seen
in the responses of a cell in cat V1 to drifting gratings (Figure
1A–1C). Different trials of an identical stimulus elicit firing
rates that vary greatly (Figure 1A). As a result, the standard
deviation of the firing rates is roughly comparable to their
mean amplitude (Figure 1B and 1C). The ratio of variance to
mean is close to the value predicted for a Poisson process
(Figure 2A, dashed line). For a Poisson process, the variance
of the spike counts is equal to the mean. Once spike counts
are converted to firing rate by binning in 10-ms windows (i.e.,
at 100 Hz), the ratio of variance to mean becomes 100. The
Poisson-like behavior of firing rates is well known, although
reports differ on the exact value of the ratio of variance to
mean (Tolhurst et al. 1981; Bradley et al. 1987; Vogels et al.
1989; Geisler and Albrecht 1997; Gur et al. 1997; Reich et al.
1997; Buracas et al. 1998; Kara et al. 2000).

Because the production of firing rates within a neuron
introduces remarkably little noise (Calvin and Stevens 1968;
Mainen and Sejnowski 1995; Carandini et al. 1996), trial-to-
trial variability is thought to arise from the membrane
potential fluctuations that result from summated synaptic
input (Calvin and Stevens 1968; Stevens and Zador 1998). I
have tested this hypothesis by considering membrane
potential responses recorded intracellularly in vivo.

Results

From traces of membrane potential obtained at high
temporal resolution (Figure 1D), I obtained an estimate of
overall synaptic drive by removing the action potentials and
low-pass filtering the resulting traces (Carandini and Ferster
2000; Volgushev et al. 2000). The outcome of this procedure
(Figure 1E) is a coarse potential (or ‘‘generator potential’’;
Lankheet et al. 1989) that approximates the synaptic current
(Anderson et al. 2000a). This technique allows one to estimate
synaptic currents while concurrently recording firing rates.

Variability of Coarse Potential during Visual Stimulation
We can now consider the mean and variance across trials

for coarse potential. The mean, Vmean, is the ‘‘signal’’
reflecting the stimulus-driven synaptic input to the neuron
(Figure 1F and 1G, traces). The variance, instead, is the
‘‘noise’’ reflecting the synaptic input’s trial-to-trial variability
(Figure 1F and 1G, shaded areas).
The variability of potential depended only slightly on

stimulus strength. Variance was slightly higher when the
stimuli depolarized the cell than when they hyperpolarized it
(Figure 1F and 1G). For the example simple cell in Figure 1,
standard deviation of potential was 2.8 6 1.2 mV (s.d.) for
Vmean between –70 and –65 mV, and 4.0 6 1.7 mV for Vmean

between –55 and –50 mV. The relation between standard
deviation of potential and Vmean can be described by a
regression line (r= 0.276 0.04, s.d., bootstrap) whose slope is
0.08 6 0.01 and whose intercept at Vrest =�60.4 mV is 3.3 6
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0.1 mV. Similar values were obtained in the rest of the
population (e.g., Figure 2E and 2H): correlation coefficient
was r = 0.40 6 0.19 (s.d., N = 22), intercept at Vrest was 3.3 6

1.4 mV, and mean slope was a shallow 0.14 6 0.09. In
occasional cells (such as that of Figure 2H), the standard
deviation of potential did not grow monotonically with Vmean.

The ratios of variance to mean seen in membrane
potentials were negligible when compared to those seen in
firing rate. For the example simple cell, over the entire range
of mean potentials the variance of potential grew by less
than a factor of four (Figure 2B). By contrast, over the entire
range of firing rates the variance of firing rate grew by a
factor of almost 100 (Figure 2A). Similar results were
obtained in the remaining cells, such as the complex cell of
Figure 2D and 2E and the intermediate cell of Figure 2G and
2H. In the last cell, the difference between potential and
firing rate was particularly striking, as the former shows a
downward slope that is clearly absent in the latter. These
differences in variability are meaningful because potential
and firing rate were recorded from the same responses to the

same set of stimuli. They are not simply due to differences in
time scale (Buracas et al. 1998; Kara et al. 2000) because
firing rate and potential were sampled at the same resolution
(100 Hz).

Accounting for the Variability of Firing Rate
The origin of the large variability in firing rate lies not in

an unforeseen source of noise, but rather in a deterministic
mechanism, the nonlinear transformation of potentials into
firing rates. This transformation (Figure 1H) can be fitted by a
simple rectification model (Granit et al. 1963) describing how
firing rate R grows with potential V once this potential is
above a threshold Vthresh. As expected (Anderson et al. 2000b;
Carandini and Ferster 2000), this rectification model captures
the relation between potential and firing rate (Figure 1H,
curve) and can be used to predict the rough features of firing
rate both in individual trials (compare Figure 1A and 1I) and
in averages across trials (compare curves in Figure 1B and 1C
with those in Figure 1J and 1K).
Of course, rectification is not a full account of the

transformation between synaptic inputs and firing rates.

