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Abstract: We present a quantum chemical analysis of the 18F-fluorination of 1,3-ditosylpropane,
promoted by a quaternary ammonium salt (tri-(tert-butanol)-methylammonium iodide (TBMA-I)
with moderate to good radiochemical yields (RCYs), experimentally observed by Shinde et al. We
obtained the mechanism of the SN2 process, focusing on the role of the –OH functional groups
facilitating the reactions. We found that the counter-cation TBMA+ acts as a bifunctional promoter:
the –OH groups function as a bidentate ‘anchor’ bridging the nucleophile [18F]F− and the –OTs
leaving group or the third –OH. These electrostatic interactions cooperate for the formation of the
transition states of a very compact configuration for facile SN2 18F-fluorination.

Keywords: 18F-fluorination; tri-tert-butanol ammonium; organocatalysis; mechanism

1. Introduction

The 18F-fluorination [1–20] of organic compounds is gaining considerable importance
for synthesizing chemicals that can be employed as radiotracers for the diagnosis of various
diseases [21–23] by the highly sensitive imaging technique of positron emission tomog-
raphy (PET) [24,25]. Electrophilic substitution reactions [26–28] using the carrier added
[18F]F2 gas were the earlier method for this purpose, but this approach usually suffers from
poor radiochemical yields (RCYs) and from the difficulty of handling the [18F]F2 gas. The
nucleophilic incorporation of [18F]fluoride may be considered as a favorable alternative,
but so far, this approach mainly requires azeotropic drying and multistep synthetic routes.
Generally, this is undesirable for radiofluorination, as 18F possesses a relatively short
half-life of 109.77 min. Various non-radioactive nucleophilic fluorination methods [29–35]
have been developed using various phase-transfer catalysts (PTCs) for their application
in radiopharmaceutical chemistry in which hydrogen bonding between protic PTC and
nucleophile [18F]fluoride enhances the reaction and selectivity [36,37]. The recent develop-
ment of tri-(tert-butanol)-methylammonium [18F]fluoride (TBMA-18F) [13] as a promoter
for radiofluorination demonstrated an excellent [18F]fluoride elution efficiency under the
reduced basicity of [18F]fluoride, with moderate to good obtained RCYs. This technique
seems to allow a single-step reaction scheme for the synthesis of 18F-labeled substances,
which would be a significant advance. Shinde and co-workers proposed that these excellent
organocatalytic properties of the counter-cation may be attributed to the coordinating
capacity of the two functional groups (ammonium and hydroxyl) in TBMA+. This rate
enhancement, promoted by the counter-cation, which would be the first such example for
18F-fluorination, exhibits significant advantages over more conventional methods using
alkali metal cations, M+ (M = K, Rb, Cs), because in the latter case the Lewis base promoters
such as bulky alcohols [8,32], oligoethylene glycols [8,31,32], ionic liquids [8,33], or crown
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ethers [34,35] are required to suppress the harmful Coulomb forces of the counter-cation on
the nucleophile.

Here we elucidate the mechanism of the rate enhancement of 18F-fluorination by a qua-
ternary ammonium salt (tri-(tert-butanol)-methylammonium iodide (TBMA-I)) (Scheme 1)
by quantum chemical methods. We present the analysis of the 18Ffluorination of 1,3-
ditosylpropane (1), finding that the counter-cation TBMA+ acts as a bifunctional promoter:
the –OH groups in TBMA+ act as a bidentate ‘anchor’ by forming hydrogen bonds with the
nucleophilic [18F]fluoride and the tosylate (–OTs) leaving group or the third –OH. These
electrostatic interactions cooperate for the formation of the transition state (TS) of a very
compact configuration for facile SN2 18F-fluorination. The fluorinating agent TBMA-18F
reacts with substrate 1 as a contact ion-pair, in which the counter-cation TBMA+ and the
nucleophile [18F]F− are in close contact.

Scheme 1. Structure of TBMA-I and the 18F-fluorination of 1,3-ditosylpropane [13].

