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Abstract: L-PRF is an autologous blood-derived biomaterial (ABDB) capable of releasing biologically
active agents to promote healing. Little is known about its release profile of growth factors (GFs),
cytokines, and MMPs. This study reported the in vitro and ex vivo release kinetics of GFs, cytokines,
and MMPs from L-PRF at 6, 24, 72, and 168 h. The in vitro release rates of PDGF, TGF-β1, EGF, FGF-2,
VEGF, and MMPs decreased over time with different rates, while those of IL-1β, IL-6, TNF-α, IL-8,
and IL-10 were low at 6 h and then increased rapidly for up to 24 h and subsequently decreased.
Of note, the release rates of the GFs followed first-order kinetics both in vitro and ex vivo. Higher
rates of release were found ex vivo, suggesting that significant amounts of GFs were produced by the
local cells within the wound. In addition, the half-life times of GFs locally produced in the wound,
including PDGF-AA, PDGF-AB/BB, and VEGF, were significantly extended (p < 0.05). This work
demonstrates that L-PRF can sustain the release of GFs and cytokines for up to 7 days, and it shows
that the former can activate cells to produce additional mediators and amplify the communication
network for optimizing the wound environment, thereby enhancing healing.

Keywords: L-PRF; growth factors; release; first-order kinetics; in vitro; ex vivo

1. Introduction

Shortly after the discovery of the role of growth factors (GFs) in wound healing and
their pioneering application in pre-clinical models, autologous blood-derived GF prepara-
tions have received great attention as an alternative to recombinant human preparations for
promoting wound healing and tissue regeneration [1–3]. Systematic reviews on the effect
of GFs show greater signals from autologous blood preparations than local applications of
pharmaceutical preparations [1,4–6]. However, the evidence of their benefits is insufficient,
and clinical equipoise remains for most clinical applications.

Among the different preparations, leucocyte- and platelet-rich fibrin (L-PRF) is a
second generation of platelet concentrates. Over the past decade, L-PRF has gained tremen-
dous momentum and has been increasingly utilized for a variety of regenerative therapies,
particularly in dentistry [7]. Systematic reviews show that the use of L-PRF could consider-
ably improve good clinical outcomes in terms of soft and hard tissue healing [8–10].

L-PRF consists of platelets, leukocytes, and GFs harvested from blood, without the use
of anticoagulants [7]. The lack of anticoagulant leads to the formation of thrombin, which
successively activates most of the platelets and simultaneously triggers fibrin formation.
L-PRF is obtained via a simplified preparation, without biochemical blood handling and
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follows only one centrifugation cycle [7]. During centrifugation, fibrinogen transforms into
a dense fibrin network, which localizes in the middle portion of the tubes, between the
red blood cells pellet (RBCs) and the upper acellular plasma. Most platelets (>90%) and
more than half of the leukocytes (>60%) are concentrated in the intermediate layer located
between the L-PRF clot and RBCs [11,12]. Platelets are activated during this process and
various GFs, such as platelet-derived growth factor (PDGF), transforming growth factor-β1
(TGF-β1), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF),
are released from the α-granules of platelets and embedded in the three-dimensional fibrin
network. Indeed, L-PRF shows a prolonged release of these GFs from the fibrin matrix
lasting for 7 days, due to its dense fibrin architecture that cannot completely dissolve in
the culture medium. In addition to GF concentrates in L-PRF, inflammatory cytokines and
chemokines (e.g., IL-1β, IL-4, IL-6, tumor necrosis factor–α (TNF-α), and IL-8) can also be
released by both platelet α-granules and leukocytes [13].

Fibrin networks have been used as sustained/controlled release platforms/formulations
for a variety of biologically active agents to promote wound healing and tissue regenera-
tion [14]. These delivery systems aim to improve the performance of naturally occurring
fibrin clots, but surprisingly, little is known about the release profile of autologous fibrin
clot preparations. The release profile of GFs from L-PRF has been investigated in several
studies using ELISA [12,15,16]. Knowledge about the release and the pharmacokinetic
profile, however, remains incomplete. Additionally, there is little evidence of the relative
proportion of GFs that are retained in the fibrin network as compared to those that are
released and remain in aqueous solution. Furthermore, there is a lack of information in
the literature regarding the parallel analysis of GFs and cytokines in the same sample. To
address these limitations, this study investigated the in vitro and ex vivo release kinetics
of GFs and cytokines from L-PRF at 6, 24, 72, and 168 h, and those observed in L-PRF
construct exudate, using multiplex immunoassay. This notable approach allows for the
simultaneous quantification of multiple markers providing unique information for a more
complete understanding of L-PRF release profiles over 7 days. Therefore, the aim of this
study was to describe the in vitro and ex vivo release profiles of a palette of 14 GFs and
cytokines from L-PRF prepared from healthy subjects.