Figure 1. Variability in the Responses of a

Simple Cell

(A) Firing rate in response to a cycle of
an optimal drifting grating. Three trials
are shown.
(B) Firing rate averaged over seven trials.
Shaded area indicates 2 s.d.
(C) Same, for three other stimuli: a
grating drifting in the orthogonal direc-
tion (top), a grating drifting in the
opposite direction (middle), and a blank
stimulus (bottom).
(D) Membrane potential trace measured
for the first cycle. Dashed line is resting
potential Vrest. Dotted line is firing
threshold Vthresh (from [H]).
(E–G) As in (A–C), for coarse potential.
(H) Relation between firing rate and
coarse potential. Curve is fit of rectifica-
tion equation.
(I–K) As in (A–C), for predictions of
rectification model.
DOI: 10.1371/journal.pbio.0020264.g001
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Indeed, the relationship between firing rate and potential
exhibits substantial error bars (Figure 1H). These error bars
do not denote noise involved in generating spikes, which is
negligible (Calvin and Stevens 1968; Mainen and Sejnowski
1995; Carandini et al. 1996). They simply indicate that (as
evident in the Hodgkin–Huxley equations) instantaneous
potential is only one of the determinants of firing rate;
additional determinants include the membrane potential’s
recent history (Azouz and Gray 1999) and frequency content
(Carandini et al. 1996; Volgushev et al. 2002).

Despite its simplicity, the rectification model is sufficient to
predict the large variability of firing rate, and the increase of
firing-rate variance with firing-rate mean. The predicted
standard deviation resembles the measured one both in
amplitude and in time course (compare shaded areas in
Figure 1B and 1C with those in Figure 1J and 1K). Indeed, a
plot of variance versus mean for the predicted firing rate
(Figure 2C) indicates almost as much variability as that seen
for the actual firing rate (Figure 2A). Similar results were
obtained in the other example cells (compare Figure 2D to
2F, and 2G to 2I) and in the rest of the population (Figure 3A
and 3B). While the rectification model often underestimated
the vertical intercept of the line relating mean and variance
(Figure 3A), it generally captured the line’s slope (Figure 3B).
The model, therefore, accounts for the growth of firing-rate
variance with the mean.

The reason why the rectification model explains the large
variability of firing rate is rather intuitive. Trial-to-trial
fluctuations in potential are critical to obtain spikes, because
many visual stimuli (such as the 2108 grating in Figure 1) elicit
a mean potential that barely reaches the firing threshold

(Anderson et al. 2000b). Therefore, small fluctuations in
membrane potential make the difference between a trial with
few or no spikes and one with plenty of spikes. In other
words, the firing threshold amplifies small fluctuations in
potential into large fluctuations in firing rate.
Perhaps less intuitive is the reason why the rectification

model explains the growth of firing-rate variance with firing-
rate mean. One may think that a necessary condition for this
effect is the growth in potential variance observed with
increasing mean potential (Figure 2B). This is not the case:
The variance of potential could stay constant or even
decrease (as it does for the cell in Figure 2H), and the vari-
ance of firing rate would still grow with the mean (Figure 2G).

Predicting the Variability of Firing Rate
An intuition and a quantitative account for these proper-

ties can be obtained by applying the rectification model to an
idealized random distribution of potentials, which we take to
be Gaussian. Such a Gaussian–rectification model has been
used to explain the dependence of mean firing rate on mean
synaptic input (Anderson et al. 2000b; Hansel and van
Vreeswijk 2002; Miller and Troyer 2002). It resembles a
model proposed by Abeles (1982, 1991) to study neuronal
integration time.
In the Gaussian–rectification model, the stimulus deter-

mines the mean of the Gaussian (Figure 4B), and the portion
of Gaussian that crosses threshold determines the distribu-
tion of firing rates (Figure 4A). The mean of the Gaussian is
the average potential Vmean evoked by the stimulus at that
instant (Figure 4B). The rectification function (Figure 1H)
operates on this distribution and determines the distribution

Figure 2. Relation between Response

Variance and Mean for Three Cells

(A) Variance versus mean for firing rate
of the simple cell in Figure 1 measured
with 13 stimuli (the four in Figure 1 plus
nine additional orientations). Line is
linear regression. Diagonal line is pre-
diction for a Poisson process.
(B) Variance versus mean for coarse
potential. Error bars are 2 s.d. Curve is
linear fit to standard deviation versus
mean. Dashed line is resting potential
Vrest. Dotted line is firing threshold Vthresh.
(C) Variance versus mean for firing rate
predicted by the rectification model.
Details as in (A).
(D–F) As in (A–C) for a complex cell.
(G–I) As in (A–C) for a third neuron,
whose behavior is intermediate between
those of simple cells and complex cells.
DOI: 10.1371/journal.pbio.0020264.g002
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of firing rates (Figure 4A): Each potential contributes a firing
rate given by the rectification function, with a probability
given by the value of the Gaussian at that potential. When
mean potential Vmean is low, the Gaussian lies mostly below the
threshold Vthresh, so the predicted firing rate is mostly zero
(Figure 4A, a). When Vmean is higher, however, the tail of the
Gaussian that lies above threshold becomes substantially
larger, and the distribution of firing rates reaches higher rates
(Figure 4A, e). The large peak at 0 spikes/s corresponds to the
area of the Gaussian that lies below Vthresh.

Such a simple model is sufficient to predict that the
variance of firing rate should increase with mean firing rate.
As mean potential Vmean increases, the distribution of firing
rate becomes broader (Figure 4A), increasing not only in
mean but also in standard deviation (Figure 4C). This
phenomenon occurs even though in the model the standard
deviation of potential is the same at all mean potentials
(Figure 4D).