2. Results

Scheme 1 presents the structure of TBMA-I, which is transformed to TBMA-18F by
Shinde and co-workers’ procedure [13], along with the 18F-fluorination of the model
substrate 1,3-ditosylpropane 1. Carrying out the reaction in CH3CN selectively produced
the 18F-labeled product [18F]2 with an RCY of 20% in CH3CN (Table 1). In Shinde and
co-workers’ experiments, TBMA-18F is recovered from QMA cartridges after treatment
with methanolic TBMA-I, and the counter-cation TBMA+ accelerates the 18F-fluorination,
thus the reaction given in Scheme 1 would be the key process.

Table 1. Reactivity of TBMA-18F for 18F-substitution of 1,3-ditosylpropane (1) [13].

Entry Promoter
Recovery of

[18F]fluoride [%] Solvent (0.5 mL)
RCY[%] (Radio-TLC)

[18F]2 [18F]3

1 TBMA-I 98.8 CH3CN 21 -
Reactions were carried out using 15.0 µmol of (1), K2CO3 (1 M, 15 µL), and 39.0 µmol of TBMA-I at 85 ◦C for
20 min.

We carried out density functional theory (DFT) calculations for the reaction in CH3CN
and obtained the reaction mechanism and energetics shown in Figures 1 and 2, in which
the TSs (structures of pre- and post-reaction complexes and Cartesian coordinates are listed
in Supplementary Materials, Figure S1) and the energy profile are depicted.
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Figure 1. Calculated structures of the free reactant TBMA+F− and the transition states of 18F-
fluorination using TBMA-18F in CH3CN.

Figure 2. Energetics of 18F-fluorination using TBMA-18F in CH3CN.

We found three SN2 mechanisms with different TSs and energetics (Figure 1). In all TSs
(TS-SN2_1, TS-SN2_2, TS-SN2_3), the ammonium TBMA+ and the nucleophile [18F]F− are
in close contact (RN-F = 3.568–3.735 Å), indicating that the reaction proceeds via the contact
ion-pair (CIP) mechanism. In these TSs, hydrogen bonding between the two hydroxyl
–OHs, the third –OH, or the tosylate (–OTs) leaving group are shown to play a crucial
role in the reaction mechanism. Two of the –OHs bind to the nucleophile [18F]F− in all
TSs. The role of the 3rd –OH, however, is somewhat different: in TS-SN2_1, it interacts
with the leaving group –OTs, assisting their departure, whereas in two other TSs, it forms
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a hydrogen bond with –OH. These electrostatic interactions help to form compact pre-
reaction complexes and TSs (see Supplementary Materials, Figure S1) and TSs that are
favorable for SN2 fluorination. Thus, the two –OH groups act as a bidentate ‘anchor’, and
the counter-cation TBMA+ plays its role as a promoter for the 18F-fluorination by providing
these two –OHs. The structures of the three TSs in Figure 1 are similar, the difference being
in the relative orientation of the –OTs leaving group and TBMA+.

The relative feasibility of the three CIP mechanisms may be assessed by invoking
the Curtin–Henderson principle [38]: if the transformation from free reactants to the pre-
reaction complex is irreversible (that is, no equilibrium between the two), the reaction
path with the lowest Gibbs free energy of the TS (that is, with lowest Gibbs free energy of
activation G‡ with respect to the free reactants) is favored, irrespective of the Gibbs free
energies of the pre-reaction complexes along the reaction routes. The calculated G‡ for the
three reaction routes are 31.3, 31.6, and 31.6 kcal/mol (Figure 2), suggesting that they may
contribute almost equally (the difference of 0.3 kcal in G‡ for the case 1 and case 3 routes
amounts to a ~1:1.5 ratio of reaction rates at the reaction temperature of 85 ◦C).

It would be interesting to compare the mechanism of 18F-fluorination by TBMA-
18F shown here with the mechanism [39] of promotion of (non-radiative) fluorination by
[bmim][F] in a solvent-free environment, experimentally demonstrated by Magnier and
co-workers [40]. In the latter process, the acidic H-atom in the counter-cation bmim+

facilitates the detachment of the leaving group, whereas in the present case it is the –OHs
interacting with the leaving group. It is to be noted that in both reactions the fluorinating
agents (TBMA-18F, [bmim][F]) act as promoters for the reactions as well. Strong Coulombic
attraction between the nucleophile and the counter-cation forces them to react as a CIP.

