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A B S T R A C T

With the developments in metabolic engineering and the emergence of synthetic biology, many break-
throughs in medicinal, biological and chemical products as well as biofuels have been achieved in recent
decades. As an important barrier to traditional metabolic engineering, however, the identification of rate-
limiting step(s) for the improvement of specific cellular functions is often difficult. Meanwhile, in the
case of synthetic biology, more and more BioBricks could be constructed for targeted purposes, but the
optimized assembly or engineering of these components for high-efficiency cell factories is still a chal-
lenge. Owing to the lack of steady-state kinetic data for overall flux, balancing manymultistep biosynthetic
pathways is time-consuming and needs vast resources of labor and materials. A strategy called targeted
engineering is proposed in an effort to solve this problem. Briefly, a targeted biosynthetic pathway is to
be reconstituted in vitro and then the contribution of cofactors, substrates and each enzyme will be ana-
lyzed systematically. Next is in vivo engineering or de novo pathway assembly with the guidance of
information gained from in vitro assays. To demonstrate its practical application, biosynthesis pathways
for the production of important products, e.g. chemicals, nutraceuticals and drug precursors, have been
engineered in Escherichia coli and Saccharomyces cerevisiae. These cases can be regarded as concept proofs
indicating targeted engineering might help to create high-efficiency cell factories based upon con-
structed biological components.

© 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

The challenges posed by the energy crisis, environmental de-
generation, disease or food shortage and the concerns of achieving
sustainable development have prompted great interest in the de-
velopment of new biological processes and organisms designed for
specific purposes.1–3 Thanks to developments in metabolic engi-
neering and synthetic biology in recent decades,4 the great potential
of microbes as solutions to these dilemmas has entered public
knowledge.5 Metabolic engineering aims to endow cells with im-
proved properties and performance. Synthetic biology could create

new biological parts, modules, devices and systems, in addition to
re-engineering cellular components and machinery that nature has
provided.6 Through the integration of metabolic engineering and
synthetic biology, more efficient microbial cell factories can be con-
structed to produce biofuels,7,8 biomaterials9 and drug precursors10,11

from renewable biomass. In the World Economic Forum 2012
(WEF2012), synthetic biology and metabolic engineering were in-
cluded in the Top 10 Emerging Technologies.

With the advent of synthetic biology, especially in the past several
years, a few cases involved in the production of pharmaceuticals
and new biofuels12 have been become milestones in this field. The
first major practical achievement was the large-scale production of
artemisinin by yeast at integrated renewable products company
Amyris Inc.13 Artemisinin, an efficient anti-malarial drug pro-
duced by the sweet wormwood plant Artemisia annua, has been used
in China for more than 2000 years in the treatment of malaria
patients.14 However, the unstable source of affordable plant-
derived artemisinin has resulted in price fluctuations and shortages.15

As shown in Fig. 1A, Paddon et al. developed a process for the pro-
duction of artemisinin by fermentation of simple inexpensive carbon
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substrates using engineered Saccharomyces cerevisiae to produce
artemisinic acid, followed by extraction and chemical conversa-
tion to artemisinin. The production of artemisinic acid was increased
from 1.6 g L–1 to 25 g L–1.13 Another landmark work was the total
biosynthesis of opioids in yeast.16,17 Opioids, derived from the opium
poppy (Papaver somniferum), are the primary drugs used for pain
management and palliative care. Recently, Smolke’s group at Stan-
ford University expressed more than 20 enzymes derived from
rodents, plants and bacteria in a engineered host and, finally, re-
alized the complete biosynthesis of opioids from glucose.18 In these
cases, synthetic biological approaches have been used to optimize
both the host and pathways to maximize the production of tar-
geted products. Although synthetic biology allows us to freely
manipulate the components (e.g. promoters, enzymes, modules, etc.),
just like building blocks, an optimal pattern has to be selected from
millions of combinations (Fig. 1B). A common approach, for example,
is to investigate as many mutants as possible; however, if a high-
throughput method cannot be generated or a large mutant selection
is too expensive, it would be difficult to obtain satisfactory results.
It is worth noting that the formation of artemisinic acid requires
enormous manpower and financial resources.19,20