2. Materials and Methods
2.1. Blood Collection

Subjects were recruited from Prince Philip Dental Hospital between September 2019 and
June 2021. These subjects participated in a clinical trial (clinicaltrials.gov NCT03985033) that
was approved by the Institutional Review Board of the University of Hong Kong/Hospital
Authority Hong Kong West Cluster (IRB Reference Number UW 19-306). All subjects
provided written informed consent. The clinical data were reported separately [17]. In brief,
a standard venipuncture was carried out on 18 subjects aged between 18 and 60 years old
who had no history of recent aspirin intake or any medications that affect blood coagulation.
Blood was collected from each subject in two types of tubes: silica-coated (to induce clotting)
anticoagulant free blood collection tubes (Intraspin®; IntraLock™, Boca Raton, FL, USA)
and blood collection tubes with EDTA.

2.2. Preparation of L-PRF Clots

A total of 9 mL blood was collected in silica-coated tubes (IntraSpin®; IntraLock™,
Boca Raton, FL, USA) for L-PRF clot preparation. L-PRF clots were prepared using the
Choukroun’s protocol as described by Temmermann et al. [18]. The tubes were centrifuged
after venipuncture at 2700 rpm (408 g) for 12 min at room temperature using a table
centrifuge (Intraspin®; IntraLock™, Boca Raton, FL, USA). After centrifugation, a surgical
tweezer was used to separate L-PRF clots from the tubes. L-PRF membranes for in vitro
experiment were prepared by gravitational compression of L-PRF clots with weighted press
against a perforated tray in a metal box (XpressionTM Box; IntraLock™, Boca Raton, FL,
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USA) (Figure 1). Meanwhile, approximately 0.8 mL of the serum exudate expressed from
each L-PRF clot was also collected for further analysis.
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Figure 1. L-PRF preparation. (A) Tubes after centrifugation process. Content in three layers: red
blood cells, L-PRF clot, and acellular plasma—from the lower end to the top of the tube; (B) L-PRF
clot; (C) L-PRF membrane.

2.3. Plasma Preparation and Complete Blood Count

An amount of 6 mL of venous blood from each subject was collected in EDTA vacutainer
and aliquoted for complete blood count and plasma preparation. Complete blood count (CBC)
was performed using a Coulter counter in the Essence Medical Laboratory (Hong Kong). For
plasma preparation, the whole blood was centrifuged for 10 min at 1500 g at 4 ◦C to remove
cells. The supernatant was collected and stored at −80 ◦C until analysis.

2.4. In Vitro Release from L-PRF Membrane

To determine the release of biomarkers from L-PRF membrane at 6, 24, 72, and 168 h,
L-PRF membranes were placed in a 24-well plate with 1 mL of sterile DMEM (Dulbecco’s
Modified Eagle’s Medium) at 37 ◦C. At each time point, 1 mL of DMEM was collected and
replaced with 1 mL of additional DMEM. The collected culture media were centrifuged at
10,000 rpm for 10 min at 4 ◦C to remove cellular elements and frozen thereafter at −80 ◦C
until analysis.