The relative Gibbs free energies of the pre-reaction complexes in Figure 2, with respect
to those of free reactants, are worth mentioning: the (stationary) pre-reaction complexes
are predicted to lie higher than free reactants, in contrast with most SN2 reactions we
have studied. Although some theoretical studies [41–43] have suggested that pre-reaction
complexes could not be obtained in some cases, the origin of the ‘well-skipping’ SN2
reactions predicted here is not clear.

One of the salient features of Shinde and co-workers’ procedure is that it produced the
SN2 18F-labeled product [18F]2 exclusively, without E2 elimination [44] products, and this
observation is worth mechanistic scrutiny. This aspect of Shinde’s method is very important,
because the exclusion of E2 products may be much more significant than the SN2 yield itself,
especially for radiofluorination. Additional purification steps would be critically harmful
when using the radiofluorinated product for clinical/diagnostic purposes due to the short
lifetime of 18F. Figures 3 and 4 present the two TSs (structures of pre- and post-reaction
complexes and Cartesian coordinates are listed in Supplementary Materials, Figure S2) and
the corresponding energetics, respectively, of the E2 elimination of 1 in CH3CN. The Gibbs
free energies of activation G‡ for the elimination process are calculated to be 34.1~35.5
kcal/mol (Figure 4), which are considerably higher (by 2.8~4.2 kcal/mol) than those for
the SN2 18F-fluorination (Figure 2), accounting for the experimentally observed exclusive
formation of SN2 products. Thus, it seems that although the hydrogen bonding between
the two –OHs and the nucleophile [18F]F− may retard the SN2 fluorination to a certain
degree, these electrostatic interactions may also promote the reaction by facilitating the
formation of a pre-reaction complex and TS that are much more advantageous for the SN2
over the E2 process.
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Figure 3. Calculated transition states of the E2 elimination of 1 in CH3CN.

Figure 4. Calculated energetics of the E2 elimination of 1 in CH3CN.

3. Computational Details

The M06-2X/6-311G** method [45,46] was employed as implemented in Gaussian16 [47],
which proved to be very instructive for treating non-covalent interactions [48]. We adopted
the cluster/continuum approximation, including the effects of the solvent continuum by
the SMD-PCM method [49]. The reference for the zero of the free energy is taken as the
‘free’ reactant, for which the substrate and TBMA-18F are separated from each other in the
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solution phase. We carried out an extensive (but not exhaustive) search for stationary states
over the potential energy surface of the system. Pre-reaction and post-reaction complexes
were obtained by verifying that all harmonic frequencies are real. Transition states were
obtained by ascertaining the imaginary frequency of the reaction coordinate, and also by
performing the intrinsic reaction coordinate analysis.

4. Conclusions

We have presented the quantum chemical analysis to account for the activation of
[18F]fluoride by tri-(tert-butanol)-methylammonium. The role of the –OHs in TBMA+ as
a bifunctional organocatalyst has been manifested: the hydroxyl groups function as a
bidentate ‘anchor’ to position the nucleophile [18F]F− in a configuration suitable for the nu-
cleophilic attack through hydrogen bonding. The elucidation of the underlying mechanism
of the present SN2 processes would help to drive the development of this technique forward,
using better ammonium counter-cations (for example, those with other alcohol moieties
containing –OHs, such as –CH2OH, instead of –t-BuOH) and schemes (for example, using
a less bulky leaving group such as a mesylate, to have more beneficial interactions between
the counter-cation and leaving group) for more efficient 18F-fluorination. The application of
the present methodology to the nucleophilic radiofluorination of a variety of radiotracers
would be highly desirable.

Supplementary Materials: Figure S1: Pre- and post-reaction complexes and the transition states of
18F-fluorination using TBMA-18F in CH3CN; Figure S2: Pre- and post-reaction complexes and the
transition states of E2 reactions using TBMA-18F in CH3CN.
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