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Abstract: A new positioning algorithm based on RSS measurement is proposed. The algorithm
adopts maximum likelihood estimation and semi-definite programming. The received signal strength
model is transformed to a non-convex estimator for the positioning of the target using the maximum
likelihood estimation. The non-convex estimator is then transformed into a convex estimator by
semi-definite programming, and the global minimum of the target location estimation is obtained.
This algorithm aims at the L0 known problem and then extends its application to the case of L0

unknown. The simulations and experimental results show that the proposed algorithm has better
accuracy than the existing positioning algorithms.

Keywords: target localization; maximum likelihood estimation; received signal strength; semi-
definite programming; wireless sensor networks

1. Introduction

With the development of wireless sensor networks (WSNs) [1–13], the Internet of
things has become common. Positioning algorithms are widely used in intelligent ware-
house, robot cooperation, instrument navigation, position monitoring, etc. The predefined
points are known as the anchors, while the target refers to the point whose position needs
to be estimated. The common measurements are angle of arrival (AOA) [14–17], time of
arrival (TOA) [18–20], time difference of arrival (TDOA) [21,22] and received signal strength
(RSS) [23–29]. However, AOA requires antenna arrays. TOA and TDOA require clock
synchronization, which greatly increases the costs. Compared with other measurements,
the RSS measurement is easier and a lower cost to obtain. Hence, we focus on it in this
paper. There are two models of RSS: one is based on signal strength, and the other is on
path loss. This paper adopts the latter.

Among the existing RSS positioning algorithms, a common approach is to construct
a non-convex function about the target and then find the extreme value of the function
using some mathematical algorithms, such as gradient descent, coordinate descent, genetic
algorithm, and golden section algorithm. However, because of the noise in the received
signal, the extremum of the non-convex equation may not be the global optimal solution,
but the local optimum instead. Therefore, a more accepted approach is using convex
optimization schemes to get a convex equation, and then find the global optimal value.
The least squares (LS), least relative error (LSRE) and weighted least squares (WLS) are
applied in most optimization problems. In the literature, Robin, WO. [30], Tomic, S. [31],
Wang, Z. [32], Surya, VP. [33] and Mei, X. [34], all choose to ignore the difference of
the standard deviation of noise after the Taylor expansion of the term containing the
amount of noise in the model transformation. Therefore, if the received signal strength
contains noise, the final estimated position has some deviation, which increases as the
noise standard deviation increases, and the deviation also increases, resulting in the poor
estimation accuracy. The SOCP1 method proposed by Tomic, S. [35] and the SDP1 method
proposed by Chang, S. [36] used the convex optimization to solve this problem. They also

Sensors 2022, 22, 733. https://doi.org/10.3390/s22030733 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030733
https://doi.org/10.3390/s22030733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22030733
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030733?type=check_update&version=1


Sensors 2022, 22, 733 2 of 13

considered cooperative scenes. Coluccia, A. proposed a Bayesian formulation of the ranging
problem [37]. This method is called “optimal ML range-free”. The DEOR method [38] and
DEOR-fast method [39] proposed by Najarro, L.A.C. employed the three techniques of DE,
OBL and adaptive redirection. These two methods achieved good accuracy, but the lower
and upper bounds for the initial population is hard to be sure about. This paper proposes
a new positioning algorithm based on maximum likelihood estimation and semi-definite
programming (“MLE-SDP”), which takes into account the variation of noise standard
deviation. The basic steps of this algorithm is to transform the path loss model of the
received signal into a relatively simple expression without a logarithm and expand the
term with noise by Taylor series to obtain a new noise term. The variance of the new term
is proportional to the distance between the target and each anchor. Then, the maximum
likelihood estimation function is constructed, and a non-convex estimator is obtained. Next,
we use semi-definite programming [40] to transform the non-convex variables and obtain a
constrained convex estimate. The estimator of the target can be obtained by solving the
convex problem.

