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Abstract: To address the limitations of centralized resource allocation, i.e., high computational com-
plexity and signaling overhead, a distributed beamforming and power allocation strategy is proposed
for heterogeneous networks with multiple-input-single-output (MISO) interference channels. In the
proposed scheme, each secondary user transceiver pair (SU TP) determines the beamforming vector
and transmits power to maximize its own spectral efficiency (SE) while keeping the interference to
the primary user below a predetermined threshold, and such resource management for each SU TP
is updated iteratively without any information sharing until the strategies for all SU TPs converge.
The simulation confirms that the proposed scheme can achieve a performance comparable to that of
a centralized approach with a much lower computation time, e.g., less than 5% degradation in SE
while improving computation time by more than 10 times.

Keywords: heterogeneous networks; MISO interference channel; beamforming; power allocation;
distributed algorithm

1. Introduction

With the explosive growth of mobile data traffic and wireless devices, heterogeneous
networks emerged as a promising mechanism to provide high data rates and extend
communication coverage [1–3]. In contrast to those of homogeneous networks, secondary
users (SUs) opportunistically share the same spectrum resource as primary users (PUs) in
heterogeneous networks, which improves the spectral efficiency (SE), but at the same time,
this causes serious cross-tier interference.

Given that the system performance can be improved effectively with dynamic re-
source allocation [4], a number of studies have been undertaken regarding strategies to
efficiently share the spectrum between different networks with suppression of co-channel
interference [5–9]. In particular, interference management techniques were investigated to
improve the SE of heterogeneous networks in [5,6]. Resource allocation was proposed to
jointly maximize the energy efficiency and SE in multicell heterogeneous networks in [7],
and joint power control and resource allocation were suggested to maximize the total
throughput of cooperative device-to-device (D2D) heterogeneous networks in [8]. More-
over, the authors of [9] devised robust resource management for heterogeneous networks
under channel uncertainty.

To further improve upon the performance of heterogeneous networks while mitigat-
ing co-channel interference, some attempts have implemented multiantenna techniques,
including multiple-input-multiple-output (MIMO) precoding [10] and coordinated schedul-
ing and a beamforming scheme [11]. The analytical expressions of capacity bounds were
derived for dense massive MIMO in a line-of-sight propagation environment [12], and the
array antennas for MIMO applications were discussed [13–18]. Furthermore, the optimal
transmit beamforming, power allocation, and bandwidth partitioning were jointly designed
to maximize the sum achievable rate of the small cells while protecting the performance of
macrocell in [19]. In multiuser and multichannel underlay multiple-input-single-output
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(MISO) heterogeneous networks, joint beamforming and resource allocation were studied
to find the maximum possible number of SUs [20] and to maximize the sum rate of SUs [21]
while satisfying the interference requirements for the PUs. In [22–24], a distributed beam-
forming or a power allocation was proposed to improve the performance of cooperative
relay networks.

Some previous studies have considered joint optimization for beamforming and re-
source allocation for heterogeneous networks with multiantenna configurations [11,19–21],
but they have solved nonconvex optimization problems using a centralized approach,
which requires a large signaling overhead to acquire perfect channel state information
(CSI) and a high computational complexity. Although a distributed approach was dis-
cussed in [22–24], it cannot be applied directly to heterogeneous networks. Therefore, it is
necessary to devise a distributed approach that can be operated with practical heteroge-
neous networks.

In this paper, heterogeneous networks are considered with MISO interference channels,
in which multiple SU transceiver pairs (TPs) share the same spectrum with the PUs. In such
networks, an optimization problem is formulated to find optimal beamforming vectors
and transmit powers for the SU TPs to maximize their sum SE with a guarantee of the
requirements of allowable interference to the PUs. Given that a centralized approach
needs a large signaling overhead and a high computational complexity to determine the
suboptimal solutions from the formulated nonconvex problem, a distributed beamforming
and power allocation strategy that does not require any information sharing is proposed,
where each SU TP determines beamforming vector with the maximum ratio transmission
(MRT) and finds transmit power iteratively using dual methods. Simulations in various
environments confirm that the proposed scheme accomplishes a performance comparable
to the centralized power allocation with MRT in terms of sum SE and violation probability
with a remarkable reduction in the computation time.