The main assumption of the model, that of a Gaussian
distribution of potentials, is generally borne out by the data.
In most cells, the distribution of potential is close to a
Gaussian, especially at the lowest values of mean potential,
where spiking seldom occurs (Figure 5B). For the example
simple cell, the distribution of z-scores (the difference
between potential and mean potential, normalized by the
standard deviation at that potential) appears remarkably
Gaussian (Figure 6A). Similar results were obtained in the

other cells (e.g., Figure 6C and 6E), although in some cells the
tails of the distributions exceeded those of a Gaussian, and a
large skewness clearly favored the more depolarized tails (not
shown). A Gaussian distribution of potentials is commonly
predicted in the theoretical literature (e.g., Svirskis and
Rinzel 2000; Amemori and Ishii 2001; Rudolph and Destexhe
2003). It would be expected in a passive membrane summat-
ing many independent, high-rate presynaptic spike trains
(Rice 1944; Tuckwell 1988).
The Gaussian–rectification model has four parameters.

Three of these parameters describe the rectification stage and
are thus fully constrained by the measured relationship
between potential and firing rate (Figure 1H). The remaining
parameter, the standard deviation of the Gaussian, r, was
obtained from maximum likelihood estimation, i.e., by
searching for the standard deviation that maximized the
probability of observing the distributions of firing rate
(Figure 5A). The result, r = 4.6 mV, slightly overestimates
the standard deviation observed for low mean potentials, but
correctly estimates it at higher mean potentials (Figure 5D,
compare shaded area to error bars).
The model predicts the main features of the distributions

of firing rate (Figure 5A). It predicts that when mean
potential is low (e.g., Vmean = �64 mV; Figure 5A, a), the
firing rate is always zero, whereas larger mean potentials yield
a distribution of firing rates that spans values from 0 to 300
spikes/s (e.g., Vmean =�54 mV; Figure 5A, d). Deviations from
the predictions are largest where they are least significant,
i.e., at high firing rates for the high values of Vmean (e.g., Vmean

= �50 mV; Figure 5A, e). These high values were achieved
seldom; for example, only 21 data points were obtained at
Vmean = �50 mV (Figure 5A, e), compared to 273 at Vmean =

Figure 4. The Gaussian–Rectification Model

(A and B) Distributions across trials of model potential V (B) and of
model firing rate R (A) for five values of the mean potential Vmean.
Firing rate is obtained from potential by applying the rectification
model (Figure 1H). The value for R = 0 is shown at 1/3 of veridical
height.
(C and D) Mean (data points) and standard deviation (error bars) for
the distributions in (A) and (B) as a function of mean potential Vmean.
Curve and shaded area indicate model predictions for the full range
of mean potentials. Arrows indicate the five mean potentials (6 2
mV) used in (A) and (B). Throughout, dashed lines indicate resting
potential Vrest and dotted lines indicate firing threshold Vthresh.
DOI: 10.1371/journal.pbio.0020264.g004

Figure 3. Performance of the Rectification and Gaussian–Rectification

Models in Predicting Firing-Rate Variability

Distributions of firing-rate variance versus firing-rate mean were
fitted with a line in logarithmic scale, corresponding to the equation
variance = a meanb, where a is the intercept of the line and b is the
slope of the line. Fitting was performed on the measured distribu-
tions (e.g., Figure 2A), on the distributions predicted by the
rectification model (e.g., Figure 2C), and on those predicted by the
Gaussian–rectification model (e.g., Figure 6B). Dashed lines indicate
predictions for a Poisson process.
(A) Comparison of measured intercept versus predicted intercept.
Diagonal line indicates equality between measured and predicted
values.
(B) Same, for the slope.
(C and D) Same as in (A) and (B), for the predictions of the Gaussian–
rectification model.
DOI: 10.1371/journal.pbio.0020264.g003
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�54 mV (Figure 5A, d) and 1,575 at Vmean = �64 mV (Figure
5A, a).

In fact, the model closely predicts both the firing rate’s
mean and standard deviation (Figure 5C). It predicts the two
key effects of increasing mean potential: (1) an increase in the
firing rate’s mean (as a power law; Anderson et al. 2000b;
Hansel and van Vreeswijk 2002; Miller and Troyer 2002), and
(2) an increase in the firing rate’s standard deviation.

Crucially, the model closely predicts how firing-rate
variance depends on firing-rate mean (Figure 6B, red
curve). Because of noise in the estimation of variance from
a limited number of measurements (in this experiment,
seven trials), the data are not expected to fall exactly on the
model’s prediction; Monte Carlo simulations with a
matched number of trials determined the area in which
75% of the observations are predicted to fall (Figure 6B,
gray area). Similar results were obtained in the remaining
cells of the population, except that the model has a mild
tendency to underestimate the intercept and overestimate
the slope of the relation between variance and mean
(Figure 3C and 3D).