The main contributions of this paper is as follows:

1. The RSS model is transformed into a pseudo-linear system with new noise;
2. Based on LS criterion, a new non-convex objective function is derived to solve the

target positioning problem;
3. The non-convex objective function is transformed into a convex objective function by

semi-definite programming.

The experiments were carried to verify the performance of the proposed algorithm.
It is compared with three existing common algorithms and the Cramer–Rao lower bound
(CRLB). The simulation results show that the proposed algorithm achieves substantial
improvements in accuracy, at the same complexity and running time. The results of field
test are also given in Section 5.

2. System Model and Problem Formulation

Suppose a two-dimensional (or three-dimensional) sensor network is composed of N
anchors and a target with unknown position. The positions of the target and the i-th anchor
are represented by x and si (i = 1, . . . , N), respectively. As show in Figure 1, di represent the
distance between the i-th anchor and the target. Assuming that the received signal noise
follows the normal distribution ni ∼ N

(
0, σ2

ni

)
. That means the mean of ni is zero and the

standard deviation is σni , making the system model to be

Li = L0 + 10γlog10
‖x− si‖

d0
+ ni, i = 1, . . . , N (1)

where Li is the RSS measurement received by the i-th anchor, and L0 is the RSS measurement
received by the anchor. When the distance between the anchor and the target is d0, d0
is the reference distance, usually set as 1 m. γ is the path loss index, and it is generally
between 2.2 and 4. This paper takes 2.2 because this paper is based on LOS scenes. ni is the
received signal noise of the i-th measurement. When L0 is known, the maximum likelihood
estimation is used as

min
x

N

∑
i=1

(Li − L0 − 10γlog10
‖x−si‖

d0
)

2

σni
2 , i = 1, . . . , N. (2)

When L0 is unknown, the maximum likelihood estimation is used as

min
x,L0

N

∑
i=1

(Li − L0 − 10γlog10
‖x−si‖

d0
)

2

σni
2 , i = 1, . . . , N. (3)
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Because large-scale examples of these problems cannot be solved by accurate algorithm,
Equations (2) and (3) are NP-hard problems which are very complex non-convex estimators,
and it is difficult to find the global optimal solution.

d
i

x

s
i

x
1

x
2

s
i1

s
i2

Figure 1. Schematic diagram of anchor and target position.

3. The Proposed Algorithm

In this section, we introduce the estimator of the target position based on the maximum
likelihood estimation in the two-dimensional case and use semi-definite programming
to change the non-convex estimator into convex, so that we can find the global optimal
solution. For 3D, it is similar to 2D.

In Section 3.1, L0 is known, and in Section 3.2, L0 is unknown. Table 1 lists the symbols
that appear frequently in this section.

Table 1. Symbols and notations.

Symbol Explanation

Li The RSS measurements
d0 The reference distance
L0 The RSS measurements when d0 = 1
γ The pass-loss exponent
x The position of the target node
si The position of the i-th anchor node
N The number of anchor nodes
di The range between the target node and the i-th anchor node
ni The measurement noise between the target node and the i-th anchor node
σ The standard deviation of measurement noises

3.1. L0 Known Positioning Algorithm

To simplify the system model, subtracting L0 from both sides of Equation (1) and
dividing by 10γ, and taking the power of 10 at the same time, we obtain

d010
Li−L0

10γ = ‖x− si‖10
ni

10γ , i = 1, . . . , N. (4)

Let us expand 10
ni

10γ by McLaughlin, just 10
ni

10γ ≈ 1 + ln 10
10γ ni, and we obtain

αiη = ‖x− si‖+
ln 10
10γ
‖x− si‖ni, i = 1, . . . , N (5)
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where αi = d010
Li

10γ , η = 10−
L0

10γ . According to αiη ≈ ‖x− si‖, we obtain

αiη = ‖x− si‖+ ξi, i = 1, . . . , N (6)

where ξi = ln 10
10γ αiηni, a new noise ξi with mean square error ln 10

10γ αiησ is obtained, a
non-convex equation is constructed according to maximum likelihood estimation as

min
x

N

∑
i=1

(αiη − ‖x− si‖)2(
ln 10
10γ αiησ

)2 (7)

because ln 10
10γ , η, σ are constant, they are not affected when estimating x. Thus, they can be

removed, an unfolding molecule, and we obtain

min
x

N

∑
i=1

‖x− si‖2 − 2αiη‖x− si‖
αi

2 + 1 (8)