Traditional metabolic engineering has made great advances in
the optimization and innovation of industrial fermentation, includ-
ing the biosynthesis of a taxol precursor in microbes,21 conversion
of lignocellulosic biomass to ethanol22 and application of amino acid-
producing bacteria.23 The heterologous synthesis of a taxol precursor
in Escherichia coli was one of the most famous works in the field
of metabolic engineering. Taxol is a potent anticancer drug pro-
duced by the Pacific yew tree Taxus brevifolia.24 Ajikumar et al.
reported integration of a native upstream methylerythritol phos-
phate (MEP) pathway and a heterologous downstream terpenoid-

forming pathway allowed taxadiene, the first committed taxol
intermediate, to be obtained in large amounts from E. coli by
fermentation.21 In the bioenergy field, there are improved produc-
tion rates of advanced biofuels, including butanol, hydrocarbons and
terpene-based biofuels.25–27 However, one important challenge for
traditional metabolic engineering is the identification of gene targets
of major importance for the improvement of specific cellular
functions.28 Additionally, owing to the lack of biochemical infor-
mation and genetic background of the targeted metabolic pathways,
many engineering works have not achieved the expected results.

A strategy called targeted engineeringwas proposed in an attempt
to overcome these problems and challenges. For this strategy, the
biosynthetic pathway is reconstituted in vitro and then the contri-
butions of cofactors, substrates and enzymes are analyzed
systematically. Subsequently, in vivo engineering could be guided
by the information gained from in vitro assays. This approach might
offer some opportunities to create cell factories based upon con-
structed biological components. Here, we present a review of targeted
engineering and its application.

2. In vitro reconstitution guide for building a high-efficiency
synthetic pathway

Over the past several decades, most of themulti-enzyme systems,
for example bacterial fatty acid synthases, have been investigated
extensively at the genetic and enzymatic level.29–31 However, due
to complex regulation of fatty acid synthesis, it is not easy to ma-
nipulate enhanced production of specific fatty acids.30,32–35 In 2010,
Liu et al. developed a cell-free system that could be used for direct
quantitative investigation of fatty acid biosynthesis and regula-
tion in E. coli.36 The strong dependence of fatty acid synthesis on

Fig. 1. Prospects and challenges of synthetic biology in the construction of high-efficiency microbial cell factories. (A) High-efficiency biosynthesis of the artemisinin pre-
cursor in yeast. The genes expressed encode the following enzymes: AtoB, acetoacetyl-CoA thiolase; ERG13, HMG-CoA synthase; tHMG1, truncated HMG-CoA reductase;
ERG12, mevalonate kinase; ERG8, phosphomevalonate kinase; MVD1, mevalonate diphosphate decarboxylase; Idi, isopentenyl diphosphate (IPP) isomerase; IspA, farnesy
diphosphate (FPP) synthase; ADS, amorpha-4,11-diene synthase; CYP71AV1, cytochrome P450 enzyme that converts amorphadiene to artemisinic alcohol; CPR, cyto-
chrome P450 reductase; CYB5, cytochrome b5; ADH1, artemisinic alcohol dehydrogenase; ALDH1, artemisinic aldehyde dehydrogenase. CYP71AVA1, CPR1, CYB5, ADH1 and
ALDH1 derived from A. annua could oxidize amorphadiene to artemisinic acid. Genes colored light blue are derived from E. coli, dark blue genes are derived from S. cerevisiae,
red genes is derived from Staphylococcus aureus, purple genes are derived from A. annua. (B) Challenges to the optimization of a biosynthetic module. The synthetic biology
components, such as kinds of promoters and enzymes, could be constructed like building blocks, and the optimal pattern have to be selected from millions of combinations.
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malonyl-CoA availability and several important phenomena in fatty
acid synthesis were verified by the use of this system. That partic-
ular study introduced a new concept, that the in vitro quantitative
analysis of a multi-enzyme system could guide subsequent engi-
neering work.8 In 2011, Yu et al. described the in vitro reconstitution
of E. coli fatty acid synthases using eight purified protein compo-
nents and reported detailed kinetic analysis of this reconstituted
system.37 This highlighted the utility of a cell-free system for in-
vestigating the properties of fatty acid synthases under steady-
state conditions.

