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Abstract

Excessive energy intake or insufficient energy expenditure, which result in energy imbal-

ance, contribute to the development of obesity. Obesity-related genes, such as FTO, are

associated with energy traits. No genome-wide association studies (GWAS) have been con-

ducted to detect the genetic associations with energy-related traits, including energy intake

and energy expenditure, among European-ancestry populations. In this study, we con-

ducted a genome-wide study using pooled GWAS including 12,030 European-ancestry

women and 6,743 European-ancestry men to identify genetic variants associated with these

two energy traits. We observed a statistically significant genome-wide SNP heritability for

energy intake of 6.05% (95%CI = (1.76, 10.34), P = 0.006); the SNP heritability for expendi-

ture was not statistically significantly greater than zero. We discovered three SNPs on chro-

mosome 12q13 near gene ANKRD33 that were genome-wide significantly associated with

increased total energy intake among all men. We also identified signals on region 2q22 that

were associated with energy expenditure among lean people. Body mass index related

SNPs were found to be significantly associated with energy intake and expenditure through

SNP set analyses. Larger GWAS studies of total energy traits are warranted to explore the

genetic basis of energy intake, including possible differences between men and women,

and the association between total energy intake and other downstream phenotypes, such

as diabetes and chronic diseases.

Introduction

Humans take in energy through protein, fat, and carbohydrate and expend energy in basal

metabolism (reflecting by basic metabolic rate), thermogenesis, and physical activity [1, 2].

Energy traits, including energy balance, which is the difference between energy intake and

energy expenditure, have been considered as key determinants of obesity [1, 3]. Body weight

remains stable if energy intake equals energy expenditure; weight increases when energy intake
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exceeds energy expenditure [4]. According to National Health and Nutrition Examination

Survey (NHANES), total daily energy intake increased in both men and women in recent

years [5], which was consistent with the rapid increase in the prevalence of obesity among the

US population [6, 7]. A recent large pathway analysis suggested that protein altering variants

for body mass index (BMI) could control obesity through energy intake and expenditure biol-

ogy [8]. Energy intake has also been associated with risk of chronic diseases, such as diabetes,

colon cancer [9] and advanced or lethal prostate cancer [10].

There are conceptual and practical issues in considering energy intake and expenditure in

epidemiologic studies. Conceptually, since energy intake and expenditure have multiple deter-

minants (e.g., body size, metabolism, physical activity, over-consumption, menopausal status

[11]), any association is difficult to interpret. Practically, there are considerable measurement

errors from standard measures, i.e., food frequency questionnaires (FFQ) [12–14]. “Gold stan-

dard” measures, such as doubly labeled water (DLW), exist but are not widely used in large

cohort studies due to the high cost and relatively complicated process. Seven-day food records

have also been considered a “gold standard” of energy intake measurement, especially for vali-

dating other measures such as FFQs. However, food records place a high burden on study pop-

ulations and the accuracy falls as the number of days increases [15]. Thus, most large cohorts

use FFQs as a measurement of energy intake. Although FFQ measurements are noisy relative

to "gold standard" measures, they are correlated with "gold standards" [16]. Studying FFQ

measurements in a large sample is a practical option for studying the determinants and impact

of energy consumption and expenditure, especially if the initial goal is to establish if there is

any association between a factor and these traits.

The genetic architecture of energy traits is uncertain. Twin studies among European-ances-

try populations suggested a familial aggregation of energy and macronutrient intake [17, 18]

and that the correlations were higher in monozygotic (MZ) twins than in dizygotic (DZ) twins

[19]; however, the familial effects are more likely to be attributed to shared environmental fac-

tors, such as the higher likelihood of eating together [19, 20]. The significant association

between energy intake and CLOCK [21], a regulatory gene in the circadian system, as well as

FTO [22, 23], an obesity-associated gene, were reported to increase total energy intake by can-

didate gene association studies. Nevertheless, the associations were inconsistent [24, 25]. A

twin study showed that energy expenditure was impacted by genetic background in both MZ

and DZ twins [26] and the familial effect on energy expenditure was confirmed in a segrega-

tion analysis [27]. A recent GWAS among American Indians reported variants on gene

GPR158were significantly associated with energy expenditure; however, they suggested that

such association cannot be replicated in other ethnic groups [28].

To the best of our knowledge, no genome-wide association study (GWAS) has been con-

ducted to detect the genetic variation associated with total energy intake or energy expenditure

among a European-ancestry population. In this study, we aimed to determine the genetic fac-

tors in the energy traits and to examine the association between energy traits and obesity from

a genetic perspective.

Materials and methods

Study population

We used a pooled GWAS sample, including the Nurses’ Health Study (NHS) [29], Nurses’

Health Study II (NHS II) [30], and Health Professionals Follow-up Study (HPFS) [31]. NHS

and NHS II were established in 1976 and 1989, respectively, aimed at studying women’s health.