The addition of 1 in the objective function does not affect the estimated value x. Thus,
Equation (8) can be written as

min
x,d,r

N

∑
i=1

ri − 2αiηdi
αi

2 (9a)

s.t. di = ‖x− si‖ (9b)

ri = di
2 (9c)

where di = ‖x− si‖, ri = di
2. Now, the objective function is transformed into convex, and

then the constraints are transformed as

min
x,y,d,r

N

∑
i=1

ri − 2αiηdi
αi

2 (10a)

s.t. ri = y− 2si
Tx + si

Tsi (10b)

y = xTx (10c)

ri = di
2. (10d)

Using semi-definite programming, we transform Equation (10) into convex and obtain
the final estimator as

min
x,y,d,r

N

∑
i=1

ri − 2αiηdi
αi

2 (11a)

s.t. ri = y− 2si
Tx + si

Tsi (11b)[
xT y
I2 x

]
≥ 0 (11c)[

di ri
1 di.

]
≥ 0 (11d)

The estimator Equation (11) is a new positioning algorithm when L0 is known, and it
is called “MLE-SDP”.
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For Equation (10), the form of second-order cone programming can also be used, and
the transformed estimator Equation (12) is called “MLE-SOCP” as

min
x,y,d,r

N

∑
i=1

ri − 2αiηdi
αi

2 (12a)

s.t. ri = y− 2si
Tx + si

Tsi (12b)∥∥∥∥[ 2x
1− y

]∥∥∥∥ ≤ 1 + y (12c)∥∥∥∥[ 2di
1− ri.

]∥∥∥∥ ≤ 1 + ri (12d)

Because the simulation results of the “MLE-SDP” algorithm are better than the “MLE-
SOCP” algorithm’s, this paper only uses the “MLE-SDP” algorithm to compare with
other algorithms.

3.2. L0 Unknown Positioning Algorithm

Because the transformation of L0 unknown case is very similar to L0 known case, the
final estimator is given directly as

min
x,y,d,r,η,u

N

∑
i=1

ri − 2αiui
αi

2 (13a)

s.t. ri = y− 2si
Tx + si

Tsi (13b)[
xT y
I2 x

]
≥ 0 (13c)[

di ri
1 di

]
≥ 0 (13d)[

η ui
1 di

]
≥ 0 (13e)

the estimator Equation (13) is the positioning algorithm, when L0 is unknown, called
“MLE-SDP2” in this paper.

4. Simulation Results

In this section, the performance of the proposed algorithms “MLE-SDP” and “MLE-
SDP2” are verified by MATLAB simulations. In Section 4.1, the “MLE-SDP” algorithm
is compared with the “LS-SDP” algorithm, the “LS-SOCP” algorithm, the “LSRE-SOCP”
algorithm, the “optimal ML range-free” algorithm, the “SOCP1” algorithm, the “DEOR1”
algorithm and the “DEOR-fast1” algorithm. In Section 4.2, the “MLE-SDP2” algorithm
is compared with the “LS-SDP2” algorithm, the “LS-SOCP2” algorithm, the “SOCP2”
method, the “DEOR2” method and the “DEOR-fast2” method. In addition, the Cramer–
Rao lower bound (CRLB) is also provided in both conditions. CRLB is the best effect that
can estimate parameters by using the existing information. The closer to CRLB, the better
the performance of the algorithm.