The remainder of this paper is organized as follows. In Section 2, a system model
is presented, together with a formulation of the problem. In Section 3, the distributed
beamforming and power allocation strategy is proposed. In Section 4, the performance of
the proposed scheme is evaluated under various environments, and finally, the conclusions
are presented in Section 5.

2. System Model and Problem Statement

Figure 1 shows the system model of heterogeneous networks with MISO interference
channels, where there are N SU TPs, each of which consists of a transmitter (Tx) equipped
with M antennas and a receiver (Rx) equipped with a single antenna. The sets of SU TPs
and antennas are denoted as N andM, respectively, such that |N| = N and |M| = M. SU
TPs share the same spectrum as long as the amount of interference in PUs equipped with
a single antenna is less than a predefined threshold. The channel between the Tx of the
SU TP i and the Rx of the SU TP j for antenna m is denoted by h[m]

i,j , and index 0 is used
to indicate the PUs such that h0,i is the channel between the Tx of the PU and the Rx of

the SU TP i, while h[m]
i,0 is the channel between the Tx of the SU TP i and the Rx of the PU

for antenna m. It is assumed that h[m]
i,0 for m ∈ M is available at SU TP i to guarantee the

requirement for the interference caused to the Rx of the PU [25].
The received signal at the Rx of the SU TP i is given by

yi =
√

pih
H
i,iwixi + ∑

j∈N\{i}

√
pjh

H
j,iwjxj +

√
p0h0,ix0 + zi, (1)

where (·)H indicates Hermitian transpose, xi and x0 are the normalized data symbols
transmitted by the Tx of the SU TP i with transmit power pi and the Tx of the PU with
transmit power p0, respectively, and zi ∼ CN (0, σ2) denotes additive white Gaussian noise.
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Moreover, wi is a beamforming vector with unit norm, i.e., wi = {w
[1]
i , w[2]

i , · · · , w[M]
i } ∈

CM×1 and ‖wi‖2 = 1, and hi,j = {h
[1]
i,j , h[2]i,j , · · · , h[M]

i,j } ∈ CM×1, ∀i, j ∈ N.

SU Tx i
SU Rx i

PU Tx

...

...

PU Rx

SU Tx j

SU Rx j

Data link
Interference link

hi,i

hi,j

hi,0

h0,0

h0,i

SU TP i

Figure 1. System model of heterogeneous networks with multiple-input-single-output (MISO)
interference channels.

Then, the achievable SE at SU TP i is represented by

ri = log2

1 +
pi|hH

i,iwi|2

σ2 + p0|h0,i|2 + ∑
j∈N\{i}

pj|hH
j,iwj|2

. (2)

On the other hand, the interference caused from the Tx of the SU TP i to the Rx of the
PU is expressed as

Ii = pi|hH
i,0wi|2. (3)

The optimization problem can be formulated to find the optimal beamforming vectors
and transmit powers of the SU TPs to maximize their sum SE while maintaining the
interference level that each SU TP causes to the Rx of the PU at less than the allowable
interference level, Ith, as follows:

max
W, 0�p

∑
i∈N

ri

s.t. C1: Ii ≤ Ith, i ∈ N
C2: pi ≤ Pmax, i ∈ N
C3: ‖wi‖2 = 1, i ∈ N, (4)

where p = {p1, p2, · · · , pN}, W = {w1, w2, · · · , wN}, and Pmax is the maximum transmit
power for each SU TP. However, Problem (4) is nonconvex because of co-channel interfer-
ence; therefore, it is difficult to find the optimal resource allocation strategy analytically.
Although optimal solutions can be found through an exhaustive search, in which W and
p are quantized with equispaced values and all possible combinations have been evalu-
ated, it cannot be used in practical systems due to the high computational complexity and
signaling overhead for perfect CSI.