2.5. Multiplex Assays

The concentrations of GFs, cytokines, and MMPs in plasma, exudate, and the collected
culture media were evaluated using a multiplex immunoassay. A Milliplex® MAP TGF-β1
Magnetic Bead Single Plex Kit (Merck & Co., Burlington, MA, USA) and Milliplex® Cus-
tomized 13-Plex Human Growth Factor/Cytokine/MMP Mag Kit (Merck & co., Burlington,
MA, USA) was used to detect and quantify 14 biomarkers (TGF-β1, PDGF-AA, PDGF-
AB/BB, EGF, FGF-2, VEGF, ANG-2, IL-1β, IL-6, IL-8, IL-10, TNF-α, MMP-1, and MMP-2)
according to the manufacturer’s instructions. Briefly, the plate was washed with buffer.
Standards or samples (25 µL) and assay buffer (25 µL) were added into each well. Antibody-
immobilized-beads cocktail (25 µL) was resuspended by vortexing and added into each
well of the microplate. The microplate was incubated with agitation on a plate shaker
overnight at 4 ◦C. After washing away any unbound substances with wash buffer, 25 µL
of detection antibody was added to each well and incubated for 1 h at room temperature.
Then, 25 µL of streptavidin–phycoerythrin conjugate (Streptavidin-PE) was added and
incubated for 30 min. Finally, after washing the plate, the beads were resuspended in
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150 µL of sheath fluid and read within 90 min using the Bio-Plex® 200 system (Bio-Rad
Laboratories Inc., Hercules, CA, USA). Data were analyzed using a 5-parameter logistic
(5PL) curve with Bio-Plex® Manager 6.1 software (Bio-Rad Laboratories Inc., Hercules, CA,
USA) and reported as ng/mL.

2.6. Ex Vivo Recovery

Raw data for ex vivo recovery were derived from the parent clinical trial registered in
clinicaltrials.gov as NCT03985033. This trial reported growth factor and cytokine concen-
trations at 6, 24, 72, and 168 h in two similar tooth extraction wounds: one left to unassisted
healing and the other receiving L-PRF [17]. In brief, wound fluid was sampled using sterile
paper strips (Periopaper, Oraflow Inc., New York, NY, USA) from the wound edges and
measured non-destructively using capacitance (Periotron 8010, Oraflow Inc., New York, NY,
USA). As GFs and cytokines are also produced during the normal wound healing process,
the effect of the added L-PRF was estimated by subtracting the values of the control sites at
all time points.

2.7. Statistical Analysis

Statistical analyses were carried out using SPSS (Version 27.0, Chicago, IL, USA). This
study was mainly descriptive. Normality distributions for all variables were checked with
Shapiro–Wilk test. All continuous variables were expressed as mean ± SEM or median
with interquartile ranges (Q1–Q3). Paired t-test or Wilcoxon matched-pairs signed-rank
test was used to compare the difference between plasma and L-PRF exudate. A heatmap
was generated using GraphPad Prism (Version 9.0, Dotmatics, Boston, MA, USA), and the
average value was based on the mean of release rate. Pharmacokinetic parameters were
estimated under the single-compartment open model assumption using the exponential
one-phase-decay function of Prism GraphPad Version 9.0 (Dotmatics, Boston, MA, USA).

3. Results
3.1. Platelet and WBC Counts

A CBC analysis was performed on whole blood from each subject. As data were not
normally distributed, median and interquartile ranges were reported for platelets and
white blood cells (Table 1). All values were within the normal range.

Table 1. Platelet and WBC counts in whole blood.

Concentration (109/L)
Median (Q1–Q3) Adult Reference Ranges (109/L)

Platelet 295.5 (240.75–324.75) 150–400
White blood cell 6.00 (5.13–7.68) 4.00–11.00

3.2. Quantification of GFs, MMPs, and Cytokines in Plasma and L-PRF Exudate

Multiplex assay quantifications of GFs, cytokines, and MMPs from plasma and L-PRF
exudate were determined for each patient (Table 2). Higher levels of TGF-β1, PDGF-
AA, PDGF-AB/BB, EGF, VEGF, MMP-1 and MMP-2 were present in the PRF exudate
when compared to those present in plasma from the same subject (Table 2). The levels of
cytokines (IL-1β, IL-6, TNF-α, IL-10) and chemokines (IL-8) in plasma and L-PRF exudate
were below the limit of detection of the assay in the majority of the 18 healthy donors,
although significant higher levels of IL-8 and TNF-α were found in L-PRF exudate.

