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The ketogenic diet’s (KD) anticonvulsant effects have been well-documented for nearly
a century, including in randomized controlled trials. Some patients become seizure-free
and some remain so after diet cessation. Many recent studies have explored its
expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s) of
action have been established. The diet’s high fat, low carbohydrate composition reduces
glucose utilization and promotes the production of ketone bodies. Ketone bodies
are a more efficient energy source than glucose and improve mitochondrial function
and biogenesis. Cellular energy production depends on the metabolic coenzyme
nicotinamide adenine dinucleotide (NAD), a marker for mitochondrial and cellular
health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin
enzymes) associated with major benefits such as longevity and reduced inflammation;
thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+

utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into
the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When
rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and
blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks,
indicating an early and persistent metabolic shift. Based on diverse published literature
and these initial data we suggest that increased NAD during ketolytic metabolism may
be a primary mechanism behind the beneficial effects of this metabolic therapy in a
variety of brain disorders and in promoting health and longevity.

Keywords: ketone bodies, metabolism, hippocampus, epilepsy, neurodegeneration, Alzheimer’s disease,
nicotinamide adenine dinucleotide, longevity

INTRODUCTION: KETOGENIC DIET AND DISORDERS OF THE
NERVOUS SYSTEM

A diet high in fat, low in carbohydrate and sufficient in protein will automatically shift the
dependency of energy production in the body from primarily glucose to primarily ketone bodies
and is termed a ‘‘ketogenic diet’’ (KD; Branco et al., 2016; Masino, 2017). This dietary approach was
developed nearly 100 years ago as metabolic therapy to mimic the metabolic changes that occur
during fasting after observing that upon halting food intake, seizures would stop in epileptic people.
The KD is well-established as a treatment for epileptic seizures and variations of the diet can be used
in children and adults and can be more effective than medication in stopping seizures (Pulford,
1927; Neal et al., 2008). The KD can also prevent seizure progression (epileptogenesis) in animal
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models and patients (Muller-Schwarze et al., 1999; Neal et al.,
2008; Lusardi et al., 2015). Some patients become seizure-free,
and remain so even after diet cessation (Martinez et al., 2007;
Patel et al., 2010; Caraballo et al., 2011). These lasting outcomes
are likely to rely on epigenetic changes (Boison, 2017).

Metabolic dysfunction is increasingly appreciated as a
fundamental pathology across disease states (Zhu and Chu,
2010; García-Escudero et al., 2013; Pathak et al., 2013). In
models of neurodegenerative diseases, metabolic therapy with
a KD or analogous ketone-enhancing metabolic strategies have
beneficial effects in cultured neurons, animal models, and in
patients. The ketone body β-hydroxybutyrate (β-OHB) protected
cultured dopaminergic substantia nigra cells from N-methyl-4-
phenylpyridinium (MPP+) toxicity and hippocampal neurons
from amyloid β toxicity (Kashiwaya et al., 2000), and improved
the disease rating score in Parkinsonian patients (Vanitallie
et al., 2005). In vivo and in vitro administration of ketone
esters reduced histological and biochemical pathologies and
improved cognition, anxiety and motor performance in mouse
models of Alzheimer’s disease (Liu et al., 2011; Hui et al., 2012;
Brownlow et al., 2013; Kashiwaya et al., 2013; Zhang et al.,
2013; Pawlosky et al., 2017). KD improved memory of patients
with mild cognitive impairment (Krikorian et al., 2012), and
administration of a ketone ester or medium chain triglycerides
(often a component of ketogenic treatment) enhanced memory
and cognition in Alzheimer’s patients (Reger et al., 2004;
Newport et al., 2015; Cunnane et al., 2016). Treatment with a
KD suppressed inflammation and improved motor disabilities
in a multiple sclerosis model (Kim et al., 2012), altered disease
progression and improved motor performance and neuronal
survival in an amyotrophic lateral sclerosis model (Zhao et al.,
2006), decreased the expression of apoptotic mediators in a
traumatic brain injury model (Hu et al., 2009), and improved
motor outcomes in a spinal cord injury model (Streijger et al.,
2013).