3. Distributed Beamforming and Power Allocation

To overcome impractical limitations in taking a centralized approach, a distributed
beamforming and power allocation strategy is proposed. Given that the optimal beam-
forming strategy to maximize the SE of each SU TP is the MRT if interference channels
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are unknown to the SU TP i, the beamforming vector for SU TP i can be determined as
wi =

hi,i
‖hi,i‖

[26].
Then, (2) can be transformed into

ri = log2

1 +
pi‖hi,i‖2

σ2 + p0|h0,i|2 + ∑
j∈N\{i}

pj|gj,i|2

, (5)

where |gj,i|2 =
|hH

j,ihj,j |2

‖hj,j‖2 . Moreover, (3) can be transformed into

Ii = pi
|hH

i,0hi,i|2

‖hi,i‖2

= pi|gi,0|2. (6)

For the determined beamforming vector, an optimization problem is formulated to
find the optimal transmit power of the SU TP i to maximize its own SE, as follows:

max
0≤pi

ri

s.t. C1: pi|gi,0|2 ≤ Ith

C2: pi ≤ Pmax. (7)

Dual methods are applied for distributed power allocation operated in an iterative
manner [27]. First, the Lagrangian function of (7) is defined as follows:

L(pi, µi, λi) = ri + µi

(
Ith − pi|gi,0|2

)
+ λi(Pmax − pi), (8)

where µi ≥ 0 and λi ≥ 0 indicate the Lagrange multipliers for the first and second
constraints of (7), respectively, with ~µ = {µ1, µ2, · · · , µN} and~λ = {λ1, λ2, · · · , λN}.

Then, its dual objective can be defined as

f (µi, λi) = max
0≤pi

L(pi, µi, λi), (9)

and the dual problem can be formulated as

min
0≤µi , 0≤λi

f (µi, λi). (10)

On the basis of (9) and (10), pi can be updated to maximize L(pi, µi, λi), while µi and
λi are updated to minimize f (µi, λi) in each SU TP, iteratively.

The Karush–Kuhn–Tucker (KKT) conditions with complementary slackness are also
given by

∂L
∂pi

=
‖hi,i‖2

ln 2

pi‖hi,i‖2 + σ2 + p0|h0,i|2 + ∑
j∈N\{i}

pj|gj,i|2
 − µi|gi,0|2 − λi = 0 (11)

µi

(
Ith − pi|gi,0|2

)
= 0 (12)

λi(Pmax − pi) = 0 (13)

pi ≥ 0, µi ≥ 0, λi ≥ 0. (14)
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From (11)–(14), the transmit power that satisfies the KKT conditions can be obtained as

p∗i =

[
1

ln 2(µi|gi,0|2 + λi)
− Ωi
‖hi,i‖2

]+
, (15)

where [x]+ = max(x, 0) and Ωi = σ2 + p0|h0,i|2 + ∑j∈N\{i} pj|gj,i|2. It should be noted that
Ωi in (15) indicates the sum of the noise power and interference power from the PU and the
other SU TPs; therefore, it can be calculated by subtracting the received signal power from
SU Tx i from the total received signal power without information sharing. In other words,
SU TP i does not need to know the individual value of the parameters in Ωi to calculate its
transmit power.

The following gradient method can be used to update the Lagrange multipliers:

µi ←
[
µi − ν

(
Ith − pi|gi,0|2

)]+
, (16)

λi ← [λi − κ(Pmax − pi)]
+, (17)

where ν and κ are step sizes that are small enough to guarantee the convergence.
The procedures for the proposed distributed beamforming and power allocation are

summarized in Algorithm 1. Specifically, each SU TP initializes the transmit power and
the Lagrange multipliers, and then determines its beamforming vector with MRT. Then, it
computes transmit power according to (15) and updates the Lagrange multipliers according
to (16) and (17) iteratively until the transmit powers for all SU TPs converge. Given that
each SU TP does not require any information sharing with other SU TPs to find wi and pi
in the proposed algorithm, it can be operated in a distributed manner.