Overall, the Gaussian–rectification model applied to the
trace of mean potential performed as well as the rectification
model applied to the individual traces of potential. Both
models underestimated the intercept of the lines fitted to the
relationship between firing-rate variance and mean: the
rectification model by 25 6 42% (Figure 3A), and the
Gaussian–rectification model by 44 6 26% (Figure 3B). Both
models correctly estimated the slope of the line (the growth
in variance with increasing mean), with insignificant errors of

0.10 6 0.25 for the rectification model (Figure 3C), and�0.01
6 0.22 for the Gaussian–rectification model (Figure 3D). This
performance is remarkable, given that the Gaussian–rectifi-
cation model replaces detailed knowledge of potential in
individual trials with just one free parameter, the standard
deviation r of potential.
These results illustrate how the key element in producing

the steep growth in firing-rate variance observed with
growing stimulus strength is the nonlinear transformation
between potential and firing rate (Figure 1H). Indeed, the
model was intentionally implemented with the constraint
that the standard deviation of potential, r, be constant. This
constraint serves to demonstrate that a mild growth in
variance of potential (Figure 5D, error bars) is not necessary
to produce the steep growth in firing-rate variance (Figure
5C, error bars).

Figure 6. Variability of Potential and Predictions of the Gaussian–

Rectification Model for Three Cells

(A) Distribution of normalized deviations from the mean (z-scores)
for the potential of the simple cell in Figure 1 and Figure 2A–2C.
These were computed by subtracting from each potential the
corresponding mean potential Vmean (the abscissa in Figure 2B) and
dividing by the standard deviation (the square root of the ordinate in
Figure 2B). The results were cumulated. The curve is a normal
Gaussian.
(B) Variance versus mean for firing rate for the same cell and its
prediction by the Gaussian–rectification model. Data points are same
as Figure 2A. Red curve: prediction of Gaussian–rectification model
Shaded area: region where the Gaussian–rectification model predicts
the occurrence of 75% of the points. Line is linear regression.
(C and D) Same as (A) and (B) for the complex cell in Figure 2D–2F.
(E and F) Same, for the intermediate cell in Figure 2G–2I.
DOI: 10.1371/journal.pbio.0020264.g006

Figure 5. Application of the Gaussian–Rectification Model to the Data

from the Example Simple Cell

(A and B) Distributions across trials of potential V (B) and of firing
rate R (A) for five values of the mean potential Vmean. Curves are best-
fitting Gaussians (B) and predicted distributions of firing rate (A). Bin
for R = 0 is shown at 1/3 of veridical height (and is three times wider
than the others so that area is veridical).
(C and D) Mean (data points) and standard deviation (error bars) for
the distributions in (A) and (B), as a function of mean potential Vmean.
Curve and shaded area indicate model predictions for the full range
of mean potentials. Arrows indicate the five mean potentials (6 2
mV) used in (A) and (B). Even a reduced model with constant
standard deviation of potential (D, shaded area) predicts a growing
standard deviation (A, shaded area).
DOI: 10.1371/journal.pbio.0020264.g005
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Variability of Responses to Current Injection
The predictions of the Gaussian–rectification model apply

to any neuron that meets minimal criteria: a relationship
between synaptic input and firing rate that is monotonic and
includes a threshold, and noise in the input that has a
Gaussian distribution.

As an example, let us consider a neuron that is closer to
biological reality than the Gaussian–rectification model, one
that receives currents (not potentials) in its input and
produces individual spikes (not continuous firing rates). In
particular, consider an enhanced integrate-and-fire neuron,
where each spike is accompanied by a temporary increase in
spike threshold and by the entry of calcium, which in turn
determines an after-hyperpolarization potassium current (see
Materials and Methods).

To ensure realism, I fitted the model parameters to
responses to injected currents of a regular spiking neuron.
This neuron was recorded in vitro in the visual cortex of the
guinea pig, in the near absence of synaptic inputs (Carandini
et al. 1996). The injected currents include sinusoids (Figure
7A, top four panels) and approximately Gaussian-distributed
noise (Figure 7A, bottom panels). Once its parameters are
appropriately tailored, the enhanced integrate-and-fire mod-
el accurately predicts the cell’s responses, both in the

subthreshold membrane potential waveforms and in the
timing of individual spikes (Figure 7B and 7C).
Just as predicted, this spiking neuron responds to noisy

injected currents with a firing rate whose variance grows with
the mean (Figure 8). To simulate the synaptic drive to a
simple cell recorded in vivo (Figure 1A–1D) I injected
sinusoidal currents, to which I added Gaussian noise. The
model responses (Figure 8A–8D) resemble those seen in vivo
(Figure 1A–1D). The firing rate is highly variable (Figure 8B),
with a standard deviation that is roughly comparable to the
mean (Figure 8C and 8D), even though the standard deviation
of the injected current is constant (Figure 8H and 8I). In fact,
for firing rate the variance grows proportionally to the mean
(Figure 8E), even though for injected current the variance is
constant (Figure 8J).
The Gaussian–rectification model captures the essence of

this behavior. Once it is given the standard deviation of the
noise and the relationship between injected current and
firing rate (Figure 8F), the Gaussian–rectification model
makes a parameter-free prediction of the relationship
between variance and mean (Figure 8E, curve). This pre-
diction is not perfect (it consistently underestimates firing-
rate variance), but it does capture the most important
behavior: that variance grows with the mean for firing rate
(Figure 8E, curve) but not for injected current (Figure 8J,
horizontal line).
Similar results were obtained when the stimulus parame-

ters were changed to simulate synaptic inputs to a complex
cell, or when the parameters of the spiking neuron were
changed to simulate other cells measured in vitro, or even
chosen randomly within reasonable bounds. As predicted, as
long as the relationship between synaptic input and firing
rate involved a threshold and the input noise was Gaussian,
the variance grew with the mean for firing rate but not for
injected current.