3.3. Quantification of GFs, Cytokines, and MMPs In Vitro Released from L-PRF over Time

For each growth factor, cytokine, or MMP released from L-PRF, data were presented
as rate of release as well as total release over time (Figures 2–4). It was observed that the
release rate of all the GFs decreased exponentially over time with slight variations among
the GFs, and the results fit first-order kinetics (please see Section 3.6).
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Table 2. GFs, cytokines, and MMPs concentrations in plasma and L-PRF exudate.

Blood Plasma
Median (Q1–Q3)

L-PRF Exudate
Median (Q1–Q3)

Fold Changes
(L-PRF Exudate/Plasma) p Value

TGF-β1 (pg/mL) 4574.25 (2393.63–7234.80) 14,169.00 (10,737.30–17,356.95) 3.10 <0.0001
PDGF-AA (pg/mL) 309.30 (128.48–417.13) 1507.81 (1087.01–2063.21) 4.87 <0.0001

PDGF-AB/BB (pg/mL) 2701.45 (1220.95–4043.44) 6676.02 (6245.01–8360.68) 2.47 <0.0001
EGF (pg/mL) 5.75 (2.90–7.77) 20.24 (5.43–28.51) 3.52 0.0007 #

FGF-2 (pg/mL) 66.72 (48.36–79.96) 42.34 (17.83–68.84) 0.63 0.0665 #

VEGF (pg/mL) 4.90 (4.90 *–21.38) 41.43 (4.90 *–89.75) 8.46 0.0046 #

ANG-2 (pg/mL) 618.15 (444.69–1025.74) 741.31 (525.68–1208.38) 1.20 0.1084 #

MMP-1 (pg/mL) 137.02 (77.22–199.98) 633.66 (416.20–980.59) 4.62 <0.0001 #

MMP-2 (pg/mL) 9830.76 (8283.60–12,369.32) 10,864.02 (8925.92–15,183.59) 1.11 0.0004
IL-1β (pg/mL) 0.66 (0.10 *–1.32) 0.10 (0.10 *–1.47) 0.15 0.1733 #

IL-6 (pg/mL) 1.46 (0.21 *–6.27) 2.39 (0.21 *–8.33) 1.64 0.6698 #

TNF-α (pg/mL) 8.04 (6.56–10.12) 9.99 (6.44–14.63) 1.24 0.0026 #

IL-8 (pg/mL) 5.04 (2.91 *–10.09) 8.79 (5.00–13.36) 1.74 0.0019 #

IL-10 (pg/mL) 3.26 (2.54–4.36) 2.31 (1.62 *–3.26) 0.71 0.003

Paired t-test (for normally distributed biomarkers). # Wilcoxon matched-pairs signed-rank test (for not normally
distributed parameters). * Value at the limit of detection of the assay.
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of release and total release, respectively. Mean ± SEM is displayed at each time point.
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Figure 4. Rate of release and total release of matrix metalloproteinases (MMPs). The figure shows
the rate of release and total release of the tested matrix metalloproteinases (MMPs) from the L-PRF
membrane up to 168 h. Panels (A,C) display MMP-1 and (B,D) MMP-2 for rate of release and total
release, respectively. Mean ± SEM is displayed at each time point.

The release rate of MMPs decreased over time. However, the release rate of cytokines
(IL-1β, IL-6, TNF-α, IL-10) and a chemokine (IL-8) followed a different pattern that was
largely consistent among the different molecules. Release rates were low at 6 h, increased
rapidly between 6 and 24 h, and later decreased.

3.4. Heatmap Analysis

A heatmap was generated using the mean of total amounts of release per hour to show
the changes in the release rate of GFs, cytokines, or MMPs over 168 h (Figure 5). Each
analyte presented a specific release profile. For GFs and MMPs, the highest release was
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found at the first 6 h, followed by a reduction in concentrations, although with different
rates of decrease, while the highest release rates for cytokines and the chemokine occurred
from 6 to 24 h.
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represents the changes in the mean of release rate of GFs, cytokines, or MMPs over 168 h. The release
rate is indicated according to the color scale representing different levels of rate of release per hour
(green—lowest, red—highest rate of release).