Inspired by the results of these earlier studies, we provide thor-
ough instructions on how to build a high-efficiency synthetic
pathway under the guidance of in vitro reconstitution; namely, tar-
geted engineering. Unlike the traditional metabolic engineering
procedure, targeted engineering does not construct a series of
mutants, directly. First, the proteins involved in the pathway of in-
terest are overexpressed and purified. The entire pathway is
reconstituted in an Eppendorf tube without any background and
then the effect of each component is analyzed systematically by in
vitro reconstitution assays. In the second step, a few mutants are
constructed with the guidance of information gained from the in
vitro assays. In the third step, the metabolic status of each mutant
is analyzed at both the protein and intermediate levels. It will be
clear which step is inefficient based upon the accumulation of in-
termediates and the optimized system gained from in vitro assays.
Deviation between the observed data and the optimum condi-
tions provide targets for further engineering (Fig. 2). The procedures
of targeted engineering are discussed in detail in four parts below:
(1) in vitro reconstitution of a biosynthetic pathway and steady-
state kinetic analysis; (2) rational design, strict regulation and
pathway engineering; (3) monitoring metabolic status and tar-

geted proteomics analysis; and (4) construction of high-efficiency
cell factories.

2.1. In vitro reconstitution of a biosynthetic pathway and steady-
state kinetic analysis

Biosystems can be classified as microbial or cell-free according
to the biocatalysts used; further, cell-free systems can be based on
cell extracts and purified enzymes.5 Several decades ago, biochem-
ists developed a cell-free system as a tool for investigation of bacterial
fatty acid metabolism.38–40 Compared to the complexity of living
systems, in vitro cell-free systems could provide unprecedented
freedom to modify and control biochemical systems for technolog-
ical application and to understand the design principles of biological
circuits.41 To date, cell-free systems have been used as powerful tools
for basic research and purified enzyme-based in vitro systems have
contributed to biological technology research. For example, the best
known in vitro system, which has been used widely in molecular
biology, is the in vitroDNA amplification procedure; namely, the poly-
merase chain reaction (PCR).42 In addition, the use of more
complicated and elaborate cell-free systems, including in vitro
transcription43 and in vitro translation, have been reported.

An in vitro reconstituted system is based on the enzymes in-
volved in the targeted biosynthetic pathway and the biochemical
information for each component is a prerequisite for the in vitro re-
constitution of the targeted biosynthetic pathway. In addition, all
necessary enzymesmust be over-expressed and purified with a high
level of activity to mimic in vivo conditions. To estimate the initial
relative protein contents of the targeted pathway in the native host,
the mRNA level of each subunit and relative protein levels in vivo
can be measured using quantitative PCR (qPCR) and western blot

Fig. 2. In vitro reconstitution guide for building a high-efficiency synthetic pathway. The four parts of targeted engineering are (1) in vitro reconstitution of a biosynthetic
pathway and steady-state kinetic analysis, (2) rational design, strict regulation and pathway engineering, (3) monitoring metabolic status and targeted proteomics analysis,
and (4) construction of high-efficiency cell factories.
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analysis, respectively37 and the concentration of each protein can
be defined as a reference. Combined with cofactors, including ATP,
NADH/NAD+, NADPH/NADP+ and metal ions, the in vitro system can
be reconstituted in a reaction buffer.44

Using the in vitro reconstituted system, the contributions of each
protein component, substrate and cofactor can be titrated by moni-
toring targeted products. In particular, the major factors for
improvement of product formation can be determined easily. The
steady-state kinetic, biochemical parameters and accumulation of
intermediates can be detected, and on this basis, the relative op-
timized protein concentrations and the metabolic bottleneck(s) of
the biosynthesis pathway can be revealed.37 In addition, the po-
tential of the targeted metabolic pathway can be estimated on the
basis of in vitro data. Subsequently, in vivo engineering can be guided
by the information gained from the in vitro assays.