Algorithm 1 Distributed beamforming and power allocation

1: Initialize p(0), ~µ, and~λ, randomly
2: Determine wi =

hi,i
‖hi,i‖

, ∀i ∈ N
3: j← 1
4: repeat
5: pold ← p(j−1)

6: for i = 1 to N
7: Compute p(j)

i according to (15)
8: Update µi and λi according to (16) and (17)
9: end for
10: p(j) = {p(j)

1 , p(j)
2 , · · · , p(j)

N }
11: j← j + 1
12: until

∣∣∣p(j) − pold

∣∣∣ < ε

4. Simulation Results and Discussion

To evaluate the performance, the following system parameters were chosen based
on the underlay D2D communication as default [25,28]: N = 2, M = 2, Ith = −60 dBm,
Pmax = p0 = 23 dBm, and σ2 = −100 dBm. The nodes are uniformly distributed over an
area of 35 m × 35 m with a maximum distance between the Tx and Rx in the same SU TP of
15 m. For the path-loss model, a path-loss exponent of 3.6 is considered and the attenuation
at a reference distance of 1 m is set to −30 dB. Moreover, an independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian (CSCG) random variable with
zero mean and unit variance is used to generate multipath fading. The following five
schemes are considered to evaluate the performance in terms of the sum SE and the
probability of violating the constraint of allowable interference on the PUs using AMD
Ryzen 9 5950X 16-Core Processor running at 3.40 GHz with 128 GB of memory.
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• Optimal (Opt.) power scheme: the beamforming vector is determined by the MRT,

i.e., wi =
hi,i
‖hi,i‖

, and an optimal power allocation is found via an exhaustive search in
which the transmit power is quantized into 100 equispaced values, and all possible
combinations are examined;

• Proposed scheme: a distributed power allocation described in Algorithm 1 is utilized

with wi =
hi,i
‖hi,i‖

;

• Equally reduced (ER) power scheme: the same transmit power, perp, is utilized for

each SU TP with wi =
hi,i
‖hi,i‖

, where the optimal value of perp is found via an exhaustive
search [29];

• Iterative (Iter.) power scheme: the beamforming vector and transmit power are
determined similarly to the proposed algorithm without considering the constraint of
the allowable interference on PU, e.g., C1 of (7), which is a baseline scheme;

• Random (Rand.) power scheme: randomly generated transmit power is utilized for

each SU TP with wi =
hi,i
‖hi,i‖

.

It should be noted that the comparison with the iterative and random power schemes
identifies the superiority of adaptive power control while the comparison with the optimal
and equally reduced power schemes reveals the effectiveness of the distributed operation
of the proposed scheme.

Figure 2 shows the convergence of the proposed scheme. Each SU TP determines its
transmit power in a direction to maximize its own SE, but it influences the SE of the other
SU TP because of interference. In this way, the transmit powers for the SU TPs are updated,
affecting each other until they converge. The result confirms that the convergence is made
within 60 iterations.

Figure 3 shows the sum SE and violation probability against the allowable interference
level (Ith) for all considered schemes. It should be noted that the sum SE is set to zero if the
constraint for Ith is not satisfied to impose a penalty. The violation probability increases
as Ith decreases, because it is more difficult to meet the constraint for Ith, which in turn
seriously decreases the sum SE for conventional schemes, e.g., the iterative and random
power schemes. On the other hand, the proposed scheme satisfies the constraint for Ith
well for all range of Ith, and it achieves a performance comparable to that of the optimal
power scheme and outperforms the equally reduced power scheme. Note that the violation
probability is omitted in the following results for brevity, because the effect of the violation
is reflected in the sum SE by imposing the penalty.
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Figure 3. Performance comparison against allowable interference level (Ith).