It is becoming apparent that beneficial effects of ketogenic
therapy extend beyond epilepsy, neurodegenerative disorders,
and brain/spinal cord injury. The KD is broadly effective in
improving core behavioral symptoms in animal models of autism
spectrum disorder (Ruskin et al., 2013b, 2017a,b; Ahn et al., 2014;
Verpeut et al., 2016; Castro et al., 2017; Dai et al., 2017), and in
autistic patients (Evangeliou et al., 2003; Masino et al., 2011b;
Spilioti et al., 2013). The KD is receiving growing interest in
oncology as tumors are highly glucose-dependent (the Warburg
effect; Seyfried andMukherjee, 2005; Zuccoli et al., 2010; Schmidt
et al., 2011; Klement et al., 2016; Lussier et al., 2016; Khodadadi
et al., 2017). Also, due to the high efficiency of metabolizing fat
when carbohydrates are minimal (Forsythe et al., 2010), the KD
has been promoted for weight reduction (Jenkins et al., 2009;
Partsalaki et al., 2012; Paoli, 2014; Gomez-Arbelaez et al., 2017)
and for treatment or reversal of type II diabetes and metabolic
syndrome (Yancy et al., 2005; Volek et al., 2008, 2009; Westman
et al., 2008; Hussain et al., 2012; Tay et al., 2015; McKenzie et al.,
2017).

In addition, healthy, disease-free cells and animals can
also benefit from this therapy. The use of ketone bodies as
an energy source appears to be associated with a healthier

metabolic phenotype that renders cells more resistant to external
insults. Ketogenic treatment decreased myocardial damage after
ischemic injury, reduced lung injury after hemorrhagic shock,
enhanced kidney resistance to oxidative stress, and protected
neurons against glutamate-induced toxicity (Zou et al., 2002;
Koustova et al., 2003; Noh et al., 2006; Shimazu et al., 2013).
At the cognitive level, beneficial effects on learning and memory
were reported (Brownlow et al., 2017; Newman et al., 2017).
KD in mice started at 8 weeks of age did not affect longevity
(Douris et al., 2015); however, KD started midlife extends
longevity and healthspan (Newman et al., 2017; Roberts et al.,
2017).

MECHANISMS OF KETOGENIC THERAPY:
EVIDENCE FOR INCREASED NAD+

Many mechanisms have been proposed to explain the
anti-seizure and neuroprotective effects of the diet, such
as enhanced mitochondrial biogenesis (Bough et al., 2006),
decreased formation of reactive oxygen radicals (Sullivan et al.,
2004), altered transmitter levels and ion channel function
(Schwartzkroin, 1999; Bough and Rho, 2007), increased
adenosine (Masino et al., 2011a; Masino and Rho, 2012), and
decreased DNA methylation (Kobow et al., 2013; Lusardi et al.,
2015). Each one of these mechanisms could account for some
of the beneficial effects of the ketogenic therapy. However,
to date fundamental metabolic mechanism(s) which could
explain diverse beneficial effects across numerous diseases
have yet to be confirmed. If uncovered, such mechanism(s)
could provide a fundamental answer to ‘‘how does the KD
work?’’—a lingering question and a topic of intense resurgent
research efforts and clinical interest. A unifying mechanism
of action could also serve as a target for the development
of therapeutics that enhance cellular and metabolic health and
provide the metabolic resilience necessary to prevent and combat
neurological diseases.

Glucose and ketone bodies are used to provide energy in
the form of ATP. Many tissues in the body—such as muscle
tissues—can oxidize fatty acids to produce energy. As one
exception, in the central nervous system ketolysis is expected
to be the primary pathway of energy production: neurons and
oligodendrocytes have a limited capacity for mitochondrial fatty
acid β oxidation (Edmond, 1992; Achanta and Rae, 2017). The
ketone bodies acetoacetate (AcAc) and β-OHB are therefore
the main energy source in the brain during ketosis, and
the metabolism of glucose versus ketone bodies results in a
differential reduction rate of nicotinamide adenine dinucleotide
(NAD), an essential metabolic coenzyme and signaling molecule.
NAD exists in oxidized and reduced forms, NAD+ and NADH,
respectively, and whereas both glucose and ketone pathways
each produce two molecules of acetyl-CoA, glucose reduces
four molecules of NAD+ and ketone bodies reduce either one
(β-OHB), or none (AcAc) during acetyl-CoA synthesis (Lodish
et al., 2000; Cotter et al., 2013; Figure 1). A decreased reduction
of NAD+ in the brain would be expected to result in increased
NAD+/NADH ratio, with more oxidized molecules available for
bioenergetic demands.
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FIGURE 1 | Schematic of NAD+ consumption during metabolism of glucose vs. ketone bodies. Both glucose and ketone bodies lead to the formation of two
molecules of acetyl-CoA which subsequently enter the citric acid cycle and participate in energy production. Although glucose provides a higher final yield of ATP, the
consumption of NAD+ is significantly higher in this pathway (4:1). Glucose will reduce 111 molecules of NAD+ per 1000 molecules of ATP made, while ketone bodies
reduce only 41 to produce a comparable amount of ATP. Decreased use of NAD+ by ketone bodies in energy production pathways could increase the amount of
free NAD+ available as substrate for enzymes and cellular signaling processes.