2.2. Design, engineering or assembling of the targeted metabolic
pathway

The targeted metabolic pathway can be designed and engi-
neered using thewell-established techniques of traditional metabolic
engineering. However, it will be more straightforward when thema-
nipulated targets are based on the information gained from the in
vitro assays; for example, genetic manipulation of the major factors.
Using genemanipulation, e.g. gene knockout or over-expression, the
metabolic bottleneck could be bypassed, which should improve the
biosynthetic activity of the targeted pathway. This approach could
be an excellent supplement to the current randomized high-
throughput methods for the generation of pathways and targeted
screening by decreasing variables and providing guidelines for further
engineering. Second, the optimal ratio of each protein in the pathway
can be deduced and subsequent engineering requires fine-tuning
of gene expression and coordination of each component within the
pathway. Third, the expression levels of target genes can be con-
trolled precisely. These important concepts are illustrated below by
the presentation of a case report.

Promoter engineering can help to generate the dynamic range
necessary to enable fine-tuned gene expression for metabolic
application.45 According to the data obtained from the in vitro system,
the promoter library can be used to fine-tune gene expressions in
the pathway. In addition to the traditional bacteriophage T7
promoter-based promoter library46 and an ermE or kasOp promoter-
based promoter library,47–49 the novel sensor-regulator systems for
dynamic regulation (or dynamic sensor-regulator system) have also
been developed. These promoters could be used as a tool to balance
metabolism and thereby increase the titers or yields of targeted prod-
ucts and stabilizing production hosts.

During the process of targeted pathway engineering or assem-
bly, in addition to the traditional enzyme digestion and ligation
methods, many more powerful and efficient approaches could be
applied. You et al. developed a sequence-independent simple cloning
method without the need for restriction or ligation enzymes.50 This
method can be used for subcloning up to three DNA fragments into
any location on a plasmid. In addition, the Gibson method can be
used for assembling multiple large DNA fragments.51,52 The assem-
bly of large, high (G + C) bacterial DNA fragments can be done in
yeast.53 Recently, with the emergence of the CRISPR/Cas (clus-
tered regularly interspaced short palindromic repeat/CRISPR-
associated protein) system as a new technique, many powerful
CRISPR-based tools have been developed for gene-editing.54–56

2.3. Monitoring metabolic status and targeted proteomics analysis

As well as the engineering work described above, control can be
achieved by precise measurement of the relative levels of proteins
and intermediates in engineered mutant hosts using a modified tar-

geted proteomics method and MS-based intermediate analysis.57,58

Compared to traditional metabolic engineering, each stage in the
evolution of the pathway can be controlled rationally and evalu-
ated against objectively determined rather than empirically chosen
milestones. By monitoring the key intermediates in the engi-
neered mutants, flux through the upstream and downstream
modules can be adjusted to avoid accumulation of toxic interme-
diate metabolites or diversion of feedstock to unproductive
metabolism.21 Additionally, MS-based intermediate analysis can help
to elucidate the underlying metabolic mechanism and to identify
any new metabolic junction in the engineered host. On the other
hand, by usingMS-based proteomics techniques, the expression level
of each enzyme involved in targeted pathway could also be quan-
titatively analyzed.59 Combinedwithmetabolic status and proteomics
analysis, these data could provide guidelines for further pathway
engineering.

2.4. Construction of highly efficient cell factories

In the in vitro reconstitution system, we focused mainly on the
contribution of cofactors, substrates and components involved in
the targeted metabolic pathway. To construct highly efficient cell
factories, however, it is necessary to integrate information from the
in vitro and in vivo assays. The in vivo and in vitro data allow more
engineering work to further promote the product formation using,
as well as themodificationmentioned above, precursor supply, redox
balance, co-factor engineering, etc.

In addition, the selection or construction of appropriate host
strains is very important in the synthesis of targeted products. Bac-
terial hosts, including E. coli, Bacillus subtilis, Pseudomonas sp.,
Corynebacterium sp. and Streptomyces sp., have either a long-
standing or more recent application to the production of biodiesel,
bulk chemicals and therapeutic natural compounds etc.9,60 The host
should be evaluated carefully according to biological properties that
would either hinder or facilitate product biosynthesis.