Figures 4 and 5 show the sum SE against the maximum transmit power (Pmax) and the
number of antennas (M), respectively. As Pmax increases, the sum SE for the conventional
schemes decreases due to strong interference. On the other hand, the optimal power and
proposed schemes accomplish a higher sum SE with an increasing Pmax in virtue of effective
resource management. Moreover, the sum SE increases for all schemes as M increases
due to the antenna diversity. It is also confirmed that the proposed scheme fulfills the
performance comparable to the optimal power scheme in these results.
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Figure 6 shows the computation time and sum SE against the number of SU TPs
(N). As shown in Figure 6a, the computation time of the optimal power scheme increases
exponentially with N, while the proposed scheme reduces the computation time signifi-
cantly compared to the optimal power scheme, which confirms the real-time operability
of the proposed scheme. It should be noted that the computation time of the random
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power scheme is very short because these schemes do not perform adaptive power control.
Moreover, the equally reduced power scheme can significantly reduce the computation
time by reducing the search space from the N to 1 dimension although it is based on the
centralized approach. Similar to the result in Figure 4, the increased interference degrades
the sum SE of the conventional schemes as N increases, while the proposed scheme im-
proves the sum SE by allocating the resources properly. Moreover, the sum SE of the
proposed scheme approaches that of the optimal power scheme even for a large number
of SU TPs. In particular, the proposed scheme shows the degradation of less than 5% in
the sum SE while improving computation time by more than 10 times, compared to the
optimal power scheme.
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Figure 6. Performance comparison against the number of secondary user transceiver pairs (SU TPs) (N).

5. Conclusions

A distributed beamforming and power allocation strategy was investigated for hetero-
geneous networks with MISO interference channels, where the beamforming vector and
the transmit power of each SU TP are determined to maximize its own SE whilst ensuring
the requirement of allowable interference on the PUs. In particular, to deal with limitations
inherent in the centralized approach, i.e., high computational complexity and high signal-
ing overhead, dual methods were adopted to propose an iterative algorithm operated in a
distributed manner without any information sharing. Through intensive simulations, it
was confirmed that the proposed scheme outperforms conventional schemes, e.g., more
than twice the performance improvement in SE, and achieves a performance comparable
to that of the optimal power scheme with a lower computation time, e.g., less than 5%
degradation in SE while improving computation time by more than 10 times.

Author Contributions: This research article is written by the sole author. Authorship must be limited
to one who has contributed substantially to the work reported. The author has read and agreed to
the published version of the manuscrip.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1A2C4002024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bhushan, N.; Li, J.; Malladi, D.; Gilmore, R.; Brenner, D.; Damnjanovic, A.; Sukhavasi, R.T.; Patel, C.; Geirhofer, S. Network

densification: The dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 2014, 52, 82–89. [CrossRef]

http://doi.org/10.1109/MCOM.2014.6736747


Sensors 2021, 21, 2606 9 of 9

2. Yunas, S.F.; Valkama, M.; Niemela, J. Spectral and energy efficiency of ultra-dense networks under different deployment strategies.
IEEE Commun. Mag. 2015, 53, 90–100. [CrossRef]

3. Khalifa, T.; Abdrabou, A.; Shaban, K.; Gaouda, A.M. Heterogeneous wireless networks for smart grid distribution systems:
Advantages and limitations. Sensors 2018, 18, 1517. [CrossRef] [PubMed]

4. Valenzuela, R.A. Dynamic resource allocation in Line-of-Sight microcells. IEEE J. Sel. Areas Commun. 1993, 11, 941–948. [CrossRef]
5. Zhang, H.; Chen, S.; Li, X.; Ji, H.; Du, X. Interference management for heterogeneous network with spectral efficiency improvement.