Increasing the NAD+/NADH ratio has multiple important
implications: improved bioavailability of NAD+ molecules has
been linked to anti-aging (Scheibye-Knudsen et al., 2014),
longevity (van der Veer et al., 2007; Zhang et al., 2016) and
other potentially beneficial effects. For example, an increased
NAD+/NADH ratio was found to enhance mitochondrial
function and protect against oxidative stress, and diverse
research has shown that NAD molecules play an important
role in cellular respiration, mitochondrial biogenesis and redox
reactions (Yang and Sauve, 2016). NAD+ also serves as
substrate for enzymes affecting cellular functions ranging from
gene expression to post-translational protein modifications,
such as deacetylation and ADP-ribosylation (Belenky et al.,
2007).

We propose that the decreased reduction rate of NAD+ to
NADH during ketone-based metabolism increases availability of
NAD+ and thus alters the NAD+/NADH ratio. This would occur
during sufficient exogenous ketone administration or during
fasting or adhering to a KD, i.e., when ketones are used as a
main source of energy. Considering the pivotal role of NAD+ in
cellular health, and that differential NAD reduction is inherent
in this metabolic pathway, we suggest that this differential rate of
NAD+ reduction (and thus an increase in NAD+ availability) is
a primary mechanism of ketogenic therapy: increased NAD+ can
potentially be the starting point for many of the diverse benefits
of this metabolic treatment.

KETOGENIC DIET-INDUCED INCREASE IN
BRAIN NAD+/NADH RATIO IS RAPID,
PERSISTENT AND REGION SPECIFIC

As an initial test of this hypothesis, we quantified and compared
KD-induced changes in blood ketones and in NAD+/NADH
ratio in hippocampus and cerebral cortex of normal adult rats.
Sprague-Dawley male rats (Trinity College, age 9–14 weeks,
n = 20) were fed ad libitum either a standard chow diet
(CD; Purina 5001; PharmaServ, Framingham, MA, USA),
or a 6:1 [fat: (protein + carbohydrates); #F3666; Bio-Serv,
Frenchtown, NJ, USA] KD for 2 days or 3 weeks. Analysis
of trunk serum collected showed that a KD induced a
significant increase in ketone bodies (β-OHB; the primary
circulating ketone body; Figure 2A), consistent with previous
experimental and clinical work (Nabbout et al., 2010; Ruskin
et al., 2013a).

To begin to evaluate if, when and where alterations in
NAD occurred in brain during ketone-based metabolism we
performed NAD analysis on two regions, hippocampus and
frontal cortex, after either a 2 days or a 3 weeks KD treatment.
Three weeks exposure has been demonstrated to impact behavior
and neuronal excitability in diverse paradigms (Hori et al., 1997;
Cullingford et al., 2002; Ruskin et al., 2009; Masino et al., 2011a).
As demonstrated by ketone body levels (Figure 2A), metabolic
changes were significant within 2 days.
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FIGURE 2 | Changes in blood ketones and brain nicotinamide adenine dinucleotide (NAD) after ketogenic diet (KD) treatment. (A) Blood levels of β-hydroxybutyrate
(β-OHB; mmol/L) after 2 days (2d KD; n = 3) and 3 weeks (3w KD; n = 4) of KD treatment vs. control chow diet (CD; n = 8; P < 0.0001). (B) Hippocampal changes in
NAD+/NADH ratio after 3 weeks KD treatment. A significant increase in the NAD+/NADH ratio was quantified in the hippocampi of animals fed KD for 3 weeks (n = 4)
vs. animals maintained on control diet (n = 8; P < 0.005). (C) Cortical NAD+/NADH ratio after 3 weeks KD treatment. No differences were detected in NAD+/NADH
ratio in frontal cortex between the dietary groups. Control CD (n = 8); KD 3 weeks (3w KD; n = 4; P = ns). (D) NAD+/NADH ratios in the hippocampus after 2 days KD
treatment. A significant increase in the NAD+/NADH ratio was quantified in hippocampi obtained from animals fed KD for 2 days (2d KD; n = 3) compared to animals
maintained on control diet (CD; n = 5; P < 0.0001). All comparisons were unpaired t-tests. Data are expressed as mean ± SEM. ∗∗P < 0.005; ∗∗∗∗P < 0.0001.