3. Targeted engineering of fatty acid and its derivatives

Fatty acids are central hydrocarbon intermediates in the bio-
synthesis of biodiesel from renewable sources. Biosynthesis and
regulation of fatty acids have been investigated extensively in E. coli.
Here, we discuss several examples of how the concepts of tar-
geted engineering can be used for guiding optimization of the
biosynthesis of fatty acids and derivatives; for example, fatty alco-
hols and biodiesel (Fig. 3).

3.1. Fatty acids and new biodiesel

As mentioned above, much engineering guided by in vitro re-
constitution assays has been used to enhance the biosynthetic
efficiency of fatty acids in E. coli.36,37 Subsequent engineering work
could use this high-performance platform for downstream product
innovation, including biosynthesis of high quality biodiesels.61–63

S. cerevisiae has been found more suitable than E. coli for bio-
engineering and has been engineered to produce biofuels.27,64,65

S. cerevisiae is also an important industrial host for production of
enzymes, pharmaceutical and nutraceutical ingredients and, re-
cently, commodity chemicals.9 Li et al. engineered S. cerevisiae for
overproduction of fatty acids.66 Acetyl-CoA carboxylase from yeast
was titrated into the yeast cell-free extract with acetyl-CoA using
an in vitro assay. The acetyl-CoA carboxylase proved to be a rate-
limiting step of fatty acid synthesis and phosphorylation of acetyl-
CoA carboxylase might influence its activity in S. cerevisiae. It is
known that discovery of the limiting step is crucial for developing
a “cell factory” for the overproduction of fatty acids using type I fatty
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acids synthase in yeast or other fungi. This result provided a ratio-
nale for future study of this crucial step.

3.2. Fatty alcohols

Fatty alcohols are important chemical raw materials and have
been used in the manufacture of detergents, skin care products, cos-
metics and medicines.67,68 Traditionally, fatty alcohols are produced
by direct extraction from plant material or chemical synthesis from
fossil sources. The use of microbial fermentation to produce fatty
alcohols from sustainable resources could reduce the dependence
on fossil fuels. Low yield and productivity, however, are key prob-
lems hampering industrial application of fatty alcohol biosynthesis
or microbial fermentation.69

Fatty alcohols are reduced from fatty acyl-acyl carrier proteins
(ACPs), fatty acyl-CoAs or fatty acids by the enzymes fatty acyl-
CoA/ACP reductase or carboxylic acid reductase. Fatty acyl-CoA/
ACP reductase is a key enzyme found inmany organisms.70 Themost
economical strategy for ATP consumption would be for fatty acyl-
CoA/ACP reductase to recognize and use fatty acyl-ACPs as a
substrate. Thus, the in vitro system has been reconstituted to eval-
uate this hypothesis. First, on the basis of substrate preferences,
Simmondsia chinensis (jojoba) FAR,71 Acinetobacter calcoaceticus Acr1,72

Oryza sativa DPW26 and Synechococcus elongatus AAR,73 four fatty
acyl-CoA/ACPs reductase have been selected and purified. Accord-
ing to earlier work,37 the individual proteins of fatty acid synthase,
ACP and TesA, were overexpressed and purified for in vitro recon-
stitution. Using the in vitro system, the data indicated AAR showed
great potential for fatty alcohol production. Both in vitro and in vivo
results demonstrated that the activity and expression level of fatty
acyl-CoA/ACP reductase is the rate-limiting step in the current

protocol.74 Guided by this information, the producer has been en-
gineered efficiently and the production and productivity of fatty
alcohols were 750 and 0.06 g L–1h–1, respectively. This case estab-
lishes a promising in vitro reconstitution-based synthetic pathway
for industrial microbial production of fatty alcohols. The possibil-
ity and potential capacity for the targeted metabolic pathway could
be easily evaluated. This strategy would definitely help to avoid the
construction of numerous mutants to test our hypothesis, though
it seems like a trial-and-error screening in vitro.