IEEE Wirel. Commun. 2015, 22, 101–107. [CrossRef]
6. Vu, T.K.; Bennis, M.; Samarakoon, S.; Debbah, M.; Latva-aho, M. Joint load balancing and interference mitigation in 5G

heterogeneous networks. IEEE Trans. Wirel. Commun. 2017, 16, 6032–6046. [CrossRef]
7. Coskun, C.C.; Ayanoglu, E. Energy- and spectral-efficient resource allocation algorithm for heterogeneous networks. IEEE Trans.

Veh. Technol. 2018, 67, 590–603. [CrossRef]
8. Gao, H.; Zhang, S.; Su, Y.; Diao, M. Joint resource allocation and power control algorithm for cooperative D2D heterogeneous

networks. IEEE Access 2019, 7, 20632–20643. [CrossRef]
9. Xu, Y.; Hu, Y.; Li, G. Robust rate maximization for heterogeneous wireless networks under channel uncertainties. Sensors 2018,

18, 639. [CrossRef]
10. Elsherif, A.R.; Ding, Z.; Liu, X. Dynamic MIMO precoding for femtocell interference mitigation. IEEE Trans. Commun. 2014, 62,

648–666. [CrossRef]
11. Dai, Y.; Jin, S.; Pan, L.; Gao, X.; Jiang, L.; Lei, M. Interference control based on beamforming coordination for heterogeneous

network with RRH deployment. IEEE Syst. J. 2015, 9, 58–64. [CrossRef]
12. de Figueiredo, F.A.P.; Dias, C.F.; de Lima, E.R.; Fraidenraich, G. Capacity bounds for dense massive MIMO in a Line-of-Sight

propagation environment. Sensors 2020, 20, 520. [CrossRef] [PubMed]
13. Althuwayb, A.A. On-chip antenna design using the concepts of metamaterial and SIW principles applicable to terahertz integrated

circuits operating over 0.6–0.622 THz. Int. J. Antennas Propag. 2020, 2020, 6653095. [CrossRef]
14. Althuwayb, A.A. Enhanced radiation gain and efficiency of a metamaterial-inspired wideband microstrip antenna using substrate

integrated waveguide technology for sub-6 GHz wireless communication systems. Microw. Opt. Technol. Lett. 2021, 1, 1–7.
15. Shirkolaei, M.M. Wideband linear microstrip array antenna with high efficiency and low side lobe level. Int. J. RF Microw. Comput.

Aided Eng. 2020, 30, e22412.
16. Alibakhshikenari, M.; Babaeian, F.; Virdee, B.S.; Aïssa, S.; Azpilicueta, L.; See, C.H.; Althuwayb, A.A.; Huynen, I.; Abd-Alhameed,

R.A.; Falcone, F.; et al. A comprehensive survey on “Various decoupling mechanisms with focus on metamaterial and metasurface
principles applicable to SAR and MIMO antenna systems”. IEEE Access 2020, 8, 192965–193004. [CrossRef]

17. Shirkolaei, M.M. High efficiency X-band series-fed microstrip array antenna. Prog. Electromagn. Res. C 2020, 105, 35–45. [CrossRef]
18. Althuwayb, A.A. MTM- and SIW-inspired bowtie antenna loaded with AMC for 5G mm-wave applications. Int. J. Antennas

Propag. 2021, 2021, 6658819. [CrossRef]
19. Nguyen, T.M.; Yadav, A.; Ajib, W.; Assi, C. Resource allocation in two-tier wireless backhaul heterogeneous networks. IEEE Trans.