All RSS measurements are generated by Equation (1). The measurement noise is based
on normal distribution. Anchors are randomly generated in a square area with a side length
of 100 m. In order to avoid the influence of the special distribution of anchors, the position
of anchors is reset in each simulation. The settings of reference distance, path loss, reference
measured value, simulation times and other variables are given in Table 2. The root mean
square error (RMSE) is used to evaluate the performance of the algorithm. The definition

of RMSE is

√
1

Mc

Mc
∑

i=1
‖xi − x̂i‖2, where xi is the position of the target, x̂i is the estimated

position of the target and Mc is the simulation times.
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Table 2. Simulation parameter settings.

Symbol Describe Value

d0 reference distance 1 m
γ path loss 4
L0 reference measured value −10 dBm
Mc simulation times 5000

The variables of σni and N are given in Table 3.

Table 3. Variables in Figures 2–7.

σni N

Figure 2 1–6 dBm 9
Figure 3 4 dBm 6–16
Figure 4 4 dBm 9
Figure 5 1–6 dBm 9
Figure 6 4 dBm 6–16
Figure 7 4 dBm 9

4.1. L0 Is Known

Average running times of the eight algorithms are listed in Table 4. From Table 4, we
can know that the average running time of the proposed algorithm in this paper is 0.58 s,
which means that while improving the accuracy, the running times do not increase. The
bias of the “ML-SDP1” method is 0.0567 m, according to the simulation results.

Table 4. Average running times of L0 known situation.

Method Describe Running Times (s)

MLE-SDP The “ML-SDP” algorithm in this paper 0.58
LS-SDP The “LS-SDP” algorithm in [30] 0.85

LS-SOCP The “LS-SOCP” algorithm in [31] 1.16
LSRE-SOCP The “LSRE-SOCP” algorithm in [32] 2.53
optimal-ML The “optimal ML range-free” algorithm in [37] 3.58

SOCP1 The “SOCP1” algorithm in [35] 2.87
DEOR1 The “DEOR” algorithm in [38] 0.45

DEOR-fast1 The “DEOR-fast” algorithm in [38] 0.23

First, we test the relationship between the RMSE of the estimator of the target and σni

(the variance of the measurement noise). Nine anchors are randomly distributed, and the
target is randomly generated. σ changes from 1 to 6 dBm.

Figure 2 shows the comparison between the proposed algorithm and other algorithms.
The RMSE of all algorithms increases with the increase in the measurement noise σni ,
which indicates that the larger the noise, the larger the deviation of the final estimator.
The proposed algorithm “MLE-SDP” in this paper has lower RMSE than the other seven
algorithms and is the closest to the CRLB. This also shows that the proposed algorithm has
a significant advantage in accuracy.

Figure 3 shows the RMSE of the estimator of the target versus the number of anchors.
It is obvious that the RMSE of all algorithms reduces while the number of anchors increases.
σni is set to be 4 dBm.

As shown in Figure 3, compared with the other seven algorithms, the RMSE of the
proposed algorithm is lower whether the number of anchor nodes is large or small. It is
very close to the CRLB when the number of anchors is larger than 8. That means it has
better performance when the number of anchor nodes is larger than 8.
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Figure 2. When L0 is known, this is the relationship between RMSE and σni .
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Figure 3. When L0 is known, this is the relationship between RMSE and N.

Figure 4 shows the cumulative distribution function (CDF) versus the mean error
(EM). The faster the CDF curve rises, the better the performance is. Nine anchors are
randomly distributed, and the target is randomly generated. The standard deviation of
RSS measurement noise is set as σ = 4 dBm.

As shown in Figure 4, the CDF of the proposed algorithm is higher than the other seven
algorithms. Moreover, it is the closest to the CRLB, which means it has higher accuracy.
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Figure 4. When L0 is known, this is the CDF.

4.2. L0 Is Unknown

The average running times of the six algorithms which L0 are unknown are listed
in Table 5. From Table 5, we can know that the running times of the proposed algorithm
“MLS-SDP2” in this paper are almost twice the running times of “MLS-SDP1”. This is due
to the increase in constraints and unknown variables. The bias of the “ML-SDP2” method
is 0.0768 m, according to the simulation results.

Table 5. Average running times of L0 unknown situation.