4. Targeted engineering of terpenoid overproduction

Terpenoids are one of the most diverse families of natural prod-
ucts and include more than 25,000 structures identified in
microorganisms, plants and insects.75 The mevalonate (MVA)
pathway and methylerythritol-phosphate (MEP) pathway are re-
sponsible for the synthesis of the two isoprenoid building blocks76,77

isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). To date, the production of terpenoid metabolites in bac-
teria has achieved great success in the production of drug precursors
and small chemical molecules.27,78 We have focused mainly on the
important new jet fuel precursor farnesene and nutritional com-
pounds. These compounds are synthesized from the building blocks
DMAPP and IPP. In vitro reconstitution has proved an efficient tool
for optimizing the IPP/DMAPP supply system, which could be used
as a terpenoid overproduction platform (Fig. 4).

4.1. Farnesene

As shown in Fig. 4, terpenoid metabolites have many applica-
tions, including medicinal (taxol and artemisinin), nutraceutical

Fig. 3. High-performance fatty acid platform for downstream product innovation. PD: pyruvate dehydrogenase; ACC: acetyl-CoA carboxylase; FadD: fatty acyl-CoA synthe-
tase; AAR: fatty acyl-ACP reductase; AdhP: ethanol dehydrogenase/alcohol dehydrogenase; ARO10: 2-keto acid decarboxylase; ADH2: alcohol dehydrogenase; WS/DGAT:
diacylglycerolacyltransferase; ARO10: 2-keto acid decarboxylase; ADH2: alcohol dehydrogenase; PTE, TE, and TesA: thioesterases from S. cerevisiae, Cinnamomum camphorum,
and E. coli.
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(lycopene and carotenoids) and industrial (isoprene) products, and
even as precursors of farnesene, the next generation jet fuel.10,21,79

Farnesene is a model molecule within the metabolic network of ter-
penoids andmany other products; for example limonene, carotenoids
and lycopene, could be engineered by this strategy.

To reconstitute the farnesene biosynthetic pathway, nine genes
have been cloned or synthesized based on the gene sequence from
three different species.80 Acetoacetyl-CoA thiolase (atoB), idi and
farnesyl pyrophosphate synthase (ispA) genes were amplified from
E. coligenomicDNA.3-Hydroxy-3-methylglutaryl-CoAsynthase (erg13
or hmgs), a truncated version of 3-hydroxy-3-methylglutaryl-CoA
reductase (thmg1),81mevalonate kinase (erg12), phosphomevalonate
kinase (erg8), andmevalonate pyrophosphate decarboxylase (mvd1,
also known as erg19) genes were amplified from S. cerevisiae. An
α-farnesene synthasegenehasbeenderived fromMalus × domestica.82

These nine genes have been overexpressed and purified using the
pET28a plasmid. For steady-state analysis, the in vitro system has
been constituted; the in vitro assay indicated Idi and ERG13 have
important roles in terpenoid overproduction and show us the op-
timized ratio of each protein for farnesene biosynthesis. The
information from this in vitro reconstituted system guided us to op-
timize farnesene production in E. coli by quantitatively over-
expressing each component. Through targetedengineering, farnesene
has been produced at 1.1 g L–1 in shake flask fermentation.80 Addi-
tionally, the mass spectrometry (MS)-based intermediate analysis
showed us that, in the engineered high-producing strain, the sub-
strate (acetyl-CoA), energy and cofactor limited the production of
farnesene. Based on the analysis of these data, the next round of

metabolic engineeringwork couldbeused for constructionof ahighly
efficient cell factory for production of farnesene.

4.2. Lycopene

The strategy for biosynthesis and overproduction of farnesene
inspired development of biosynthesis of the nutritional product ly-
copene in E. coli.44,83 Lycopene is one of the major precursors of
downstream carotenoids and is produced by many plants and mi-
croorganisms. It is of special interest due to its antioxidative,84

anticancer85,86 and anti-inflammatory activities.87 Zhu et al. used the
MVA pathway developed for the biosynthesis of farnesene system80

and combined it with the lycopene biosynthesis pathway. An extra
copy of the isopentenyl diphosphate isomerase (Idi) gene was used
and the production of lycopene was 1.23 g L–1 in a 150 L bioreactor.44

The success of this work indicated in vitro information is univer-
sal and can be used as guidance for similar metabolic pathway
engineering.