Wirel. Commun. 2016, 15, 6690–6704. [CrossRef]
20. Cumanan, K.; Krishna, R.; Musavian, L.; Lambotharan, S. Joint beamforming and user maximization techniques for cognitive

radio networks based on branch and bound method. IEEE Trans. Wirel. Commun. 2010, 9, 3082–3092. [CrossRef]
21. Dadallage, S.; Yi, C.; Cai, J. Joint beamforming, power, and channel allocation in multiuser and multichannel underlay MISO

cognitive radio networks. IEEE Trans. Veh. Technol. 2016, 65, 3349–3359. [CrossRef]
22. Ding, Z.; Chin, W.H.; Leung, K.K. Distributed beamforming and power allocation for cooperative networks. IEEE Trans. Wirel.

Commun. 2008, 7, 1817–1822. [CrossRef]
23. KianiHarchehgani, S.; ShahbazPanahi, S.; Dong, M.; Boudreau, G. Joint power allocation and distributed beamforming design for

multi-carrier asynchronous two-way relay networks. In Proceedings of the 2019 IEEE 20th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5.

24. Feng, Z.; Ren, G.; Chen, J.; Zhang, X.; Luo, Y.; Wang, M.; Xu, Y. Power control in relay-assisted anti-jamming systems: A bayesian
three-layer Stackelberg game approach. IEEE Access 2019, 7, 14623–14636. [CrossRef]

25. Lee, W.; Lee, K. Resource allocation scheme for guarantee of QoS in D2D communications using deep neural network. IEEE
Commun. Lett. 2021, 25, 887–891. [CrossRef]

26. Lee, S.-R.; Moon, S.-H.; Kong, H.-B.; Lee, I. Optimal beamforming schemes and its capacity behavior for downlink distributed
antenna systems. IEEE Trans. Wirel. Commun. 2013, 12, 2578–2587. [CrossRef]

27. Yu, W.; Lui, R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. 2006, 54,
1310–1321. [CrossRef]

28. Zhang, R.; Li, Y.; Wang, C.-X.; Ruan, Y.; Zhang, H. Performance tradeoff in relay aided D2D-cellular networks. IEEE Trans. Veh.
Technol. 2018, 67, 10144–10149. [CrossRef]

29. Shalmashi, S.; Miao, G.; Ben Slimane, S. Interference management for multiple device-to-device communications underlaying
cellular networks. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), London, UK, 8–11 September 2013; pp. 223–227.

http://dx.doi.org/10.1109/MCOM.2015.7010521
http://dx.doi.org/10.3390/s18051517
http://www.ncbi.nlm.nih.gov/pubmed/29751633
http://dx.doi.org/10.1109/49.232304
http://dx.doi.org/10.1109/MWC.2015.7096292
http://dx.doi.org/10.1109/TWC.2017.2718504
http://dx.doi.org/10.1109/TVT.2017.2743684
http://dx.doi.org/10.1109/ACCESS.2019.2895975
http://dx.doi.org/10.3390/s18020639
http://dx.doi.org/10.1109/TCOMM.2013.122913.130062
http://dx.doi.org/10.1109/JSYST.2013.2251983
http://dx.doi.org/10.3390/s20020520
http://www.ncbi.nlm.nih.gov/pubmed/31963514
http://dx.doi.org/10.1155/2020/6653095
http://dx.doi.org/10.1109/ACCESS.2020.3032826
http://dx.doi.org/10.2528/PIERC20061003
http://dx.doi.org/10.1155/2021/6658819
http://dx.doi.org/10.1109/TWC.2016.2587758
http://dx.doi.org/10.1109/TWC.2010.072610.090898
http://dx.doi.org/10.1109/TVT.2015.2440412
http://dx.doi.org/10.1109/TWC.2008.070105
http://dx.doi.org/10.1109/ACCESS.2019.2893459
http://dx.doi.org/10.1109/LCOMM.2020.3042490
http://dx.doi.org/10.1109/TWC.2013.041613.111987
http://dx.doi.org/10.1109/TCOMM.2006.877962
http://dx.doi.org/10.1109/TVT.2018.2856507

	Introduction
	System Model and Problem Statement
	Distributed Beamforming and Power Allocation
	Simulation Results and Discussion
	Conclusions
	References