3.5. Recovery of GFs in L-PRF Membrane and Exudate

Based on previous reports, the physiological levels of PDGF, EGF, FGF-2, and VEGF
in platelets were 23 pg/106 platelets, 2.5 pg/106 platelets, 0.44 pg/106 platelets, and
0.74 pg/106 platelets, respectively [19,20]. The recovery of the four GFs from L-PRF mem-
brane over 168 h and exudate were calculated. Higher amounts of PDGF, EGF, FGF-2, and
VEGF were recovered from L-PRF membrane release compared to those detected in the
exudate, confirming that most GFs remained trapped in the L-PRF (Table 3).

Table 3. GF recovery from L-PRF and exudate.

PDGF (PDGF-AA,
PDGF-AB/BB) EGF FGF-2 VEGF

Physiological amount of GF per
106 platelets (pg) 23 2.5 0.44 0.74

Estimated amount of GF per 9 mL
of blood (pg, Q1–Q3)

61,168.5
(49,835.3–67,223.3)

6648.75
(5416.9–7306.9)

1170.18
(953.4–1286.0)

1968.03
(1603.4–2162.8)

Total amount released from
L-PRF (pg) 53,412.35 2070.12 257.34 261.67

% Recovery from L-PRF
membrane 87.32% 31.14% 21.99% 13.30%

% Recovery from exudate 10.70% 0.24% 2.89% 1.68%

3.6. Comparison of In Vitro and Ex Vivo Patterns of Growth Factor Release

Some GFs, namely, TGF-β1, PDGF-AA, PDGF-AB/BB, EGF, FGF-2, and VEGF, fol-
lowed a first-order release both in vitro and ex vivo (Figure 6, Tables 4 and 5). A best-fit
nonlinear regression was used based on the exponential one-phase-decay function. The
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half-life time of each growth factor was also calculated based on the equation in [21] to show
the time required for the rate of release to decrease to half of its initial value (Tables 4 and 5).
Focusing on rate constants, half-life times of elimination, and estimated baseline rates of
release, a few patterns emerged. PDGF-AA and PDGF-AB/BB showed similar baseline
rates of release but had significantly smaller rate constants and longer half-life times ex vivo
(p < 0.05). In contrast, VEGF showed a significantly higher half-life time for elimination ex
vivo when compared to that in vitro (p < 0.05). TGF-β1, EGF, and FGF-2 displayed similar
rate constants and half-life times, but they had higher rates of release ex vivo compared to
in vitro, pointing to a predominant contribution from local production within the wound
rather than release from the L-PRF formulation.
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Figure 6. One-phase exponential decay of GFs in vitro and ex vivo. The figure shows one-phase
exponential decay of (A) TGF-β1, (B) PDGF-AA, (C) PDGF-AB/BB, (D) EGF, (E) FGF-2, and (F) VEGF
in vitro (blue) and ex vivo (red). Significant differences in half-life times were observed for PDGF-AA
(p = 0.004), PDGF-AB/BB (p = 0.028), and VEGF (p = 0.033) between the in vitro and ex vivo cases.
[R]: rate of release; t1/2: half-life time.

Table 4. Best-fit values, 95% CIs, and goodness of fits of the exponential decay of each growth factor
in vitro.

TGF-β1 PDGF-AA PDGF-AB/BB EGF FGF-2 VEGF

Best-fit values

Y0 1198 356 1450 118 24 15

K 0.025 0.045 0.026 0.040 0.056 0.032

Half Life 27.25 15.48 26.96 17.32 12.45 21.58

Tau 39.31 22.33 38.89 24.99 17.96 31.13

95% CI (profile likelihood)

K 0.011 to 0.059 0.016 to 0.128 0.010 to 0.067 0.015 to 0.109 0.015 to 0.211 0.016 to 0.067

Half Life 11.66 to 61.40 5.40 to 43.81 10.35 to 67.20 6.39 to 46.76 3.29 to 47.30 10.42 to 43.68

Tau 16.82 to 88.58 7.79 to 63.21 14.93 to 96.94 9.21 to 67.45 4.74 to 68.24 15.03 to 63.02

Goodness of Fit

R squared 0.92 0.89 0.90 0.90 0.83 0.94

Y0: the initial amount. Tau: the time constant. K: the rate constant.
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Table 5. Best-fit values, 95% CI and goodness of fit of the exponential decay of each growth factor
ex vivo.