Role of Firing-Rate Encoder
Having validated the Gaussian–rectification model, we can

now investigate the role of its parameters in determining the
curves relating firing-rate variance and mean (Figure 9). The
model has four parameters (see Materials and Methods): (1)
the standard deviation r of potential, (2) the firing threshold,
Vthresh, (3) the gain k of the relationship between firing rate
and potential above threshold, and (4) the exponent n of this
relationship. For the purpose of studying the model, we can
assume, without loss of generality, that potential is unitless
and has standard deviation r = 1. Then, because Vthresh can
only determine the range of firing rates that is achieved, only
k and n control the shape of the variance versus mean curves
(Figure 9).
The gain k controls curve position, and the exponent n

controls curve shape (Figure 9). Increasing the gain k lifts the
curves upward by twice as much as it shifts them rightward
(Figure 9, rows). These shifts occur because variance grows
with k2 and mean grows with k. Decreasing the exponent n
causes the curves to saturate (Figure 9, columns): The
variance saturates to a plateau if n = 1 (Figure 9, middle),
and it reaches a maximal value and then decreases if n , 1 (as
in Figure 9, left). Saturation occurs because when potential
goes well above threshold, increases in mean potential cease
to reveal ever larger portions of the Gaussian. If the curves
relating firing rate to potential saturate (n , 1), variations in

Figure 7. Responses of a Regular-Spiking Neuron in the Visual Cortex to

Current Injection, and Predictions by an Enhanced Integrate-and-Fire

Model Neuron

(A) Injected currents were sinusoids or noise waveforms. Noise was
obtained by summing eight sinusoids with incommensurate frequen-
cies.
(B) Membrane potential responses of a regular-spiking neuron (cell
19s2, experiment 4) recorded with sharp electrodes in a study of
guinea pig visual cortex in vitro (Carandini et al. 1996).
(C) Predictions of an enhanced integrate-and-fire neuron model fine-
tuned to resemble the responses of the cell.
DOI: 10.1371/journal.pbio.0020264.g007
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potential are compressed into proportionally ever smaller
variations in firing rate; the opposite occurs if the curves
expand (n . 1).
This analysis predicts that it should be fairly common for

the firing-rate variance to saturate at high firing rates,
possibly showing a plateau or even a decrease. Indeed, in
the sample of V1 neurons recorded intracellularly, exponents
are typically close to unity (n = 1.1 6 0.6). Accordingly, a
mild form of saturation is common in the plots of firing-rate
variance and mean (Figure 6B). To quantify the saturation,
however, one needs reliable estimates of firing-rate variance.
These estimates are not very reliable in the intracellular
sample, which typically involves only a few hundred spikes
per cell, leading to large clouds of points in the scatters of
variance versus mean (Figure 6B).

Variability of Extracellularly Recorded Firing Rates
To test the model’s prediction rigorously, I considered a set

of V1 responses obtained with extracellular recordings.
Thanks to the large number of spikes (commonly .4,000
per cell), measurements in this dataset yield more precise
estimates of firing-rate variance over a wider range of firing
rates than are available in the intracellular sample.
An analysis of firing-rate variance versus mean for these

extracellularly recorded cells supports the predictions of the
model (Figure 10). Extracellular data do not afford inde-
pendent estimates of gain k and exponent n of the
transformation of potential into firing rate. I thus first
computed the model predictions for a variety of combina-
tions of k and n (such as those shown in Figure 9). I then
made Bayesian estimations of the values of k and n that
maximize the likelihood of the data, while imposing a broad
prior for n = 1.1, the median value measured intracellularly.
The quality of these two-parameter fits was excellent (Figure
10), of higher quality than could be obtained by fitting a line,
the two-parameter ‘‘model’’ commonly used to describe data
of this kind (Figure 2A). Moreover, a number of cells
exhibited the saturation in variance predicted by the model.
The eight representative cells shown in Figure 10 are
arranged in order of increasing exponent n. The first three
(n = 0.9 to 1.0) show evident saturation in firing-rate
variance as mean firing rate increases. The remaining five
show a milder saturation, as expected from their higher
exponents (n = 1.1 to 1.2). Saturation was common, as the
median n was 1.06, with n , 1 in 13/37 cells. Yet to my
knowledge, except for an anecdotal account (Mechler 1997),
this common property had not been previously reported. It
constitutes further support for the usefulness of the
Gaussian–rectification model.

Discussion

We have seen that a large amplification takes place between
the trial-to-trial variability of synaptic input and that of firing
rate: The variance of synaptic input is small compared to the
dynamic range, and it is roughly constant. The amplification

Figure 8. Variability in the Responses of the Spiking Model Neuron

(A) Response of the model neuron to a 0.6-nA sinusoidal current in
the presence of Gaussian noise (s.d. 0.25 nA).
(B) Corresponding firing rate. Three trials are shown.
(C) Firing rate averaged over 16 trials. Shaded area indicates 2 s.d.
(D) Same, for three other stimuli: a 0.4-nA sinusoid (top), a 0.2-nA
sinusoid (middle), and noise alone (bottom).
(E) Variance versus mean for firing rate. Diagonal line is prediction
for a Poisson process. Red curve: prediction of Gaussian–rectification
model, with no parameters allowed to vary to fit the data. Shaded
area: region where the Gaussian–rectification model predicts the
occurrence of 75% of the points.