Twenty milligram samples of tissue from each region
were homogenized in NAD extraction buffer, centrifuged and
deproteinized using 10 kDa molecular cut-off filters. Analysis
of NAD was performed using an enzymatic NAD+/NADH
quantification kit (Sigma Aldrich, St. Louis, MO, USA)
according to manufacturer’s instructions. Fractions of samples
were incubated for 5 min at room temperature for the
detection of total NAD (tNAD), while equal amounts were
heated to 60◦C for 30 min to decompose NAD+ and leave
unaltered NADH. tNAD and NADH were quantified with
a colorimetric measure. Values of NADH were subtracted
from tNAD to calculate the amount of NAD+ present in the
samples.

After 3 weeks of treatment, extracted hippocampi
showed a significant increase in NAD+/NADH ratio in the
KD-fed group compared to the CD-fed group (Figure 2B).
Interestingly, no detectable changes in NAD+/NADH
ratios were observed in frontal cortices of the same animals
(Figure 2C).

Interestingly, a robust and similar increase in NAD+/NADH
ratio was already detectable in hippocampi after 2 days of
KD treatment (Figure 2D). This result aligns with previous
work (Nabbout et al., 2010; Ruskin et al., 2013a) showing that
metabolic changes are present within 2 days and further

corroborates the evidence that ketone bodies increase
NAD+ availability rapidly. Increases in NAD+/NADH
ratios were due to increases in NAD+ as NADH levels
were not changed significantly by diet treatments (CD:
3.25 ± 0.32 pmol/µg proteins; 2 days: 2.58 ± 0.21; 3 weeks:
2.68 ± 0.21; not significant). The changes quantified in the
hippocampus are consistent with the predicted metabolic
consumption, as highlighted in the metabolic pathways
(Figure 1).

PERSPECTIVE AND IMPLICATIONS

Consistent with our predictions we found clear evidence that
metabolic therapy with a KD increases NAD+/NADH, a
mechanism that could compensate for metabolic dysregulation
and serve as a common start-point for the diverse beneficial
metabolic and mitochondrial effects obtained with ketogenic
treatments (Bough and Rho, 2007; Masino and Geiger, 2008).
As noted above, a comparison of the metabolic pathways
of glucose and ketone bodies (Figure 1) suggests that the
use of ketone bodies as main energy fuel requires fewer
NAD+ molecules than glucose (by a factor of 4), which
should lead to an increased cellular availability of this vital
coenzyme. Interestingly, β-OHB or a ketone ester precursor
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show protective effects by counterbalancing the decrease
in NAD+/NADH ratio in cases of neurotoxicity (Maalouf
et al., 2007; Zhang et al., 2013), confirming the ability
of β-OHB to modulate NAD+/NADH levels. Ketone ester
treatment oxidizes the cytoplasmic NAD+/NADH couple in
hippocampus and cortex in aged, affected Alzheimer’s disease
model mice, and reverses an apparent overoxidation of the
mitochondrial couple in the hippocampus (Pawlosky et al.,
2017). Thus this study and our study of the whole-cell
couple suggest clear positive metabolic effects of ketolytic
metabolism.

In general, the hippocampus has been described as a seizure
gate (Heinemann et al., 1992) and it is one of the first brain
regions to be affected in Alzheimer’s type dementia; cortical
changes appear later in the disease (Braak and Braak, 1998).
Unexpectedly, our data show that a KD increased NAD+/NADH
in the hippocampus but not in the cerebral cortex, indicating
regional specificity at the time points sampled. It is possible that
changes mobilized by a KD could be more rapid or pronounced
in more metabolically active brain regions: the hippocampus
displays a higher metabolic rate than the cerebral cortex (Feng
et al., 1988). Related to this, an early decrease in metabolic
rate of glucose in the hippocampus, but not in cerebral cortex,
was detected in patients who received a postmortem diagnosis
of Alzheimer’s disease (Mosconi et al., 2009). Because of its
high metabolic rate and increased vulnerability to hypoxia,
oxidative stress, and metabolic dysfunction, the hippocampus
could benefit more—or more rapidly—than other regions from
KD-induced metabolic changes, including increased NAD+

levels.
Rapid increases in NAD+/NADH ratio could partially

explain the ability of a KD to stop seizures in many
patients within a few days of KD treatment (Freeman and
Vining, 1999). For example, NAD+ and NADH molecules
can modulate directly the opening of ion channels important
for neuronal excitability, such as ATP-sensitive and voltage-
gated potassium channels (Dukes et al., 1994; Tipparaju et al.,
2005). Accordingly, a rapid decrease in NAD+ availability
and consequent effect on neuronal excitability should be
expected upon discontinuation of treatment. Interestingly, 15%
of refractory epileptic patients experienced a rapid recurrence
of seizures after KD discontinuation (Martinez et al., 2007);
others remain seizure-free. The differential response among
patients to treatment cessation indicates the existence of
multiple downstream mechanisms and epigenetic changes
(Masino and Rho, 2012; Lusardi et al., 2015) implicated in
seizure control. Upregulation of key ketogenic enzymes, mainly
mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, after
longer periods of ketogenic treatment (Cullingford et al., 2002)
might also play a role in the maintenance of the beneficial
effects even after discontinuation of the diet. More work
is needed on downstream and lasting effects of metabolic
therapy.