Method Describe Running Times (s)

MLE-SDP2 The “ML-SDP2” algorithm in this paper 1.13
LS-SDP2 The “LS-SDP2” algorithm in [30] 1.65

LS-SOCP2 The “LS-SOCP2” algorithm in [31] 2.28
SOCP2 The “SOCP2” algorithm in [35] 5.43
DEOR2 The “DEOR” algorithm in [38] 0.63

DEOR-fast2 The “DEOR-fast” algorithm in [38] 0.32

First, we test the relationship between the RMSE of the estimator of the target and
σni . Nine anchor nodes are randomly distributed, and the target is randomly generated.
σ change from 1 to 6.

Figure 5 shows the comparison between the proposed algorithm and other algorithms.
The RMSE of all algorithms increases with the increase in the measurement noise σni ,
which indicates that the larger the noise, the larger the deviation of the final estimator.
The proposed algorithm “MLE-SDP2” in this paper has a lower RMSE than the other five
algorithms and is the closest to the CRLB. This also shows that the proposed algorithm has
a significant advantage in accuracy.

Figure 6 shows the RMSE versus the number of anchors when L0 is unknown. It is
obvious that the RMSE of all algorithms reduces while the number of anchors increase. The
standard deviation of RSS measurement noise is set as σni = 4 dBm.

As shown in Figure 6, compared with the other five algorithms, the RMSE of the
proposed algorithm is lower whether the number of anchors is large or small. It is very
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close to the CRLB when the number of anchor nodes is larger than 10. That means the
proposed algorithm has a better performance when the anchor nodes are more than 10.
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Figure 5. When L0 is unknown, this is the relationship between RMSE and σni .
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Figure 6. When L0 is unknown, the relationship between RMSE versus N.

Figure 7 shows the relationship between the cumulative distribution function (CDF)
and the mean error (EM). The faster the CDF curve rises, the better the performance is. Nine
anchors are randomly distributed, and the target is randomly generated. The standard
deviation of RSS measurement noise is set as σ = 4 dBm.

As shown in Figure 7, the CDF of the proposed algorithm is higher than the other two
algorithms. In addition, it is the closest to the CRLB, which means it has higher accuracy.
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Figure 7. When L0 is unknown, this is the CDF.

5. Experiment

This section shows the effect of the proposed algorithm “MLE-SDP2” in the actual test.
The actual test was carried out in the rectangular laboratory of 40 m long and 16 m wide.
We put 8 anchor nodes and 5 target to test. The location of the anchors is fixed each time,
while the location of the target is randomly placed, as shown in Figure 8. In Figure 8, the
abscissa and ordinate represent the width and length of the test site, respectively. The units
are both m.

For each target, we test 100 sets of data; therefore, we collect a total of 5100 sets of data.
Figure 9 shows the relationship between the cumulative distribution function (CDF) and
the mean error (EM) in this experiment.

As shown in Figure 9, the CDF of the proposed algorithm is higher than the other five
algorithms. This proves the good performance of the proposed algorithm.
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Figure 8. Distribution of the anchor nodes and the targets.
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Figure 9. The CDF of the experiments.

6. Conclusions

In this paper, a new algorithm based on maximum likelihood criterion for unknown
point location using semi-definite programming estimation is studied. The estimators are
proposed for the cases where L0 is known and unknown. Through MATLAB simulation, the
advantage of the proposed methods “MLE-SDP” and “MLE-SDP2” in calculation accuracy
is confirmed. The experiments show the practicability of this algorithm. A non-line of sight
(NLOS) error is the main component of measurement error. In the future work, we will
model the NLOS error so that the algorithm can be better applied to practice.
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The following abbreviations are used in this manuscript:

WSNs Wireless sensor networks
AOA Angle of arrival
TOA Time of arrival
TDOA Time difference of arrival
RSS Received signal strength
SDP Semi-definite programming
SOCP Second-order cone programming
RMSE Root mean square error
CDF Cumulative distribution function
CM Mean error
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