(F) Relation between firing rate and injected current. Curve is fit of
rectification equation.
(G–I) As in (B–D), for injected current.
( J) Variance versus mean for injected current.
DOI: 10.1371/journal.pbio.0020264.g008
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of variability arises from the threshold in the transformation
of synaptic input into firing rate.

A Gaussian–rectification model attributes this amplifica-
tion to very simple causes: approximately constant Gaussian
noise in the input, and rectification due to threshold in the
output. It indicates that firing-rate variance would grow with
the mean even if the variance of synaptic input were constant.
Both of the assumptions of the model, constant Gaussian
noise and rectification, are borne out by the data. These
assumptions are rather minimal, so they are naturally
satisfied by more realistic models. For example, a realistic
integrate-and-fire model behaves as predicted: Once it is
given constant Gaussian noise in the input, it produces a
firing-rate variance that grows with the firing-rate mean.
Further support for the Gaussian–rectification model comes
from its novel, and correct, prediction that firing-rate
variance should saturate at high firing rates. In confirming
this prediction I showed that the model can be used to
account for variability in firing rate without knowledge of
cellular properties. The extension to extracellular data is
important because extracellular methods constitute the norm
in visual neurophysiology, especially in awake animals, and
are the ones used in previous studies of firing-rate variability.

These results further lengthen a list of properties of V1
neurons that are simply explained by the firing threshold. In
addition to the amplification of trial-to-trial variability
demonstrated here, these include the sharpening of tuning
for stimulus direction and orientation (Jagadeesh et al. 1993;
Carandini and Ferster 2000; Volgushev et al. 2000), the

power-law behavior of firing rate at low contrast (Heeger
1992; Anderson et al. 2000b; Hansel and van Vreeswijk 2002;
Miller and Troyer 2002), and even the establishment of the
dichotomy between simple and complex cells (Carandini and
Ferster 2000; Mechler and Ringach 2002; Priebe et al. 2004). It
is remarkable that a mechanism as simple as the firing
threshold can determine phenomena that might prima facie
require more complex explanations at the level of the
network.

Limitations of the Approach
One limitation of this study lies in the use of coarse

potential. Coarse potential is not completely independent of
firing rate: Even when spikes are removed and the traces
smoothed, there is still a likely contribution of active
conductances that has not been removed. Fortunately, this
limitation strengthens my observation that coarse potential is
not nearly as variable as firing rate: Any unwanted remaining
echo of the spikes would make coarse potential more similar
to firing rate and, thus, more variable. Therefore, in reality
the variance of the actual synaptic input might be even less
dependent on the mean than appears, for example, in Figure
2B, 2E, and 2H. A partial control for these effects would be to
perform some of the measurements while blocking spikes.
However, blocking spikes would prevent the key measure-
ments of this study, which require concurrent measurement
of firing rate and estimation of synaptic input.
Another limitation of the approach is that I have mostly

considered firing rates, not individual spikes. Unlike firing
rates, individual spikes can occur only in integer numbers
and are separated by refractory periods. These properties can
become relevant to response variability, for example, if firing
rates become so high that refractory period becomes a
limiting factor (Kara et al. 2000). Such concerns are assuaged
by the realistic integrate-and-fire model (Figure 7), which
shows an increase of firing-rate variance with the mean
similar to that predicted by the Gaussian–rectification model.
As to the saturation in firing-rate variance that was observed
in some neurons, it invariably occurred at firing rates much
lower than predicted from the refractory period.

Figure 9. Role of Parameters of Gaussian–Rectification Model

The standard deviation of potential was set to r = 1, so that the
shape of the curves relating firing-rate variance to firing-rate mean
depends entirely on the gain k and the exponent n of the curves
relating firing rate to membrane potential. The effects of these two
parameters are explored: varying n (columns) and varying k (rows).
Red curves: predictions of the Gaussian–rectification model; shaded
areas: regions where the model predicts the occurrence of 75% of the
points. Insets illustrate the corresponding curves relating firing rate
to membrane potential.
DOI: 10.1371/journal.pbio.0020264.g009

Figure 10. Relationship between Variance and Mean for Eight Cells

Recorded Extracellularly in Cat V1, and Fits by the Gaussian–Rectification

Model

For each mean firing rate, data point and error bars indicate mean 6
1 s.d. of the observed variance. Red curves and shaded areas are
predictions of the model. Values of exponent n and gain k are
reported next to each graph. Cells are arranged in order of increasing
exponent n.
DOI: 10.1371/journal.pbio.0020264.g010
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A more serious limitation of coarse potentials and firing
rates is that they make sense only in a limited range of time
windows. The windows should be long enough to be able to
contain more than one spike, and short enough that mean
potential is approximately constant within the window. An
informal analysis of the effect of time window indicates that a
range of 5–20 ms is satisfactory. This range, however, might
be appropriate only for V1 neurons; further investigations
are required before applying these methods elsewhere.