TGF-β1 PDGF-AA PDGF-AB/BB EGF FGF-2 VEGF

Best-fit values

Y0 6509 206 1724 455 308 261

K 0.029 0.025 0.020 0.035 0.060 0.004

Half Life 23.90 27.98 34.64 19.64 11.64 162.3

Tau 34.49 40.37 49.97 28.33 16.79 234.2

95% CI (profile likelihood)

K 0.004 to 0.174 0.014 to 0.045 0.008 to 0.060 0.013 to 0.095 0.015 to 0.252 0.001 to 0.014

Half Life 3.99 to 160.90 15.47 to 49.34 11.64 to 91.04 7.32 to 51.38 2.75 to 47.39 50.03 to 31961

Tau 5.76 to 232.20 22.32 to 71.18 16.80 to 131.30 10.57 to 74.12 3.96 to 68.36 72.18 to 46111

Goodness of Fit

R squared 0.63 0.96 0.87 0.90 0.82 0.48

Y0: the initial amount. Tau: the time constant. K: the rate constant.

4. Discussion

This paper describes, for the first time, the pharmacokinetic patterns of the in vitro and
ex vivo release of GFs, cytokines, and MMPs from L-PRF—a clinically applied autologous
blood-derived construct for improved wound healing—through observing the local release of
biologically active GFs using data from the same patient. Comparisons of the in vivo and ex
vivo parameters revealed that the release of the GFs from L-PRF activates cells in the wound
environment to produce additional mediators and amplify the communication network.

Previous studies only reported the in vitro concentrations of specific GFs using single-
analyte ELISA-based assays [12,15,16,22,23]. In this study, a multiplex immunoassay was
applied to simultaneously quantify multiple biomarkers released from L-PRF in a single
microplate well, and the method was based on a capture sandwich immunoassay. This
method allows for the parallel analysis of GFs and cytokines in the same sample, thereby
increasing the reliability of the results and reducing manipulation errors. It is interesting
to note that the release of all GFs followed first-order kinetics both in vitro and ex vivo.
However, higher rates of release were found ex vivo, indicating that significant amounts
of GFs are produced by the local cells within a wound. The initial release of GFs from
L-PRF may serve as a chemoattractant for neutrophils, macrophages, and fibroblasts and
then further enhance their levels in a wound. In addition, the local production of GFs also
extended the half-life times for PDGF-AA, PDGF-AB/BB, and VEGF. Such new findings
demonstrate that L-PRF could not only release GFs per se but also promote local host cells
to produce more GFs in vivo, thereby providing indirect evidence of the bioactivity of the
released mediators.

GFs and cytokines play an important role in wound healing regulation due to their
capacity to stimulate cell migration, proliferation, and differentiation as well as their in-
volvement in complex cellular signaling networks for coordinating multiple cells [24].
Several biomolecules have already been investigated in L-PRF by other groups using
elution, such as TGF-β1 [12,15,16,22,23], PDGF-AA [15,25], PDGF-AB/BB [12,15,16,22,23],
EGF [15], VEGF [12,15,16,22,23], and MMP-1 [12], which reflects the change in the con-
centration of GFs in the culture medium. A recent study showed that the total amounts
of GFs released during the first 7 days were always higher than the total quantities after
forcible extraction from L-PRF clots after preparation [23]. This finding suggests that
cells trapped within L-PRF (mainly leukocytes) can contribute to the production of GFs.
Physiological levels of PDGF, VEGF, and FGF-2 in platelets are 23 ± 6 pg/106 platelets,
0.74 ± 0.37 pg/106 platelets, and 0.44 ± 0.15 pg/106 platelets, respectively [19]. Such val-
ues clearly indicate that large amounts of GFs can be released from platelets. Of the total



Cells 2022, 11, 2089 10 of 12

reservoir of GFs present in platelets, a portion may be lost in the supernatant during L-PRF
preparation due to early platelet degranulation and activation, while a part may be loosely
associated with the three-dimensional clot matrix and may be removed during squeezing
of the L-PRF clot in the exudate. Another fraction may be more tightly embedded into the
fibrin mesh but still be present within platelets, and it could be slowly released over time.
In this study, the total recovery of GFs ranged between 13% (VEGF) and 87% (PDGF). While
these calculations used historical data and thus are inherently imprecise, the fact that a large
fraction of the total GFs was released slowly from L-PRF speaks for the effectiveness of the
preparation method and its biologic potential during local applications for the promotion
of wound healing.