4.3. Astaxanthin

In addition to lycopene, products such as astaxanthin could be
produced efficiently on the terpenoid overproduction platform.
Astaxanthin is a highly valued keto-carotenoid, used widely in aqua-
culture, cosmetic, and functional foods.88,89 In order to improve the
efficiency of astaxanthin biosynthesis, Ma et al. constructed a highly
efficient targeted engineering carotenoid synthesis platform in

Fig. 4. Mevalonate pathway for downstream product biosynthesis. pMH1 contains the genes encoding the first three enzymes of the mevalonate pathway, AtoB, ERG13,
and tHMG1; pFZ81 contains the other four genes in the mevalonate pathway, ERG12, ERG8, MVD1, and Idi. pMH1 and pFZ81 both use the single lac promoter in the pBBR1MCS
backbone to control expression of the indicated three or four genes. The mevalonate pathway involves the conversion of three equivalents of acetyl-CoA into one equiva-
lent of IPP or DMAPP (dimethylallyl pyrophosphate). Using the highly efficient IPP and DMAPP platform, many downstream products, such as advanced biofuel, nutriceuticals
and drug precursor, could be readily derived.
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E. coli, and the production of astaxanthin in a heterologous host
reached 8.64 mg g–1 dry cell weight.83

5. Re-edit the microbial metabolic pathway: utilize the
polyketide pathway for valued chemicals

As reported, polyketide syntheses (PKS) and fatty acid synthe-
ses are remarkably similar with regard to their underlying
mechanisms.90,91 However, PKS can produce many different struc-
tures for several reasons. First, various CoA-units can be selected
and elongated in the PKS assembly line by basic β-keto-synthase
(KS), acyltransferase (AT), and ACP domains. Second, keto-reductase
(KR), dehydratase (DH) and enoylreductase (ER) have various re-
ducing roles at the β-keto position organized from all to none of
their oxidative activities, thereby producing carbon chains with
diverse levels of oxidation.92 Third, the various types of thioesterase
involved in PKS release have a role in directing final product struc-
ture. Our goal is to edit and design the PKS genes and thereby use
the PKS pathway for production of valuable chemicals, including
long and short alkane, dicarboxylic acid etc.

Alkanes and alkenes are important primary components for the
formation of biodiesel. There are several pathways for engineer-
ing alkane and alkene production derived from the fatty acid system
as reported earlier.73,93–97 However, because of the nature of the fatty
acid biosynthesis mechanism, all products reported in these studies
are obtained in mixtures. As shown in Fig. 5, Liu et al. attempted
to engineer the alkane biosynthesis pathway using iterative type I
PKS SgcE and the cognate TE SgcE10 in E. coli, with the goal of over-
producing single form pentadecaheptaene (PDH) followed by its

hydrogenation to pentadecane (PD).46 Using the in vitro reconsti-
tution assays, we found the production of PDH was strongly
dependent on the SgcE10:SgcE ratio and a ratio of 8 afforded
maximum PDH production. The level of expression of SgcE10 was
subsequently fine-tuned using a T7 promoter-based synthetic pro-
moter library. In addition, the cellular concentration of SgcE10 and
SgcE was monitored using an MS-based targeted proteomic
approach.57,80 Finally, the single form of C15 alkane was achieved
and the highest titer was reached at 140 mg L–1, and the best
SgcE10:SgcE ratio calculated in vivowas closer to that obtained from
the in vitro assay. In this study, the in vivo findings supported the
physiological relevance of the in vitro observations, suggesting the
utility of developing in vitro reconstitution systems for in vivo
engineering.

6. Conclusion and perspectives

In these cases, target engineering has shown its potential for met-
abolic engineering. It is expected to be widely used as there are
several advantages compared to traditional metabolic engineer-
ing. Firstly, it is much more efficient compared to direct in vivo
engineering because we can adjust each component freely and pre-
cisely. Instead of constructing hundreds of derivate strains to test
their contributions by using genetic methods, e.g. overexpression,
deactivation and down-regulation, a series of in vitro assays can be
set up easily by adding an exact amount of each component as de-
signed into the system. Secondly, the clear background of the in vitro
system makes it useful to explore the maximum potential of the
pathway of interest. Each component can be added as designed,