Consistent with these reported effects, previous work showed
that addition of ketone bodies also prevented the expected
decrease in NAD+/NADH ratio induced by toxic doses of
calcium and in parallel decreased the production of reactive

oxygen species (ROS), a major source of cellular oxidative
stress (Maalouf et al., 2007); oxidative stress is detrimental
and linked to neuronal death and neurodegenerative diseases
(Naoi et al., 2005). Altering the NAD+/NADH ratio can control
the rate of ROS production (Kussmaul and Hirst, 2006) and
impact downstream enzymatic levels and activities that regulate
apoptosis and inflammation (Yeung et al., 2004; Chen et al., 2008;
Zhu et al., 2011). Enhanced NAD+/NADH should thus decrease
inflammation, an effect observed in KD treatment (Forsythe
et al., 2008; Ruskin et al., 2009; Yang and Cheng, 2010; Dupuis
et al., 2015; Nandivada et al., 2016). Overall, increasing the
NAD+/NADH ratio through a number of ketone-enhancing
treatments should protect against oxidative stress and enhance
mitochondrial and cellular health.

Regarding gene expression, consuming a KD has been
found to impact expression patterns of genes modulating
neuroinflammation, proliferation, and apoptosis such as
cyclooxygenase, tumor necrosis factor-α, and insulin-like growth
factor 1 (Cheng et al., 2003; Jeong et al., 2011). Although
increased NAD+ cannot exert these effects directly, NAD+ can
impact gene expression through the action of sirtuin enzymes.
Increasing NAD+ availability or the NAD+/NADH ratio can
increase the activity of the NAD-dependent SIRT1 enzyme (the
most abundant member of the sirtuin family; Landry et al., 2000;
Chen et al., 2008). The main function of SIRT1 is deacetylation
of targets that regulate apoptosis and transcription factors such
as peroxisome proliferator-activated receptor-γ and the tumor
suppressor protein p53 (Yeung et al., 2004; Zhu et al., 2011).
Hence, some of the expected downstream consequences of
increasing NAD+ with ketogenic treatment are decreased cell
death, inhibition of inflammation, and modulation of gene
expression and epigenetic changes through activation of sirtuin
enzymes (Janke et al., 2015).

CONCLUSION

Here we outline the overall implications and evidence for a rapid
and region-specific change in NAD+/NADH as a direct result of
consuming a KD. We hypothesize this as a new and fundamental
addition to potential key mechanisms underlying beneficial
antiseizure, neuroprotective and disease-modifying effects of
KD. Because NAD+ can modulate ion channels, enhance
mitochondrial health, decrease oxidative stress, and impact gene
expression, an increase in NAD+ and/or NAD+/NADH ratio is a
mechanism that can account for several diverse (and seemingly-
unrelated) effects of ketogenic therapy. Furthermore, benefits
of increasing NAD+ such as life-span extension and enhancing
cellular health have long been documented (Lin et al., 2000),
and pharmaceutical companies are currently manufacturing and
selling supplements that contain NAD+ precursors such as
nicotinamide or nicotinamide riboside in an attempt to increase
endogenous NAD+ levels and enhance metabolic resilience—an
outcome that may also be achieved physiologically by ketogenic
strategies.

At this time more research is needed to further identify
where and when ketogenic therapy increases the NAD+/NADH
ratio, and to delineate specific downstream effects. It is also
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important to ascertain if changes in the NAD+/NADH ratio
are caused by changes in NAD+ or NADH, as levels of these
two redox molecules can also vary independently (Wilhelm and
Hirrlinger, 2011). Regardless, diverse lines of evidence place
NAD+ at the center of metabolic health and disease, and
evidence from our work and others supports the hypothesis
that increased NAD+ is a fundamental molecular mechanism
of the KD. Our findings also indicate the potential for a
greater role for this metabolic therapy in areas with high
metabolic demand and vulnerability to environmental insults
and oxidative stress such as the hippocampus. Taken together,
increasing brain NAD+ levels—either by consuming a KD
or by other ketone-enhancing treatments—might serve as a
rapid and enduring strategy to halt or even reverse disease
progression.
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