Finally, a broader limitation of this work is that it
concentrates on variability across trials, with little bearing
on another form of variability, the one observed within trials
in the irregularity of spike trains (Softky and Koch 1993; de
Ruyter van Steveninck et al. 1997; Reich et al. 1997; Troyer
and Miller 1997; Buracas et al. 1998; Shadlen and Newsome
1998; Stevens and Zador 1998). Thanks to recent advances,
however, the cellular origins of this form of variability have
been largely explained (Reich et al. 1997; Stevens and Zador
1998). In particular, it is now clear that high variability within
trials is to be expected if neurons receive synaptic inputs with
slow temporal correlation (Svirskis and Rinzel 2000). In fact,
variability within trials is most evident with visual stimuli that
provide a roughly stationary response, being greatly dimin-
ished with richer stimuli, which elicit highly precise responses
(Bair and Koch 1996; Reich et al. 1997; Buracas et al. 1998).
Conversely, trial-to-trial variability is endemic, being present
regardless of type of visual stimulus (Reich et al. 1997; Buracas
et al. 1998).

Implications for Cortical Processing
What computational advantage might cortical neurons

derive by amplifying the variability that they receive in their
input? Why reduce the signal/noise ratio? To answer these
questions, it might help to clarify the sources of ‘‘signal’’ and
‘‘noise.’’ The main source of variability in synaptic inputs to a
V1 neuron is likely to be intracortical because thalamic
responses are half as variable (Kara et al. 2000). Variability
thus results largely from ongoing cortical activity (Arieli et al.
1996; Buracas et al. 1998; Tsodyks et al. 1999; Kenet et al.
2003). It appears to us as noise simply because it is not
synchronized with stimulus onset. By contrast, the mean
across trials of potential or firing rate constitutes a signal that
is driven entirely by the stimulus.

The results of this study suggest that threshold affects the
interaction between stimulus-driven activity and ongoing
activity, turning it from additive to multiplicative. At the level
of firing rates, this interaction is largely multiplicative because
the variance of firing rate grows proportionally to the
stimulus-driven mean firing rate. At the level of synaptic
inputs, instead, this interaction is nearly additive because the
variance of potential barely depends on the stimulus-driven
mean potential. Indeed, additivity has been seen between local
field potentials and ongoing voltage-sensitive dye signals
(Arieli et al. 1996). We have seen that the rectification due
to firing threshold is single-handedly responsible for the
variability of firing rate and is, thus, responsible for turning a
largely additive interaction into a multiplicative interaction.

It is thus conceivable that the computational role of firing
threshold is to multiply stimulus-driven responses by ongoing
cortical activity, i.e., to multiply what we call ‘‘signal’’ by what
we call ‘‘noise.’’ What may appear as lowering the signal/noise
ratio can in fact be seen as a useful process, one that

progressively amplifies the ongoing activity that ultimately
guides our actions.

Materials and Methods

Data acquisition in vivo. Measurements in vivo were obtained in
paralyzed, anesthetized cats. Methods for animal preparation and
maintenance have appeared elsewhere (Carandini and Ferster 2000)
and were approved by the Animal Care and Use Committees at
Northwestern University and at the Smith-Kettlewell Eye Research
Institute.

The 22 cells recorded intracellularly belong to a sample that has
been analyzed in two previous studies by Carandini and Ferster (2000)
and by Anderson et al. (2000a). These studies describe in detail the
recording methods, which involved the whole-cell patch technique.
The electrical noise associated with this technique is commonly ,0.1
mV (as judged from records obtained after losing the patch). From
the sample I excluded a few cells that produced less than ten spikes
per block of stimuli, or that failed to satisfy other minimal
requirements (firing rate .2 spikes/s, spike height .10 mV). Stimuli
were optimal gratings drifting in 12 directions in 308 intervals, and a
blank screen of uniform gray. The resting potential Vrest was taken as
the mean potential measured with the blank screen. Coarse potential
traces were obtained from traces of membrane potential sampled at 4
kHz by removing spikes (Lankheet et al. 1989) and by applying a low-
pass filter with a cutoff of 50 Hz (Carandini and Ferster 2000;
Volgushev et al. 2000). The same low-pass filter was applied to spike
trains sampled at 4 kHz to yield firing rate. Both coarse potential and
firing rate were subsampled at 100 Hz.

The 37 neurons recorded extracellularly are part of a study of the
organization of receptive fields and suppressive surrounds in area V1
(Bonin et al. 2003). This dataset was chosen because it involved
lengthy experiments that yielded many thousands of spikes per cell at
a variety of firing rates. Recordings were made with quartz-coated
platinum/tungsten microelectrodes; methods for data acquisition and
animal maintenance have been described by Freeman et al. (2002).
Stimuli were drifting gratings presented at the optimal orientation,
spatial frequency, and temporal frequency, and enclosed in one of 66
possible windows. The windows were stationary square gratings with
variable period and orientation. Stimuli typically lasted 2 s, and each
block of stimuli was typically repeated three to six times. Firing rates
were extracted from the spike train by low-pass filtering at 50 Hz and
were subsampled at 100 Hz.

Data acquisition in vitro. Measurements in vitro were made with
sharp intracellular electrodes from slices of guinea pig visual cortex.
Methods for this preparation were approved by the Animal Care and
Use Committee at New York University. The cells are part of the
dataset presented by Carandini et al. (1996); the cell in Figure 7 is the
one whose responses are extensively illustrated in that study (cell
19s2).