Fig. 5. Reconstitution in vitro assays: use of an iterative polyketide pathway for valued chemicals in single form. 1) In vitro reconstitution of the pathway for pentadecaheptaene
(PDH) production. PDH can be biosynthesized from malonyl-CoA via the iterative polyketide pathway. Purified SgcE (203 kDa) and SgcE10 (18.5 kDa) proteins can be used
for in vitro reconstitution. In vitro reconstitution assays processed with malonyl-CoA and NADPH, and titration products PDH quantified by measuring absorbance at 395 nm.
2) Fine-tuned adjustments of targeted gene expression. Based on the results of the titration studies, several in vivo constructs engineered for fine-tuned SgcE10 expression:SgcE
is under the T7 promoter and SgcE10 is under selected promoters of various strength. 3) Targeted proteomics analysis. Modified MRM-MS proteomics analysis of SgcE and
SgcE10 expression in engineered strains. Relative amounts of SgcE and SgcE10 were determined by summing peptide peak areas and normalizing with BSA (bovine serum
albumin). 4) Overproduction of single-form targeted product. Analysis of hydrogenated product compared with the C8–C20 alkane standard with GC–MS. Automated flow
chemical hydrogenation was performed on the H-Cube. The engineered strain BL21(DE3)/pQL1 showed the best PDH production (140 mg L–1).
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which can be very close to the ideal condition to make the pathway
work as fast as possible and as smoothly as it can, which is not pos-
sible for in vivo engineering. These results help to evaluate the
industrial practical possibility of the pathway of interest. Thirdly,
the quantified data of each step make it clear for further engineer-
ing. The modified targeted proteomics and analysis of intermediates
has enriched the targeted engineering because each step can be per-
formed upon the basis of the quantified data. Combinations of these
pieces of information will identify the next target.

The complexity of a naturally occurring in vivo system often is
a major problem for engineering; these systems are products of evo-
lutionary forces and have redundant and often overlapping regulatory
elements. During the targeted engineering of a specific pathway,
the in vitro system cannot always mimic the in vivo conditions pre-
cisely. Interferences occurring in vivo, e.g. the existence of
competition or a branched pathway, phosphorylation or acetyla-
tion modification of targeted proteins66 etc., are barriers to pathway
engineering. Therefore, an essential interpretation of the targeted
pathway is a prerequisite for successful in vitro reconstitution. It
should be noted this approach is not suitable for a pathway con-
taining proteins with certain attributes, e.g. poorly soluble, difficult
to purify, susceptible to loss of activity in vitro. In addition, the effect
of accumulated intermediates on the whole cell system cannot be
addressed in the clear background of the in vitro system; the ratio
of cofactors of different forms titrated by in vitro reconstitution is
sometimes not consistent as it is in vivo. To construct highly effi-
cient cell factories, both the pathway of interest and the whole cell
system should be well balanced.98 Consequently, bymonitoringmet-
abolic status (or metabolomics analysis) and proteomics analysis,
this approach could help provide more guidance on metabolic en-
gineering of thewhole cell system, such as redox, energy and cofactor
metabolism.

It is a challenge to express proteins precisely as expected in vivo,
which means it is difficult to achieve the exact optimized pathway
in vivo. The targeted engineering is still valuable for the in vivo en-
gineering as it can provide quantified data for key factors of the
pathway of interest. Targeted engineering will be more useful after
a more accurate expression technique is available. Meanwhile, with
the widespread application of “-omics” techniques and computa-
tional biology techniques, many genome-scale metabolic models
have been constructed as tools for various applications, including
metabolic engineering, pathway rerouting and systems biology. Com-
bined with targeted engineering, the steady-state kinetic data and
the overall flux of a targeted pathway obtained from in vitro re-
constitution could facilitate the construction of high-quality
metabolic models. The use of a synthetic biology approach in the
post-genomic era could artificially design many new pathways for
the synthesis of targeted products. The biosynthesis procedures or
route of targeted product often can be divided into several syn-
thetic modules upon the basis of their catalyst function. Each
synthetic module would be easy to optimize by reconstitution. As
a result, modular synthesis of pharmaceutical compounds will likely
become the focus of interest, and targeted engineering could be of
great benefit to highly efficient modular design and optimization.
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