Notably, within 7 days, the accumulated concentrations of released GFs were higher
than those in plasma, except for ANG-2. Furthermore, the three-dimensional polymer
structure of the fibrin matrix prevented the degradation of platelets so that the GFs could be
released gradually. Castro et al. reported the TGF-β1, PDGF-AB, and VEGF release profiles
by using ELISA detection methods at five time intervals (0 to 4 h, 4 to 24 h, 24 to 72 h, 72 to
168 h, and 168 to 336 h), showing a continuous release of these GFs for over 336 h [23]. Their
results are consistent with those of the present study. However, it is difficult to compare
absolute concentrations due to methodological differences, such as the volume of culture
medium and the detection approach (ELISA vs. multiplex immunoassay).

In this study, it was interesting to observe that Choukroun’s L-PRF could also gradually
release cytokines and chemokines over time. High concentrations of IL-1β, TNF-α, IL-6, IL-10,
and IL-8 were released from L-PRF after 6 h, and they were likely released step-by-step during
the experiment by the leukocytes embedded in the L-PRF fibrin matrix. The presence of
leukocytes in platelet concentrates and the consequent release of inflammatory mediators
may be beneficial for wound healing. Previous studies have shown that the high release
of inflammatory cytokines, including IL-1β and TNF-α, can induce the proliferation and
differentiation of osteoblasts and osteoclasts [26]. Also, it was found that IL-1β released by
L-PRF plays an active role in tissue repair, which may promote the migration of mesenchymal
stem cells and human endothelial cells [27]. Moreover, high amounts of cytokines can stimulate
the defense mechanism, which is important in cases of wound infection.

For clinical applications, L-PRF clots prepared using the standard procedure are
usually squeezed to obtain L-PRF membranes for clinical practice, with the PRF exudate
being discarded. It was reported by Castro et al. (2019) that only 6% of platelets and 0.9%
of leukocytes were present in L-PRF exudate, while most of them were trapped in the fibrin
matrix [23]. Our results showed that the levels of GFs recovered in exudate were much
lower than the accumulated amounts released from the L-PRF membrane, indicating very
little degranulation from platelets during the clotting/preparation of the L-PRF. However,
it was interesting to find that higher levels of PDGF-AA, PDGF-AB/BB, TGF-β1, EGF, and
VEGF were present in the L-PRF exudate than those present in plasma, which might suggest
that a small part of molecular content was released from L-PRF after squeezing. Given the
presence of GFs in L-PRF exudate, it could be mixed with bone grafts, forming a bioactive
scaffold to promote wound healing. Witek et al. reported that L-PRF exudate promoted
bone regeneration when incorporated with the PLGA scaffold as a grafting material [28].

To reduce inter-individual variability, all the subjects recruited in this study were
healthy. The number of platelets and WBCs were within the physiologic ranges. GFs,
chemokines, cytokines, and MMPs in plasma were also reported in our study. All the
cytokines and the chemokine were present in very low amounts, which is consistent with
findings reported by Biancotto et al., indicating the same concentration scale [29].

Although all the subjects were healthy, the individual variability between subjects was
still large, as the characteristics of L-PRF can be affected by patient heterogeneity in terms
of age, gender, and healing capabilities [30]. Yajamanya et al. found that the number of
platelets and white blood cells decreased with age, which might affect the levels of GFs
and cytokines [11]. Due to these limitations, further studies should increase sample sizes to
minimize variability. Moreover, as L-PRF could continuously release growth factors for up
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to 14 days, a long observation period is necessary to reveal the comprehensive releasing
profiles of growth factors from L-PRF.

5. Conclusions

This study indicated that the release of all GFs that were investigated followed first-order
kinetics both in vitro and ex vivo. Only a small fraction of platelet-associated GFs, such as
PDGF, was released during the clotting and preparation of the L-PRF. The current findings
on the continuous release of GFs and cytokines from L-PRF membrane for up to 7 days and
indirect evidence of in vivo amplification of cellular communication networks highlight that
L-PRF can be employed in medical and dental fields for enhancing tissue regeneration.
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