Rectification model. The relation between potential V and firing
rate R (e.g., Figure 1H) was fitted with an extension of the
rectification model (Mechler and Ringach 2002), where
RðVÞ ¼ k V � Vthresh½ �nþ, with [.]þ indicating rectification, k a propor-
tionality factor, and n an exponent. Fitted parameters were Vthresh =
�55.3 mV, k = 16.7, and n = 1.2 for the simple cell in Figure 1, and
Vthresh =�46.6 6 10.5 mV, k = 12.4 6 7.9, and n = 1.1 6 0.6 for the
whole intracellular population (N = 22). The distance between Vthresh
and Vrest was 5.1 mV for the simple cell in Figure 1, and 8.0 6 4.2 mV
for the population.

Gaussian–rectification model. The mean potential Vmean in
response to a stimulus was defined as the mean across trials of
coarse potential.

In the Gaussian–rectification model, the probability of observing a
firing rate r (Figure 4A) given a mean potential Vmean is

p rð Þ ¼
Z‘

�‘

d RðVÞ � r½ �N Vmean;r½ � Vð ÞdV ; ð1Þ

where R(V) is the relation between firing rate and potential V (Figure
1H), and N[Vmean, r] is the probability distribution of potential
(Figure 5B), a Gaussian with mean Vmean and standard deviation r.
The value of p(r) depends on whether r is zero or positive:

p rð Þ ¼ N Vmean;r½ � r=kð Þ1=n þ Vthresh

� �
ð2Þ

for r . 0, and
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p 0ð Þ ¼
ZVthresh

�‘

N Vstim;r½ � vð Þdv ¼ erf
Vmean � Vthresh

r

� �
ð3Þ

for r = 0. The first expression is simply the value of the Gaussian for
V = R�1(r). The second expression is the area of the portion of
Gaussian that is below threshold (erf is the error function).

These expressions allow maximum likelihood estimation of
model parameters from measured firing rates. When parameters
of the relation between firing rate and potential R(V) are obtained
independently (in intracellular recordings; Figure 1H), the only
free parameter was the standard deviation r of potential. Across
the intracellular population, the average value of r obtained by
the fits was 5.4 6 2.0 mV (s.d., N = 22). The required r was
always larger (by 2.1 6 1.5 mV) than the standard deviations
observed when Vmean = Vrest, but it was comparable (larger by only
0.9 6 1.6 mV) to the standard deviations observed when Vmean =
Vthresh.

Statistics. Let Vmean(t) be the mean potential at time t from
stimulus onset. Because the sample rate is 100 Hz, each time sample
corresponds to a 10-ms interval. Of course, Vmean(t) depends on the
stimulus. To simplify the notation, however, consider the case of a
single stimulus.

Distributions for potential at a given mean potential (Figure 5B)
were computed as follows: (1) Select a value of interest, v (e.g., v =
�55 mV; Figure 5B, a); (2) find the times (tk) when the mean potential
Vmean(tk) is within 2 mV of v; (3) pooling across trials j, look at the
distribution of potential [Vj(tk)] (e.g., Figure 5B, a).

Distributions for z-scores (normalized deviations from the mean)
of potential (Figure 6A, 6C, and 6E) were computed as follows: (1)
Divide the range of values of Vmean in 1-mV intervals, with centers (vi);
(2) for each interval i, find the set of times (tik) when the mean
potential is in the i-th bin; (3) pooling across trials j, compute ri, the
standard deviation of Vj(tik); (4) transform each Vj(tik) into a z-score:
zijk= [Vj(tik) � vi]/ri; (5) look at the distribution of (zijk) (e.g., Figure
6A).

Enhanced integrate-and-fire model. The enhanced integrate-and-
fire model was derived in collaboration with Davide Boino (2000) by
simplifying a model by Wang (1998). The model neuron has a single
compartment with membrane equation

Cm
dVm tð Þ
dt

þ Ileak tð Þ þ IAHP tð Þ þ INa tð Þ þ IK tð Þ þ Iinj tð Þ ¼ 0; ð4Þ

where the currents are:

Ileak tð Þ ¼ gleak Vm tð Þ � Vleak½ � ð5Þ

IAHP tð Þ ¼ gAHP
CaðtÞ

Ca50 þ CaðtÞ Vm tð Þ � VK½ � ð6Þ

INa tð Þ ¼ gNaðt� tspikeÞ Vm tð Þ � VNa½ � ð7Þ

IK tð Þ ¼ gKðt� tspikeÞ Vm tð Þ � VK½ �; ð8Þ

with tspike the time of the last spike. Ca(t) is the (unitless) calcium
concentration:

CaðtÞ ¼
X

tspike , t

1� exp � t
0:001

� �� �
exp � t

sCa

� �
; ð9Þ

where the sum extends over all spikes with tspike , t.

Spikes result from stereotyped conductances gNa(t) and gK(t)
derived from Hodgkin–Huxley equations and are scaled to approx-
imate the spikes from the recorded neuron. They occur when Vm
exceeds a threshold, which depends on the time since the last spike:

Vm tð Þ.Vthresh 1� exp �
t� tspike
sthresh

� �� �
: ð10Þ

The reversal potentials for sodium and potassium were set to Vk =
�80 mV and VNa = 55 mV. Passive parameters of the membrane (Cm
= 120 pF, gleak = 12.4 nS, Vleak =�60.3 mV) were obtained by fitting
the membrane potential responses to sinusoids. The remaining
parameters (gAHP = 23.0 nS, Ca50 = 10, sCa = 200 ms, Vthresh =�43.5
mV, sthresh = 36 ms) were obtained by a search algorithm aimed at
maximizing the quality of the predictions for firing rate.
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