Women were followed every two years to update lifestyle and health information, with a vali-

dated semiquantitative FFQ every four years [32]. In NHS, blood samples were collected in
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1989 and 2000, and cheek cells were collected in 2001. In NHS II, blood was collected in 1995,

and check cells were collected in 2004. HPFS began in 1986, enrolling male health professionals

(dentists and veterinarians, among others), with similar questionnaires and follow-up to that in

NHS. Blood was collected in 1993 and cheek cells were collected in 2004. The study population

for this analysis consists of participants with genotyping data from 11 nested case-control stud-

ies of various disease outcomes conducted in the three cohorts since 2007, who had also ade-

quately completed at least two FFQs since 1986 for NHS and HPFS and 1991 for NHS II.

Energy trait measures

The semiquantitative FFQ asked the participants to report their frequency of consumption for

over 100 foods over the past year. A portion size for each food item was specified, and partici-

pants selected from nine frequency options ranging from “never or less than once per month”

to “6+ per day”. Daily energy intake (kcals) for each food was computed by multiplying the fre-

quency of consumption by the energy content of the specified portion from United States

Department of Agriculture sources [33]. Participants with more than 70 missing food items on

the FFQ, or extreme calculated daily energy intake (<600, >3500 for women, <800,>4200

for men) were excluded. Daily energy intake for each participant was calculated as the average

of all available FFQs from baseline to 2010 (NHS, HPFS) or 2011 (NHS II) (mean 6.0 question-

naires, range 2–7). Averaging across FFQs was done to best represent diet over time and to

reduce the impact of within-person measurement error [34].

Daily energy expenditure was calculated based on age and self-reported weight, height, and

physical activity, according to the equations described in Gerrior et al. [2]. Age was used from

the most recent questionnaire with a complete FFQ. Height was reported at baseline in each

cohort, and weight was reported at baseline and every two years thereafter. Time per week

spent in a list of leisure-time physical activity was reported every two years, and weekly expen-

diture of METs (metabolic equivalents) was calculated for each of these activities and for total

activity. Weight and activity were averaged over all available questionnaires. Age at menopause

was collected during the follow-up, and menopausal status was used to calculate pre- and post-

menopausal energy intake and expenditure among women. We also calculated daily energy
balance by subtracting daily energy expenditure from daily energy intake for additional analy-

ses. Informed consents from study subjects were obtained. Study approval for each study was

obtained from the Institutional Review Board (IRB) at Brigham and Women’s Hospital and

the Harvard T.H. Chan School of Public Health.

Genotyping and quality control

Since 2007, eleven case-control GWAS have been nested in the three cohorts with primary

traits including breast cancer [35], pancreatic cancer [36], coronary heart disease [37], type 2

diabetes [38], kidney stone, advanced prostate cancer [39], glaucoma [40], gout, endometrial

cancer [41], colon cancer [42], and mammographic density [43]. The genotyping and merging

of each GWAS have been described in Lindstrom S et al.[44]. In total, the pooled GWAS data-

set comprised 18,773 participants including 6,743 European-ancestry men from HPFS, 11,121

and 909 European-ancestry women from NHS and NHS II, respectively. Call rate, Hardy-

Weinberg equilibrium, and other standard quality control filters were applied for samples and

single nucleotide polymorphisms (SNPs) in each GWAS independently. We collapsed the

eleven datasets into three combined GWAS datasets by platform family: the earlier generation

of Illumina arrays (HumanHap), the Illumina OmniExpress array, and Affymetrix 6.0 array.

Missing genotypes were imputed using Markov Chain (MACH) with 1000 Genomes Project

ALL Phase I Integrated Release Version 3 Haplotypes as the reference panel. SNPs with a
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missing call rate > 5% or not originally genotyped in any platform in the merging process

were excluded. SNPs with minor allele frequency (MAF) < 1% or imputation quality (r2)<

0.3 were excluded.

Pairwise identity by descent (IBD) was applied to identify duplicates and/or related individ-

uals [44]. Individuals in pairs that were genotyped in more than one dataset were considered

as expected duplicates. Pairs with a concordance rate> 0.999 but which were not expected

duplicates were considered as unexpected duplicates. We removed 406 expected duplicates

and 76 unexpected duplicates (i.e. 38 unexpected duplicate pairs) and flagged the pairs of

related individuals (n = 13). Principal component analysis (PCA) was conducted by EIGEN-

STRAT [45] and outliers were checked with the top principal components.

Statistical analysis

GWAS analysis. Logistic regression was applied for the GWAS analysis of the three

pooled GWAS datasets with package ProbABEL [46]. We stratified the population by sex due

to the potential differences in energy traits between women and men. We adjusted for three

principal components accounting for subpopulation structure. Additionally, age, weight,

height, and physical activity were adjusted in the energy intake analysis. SNP genotypes were

coded as a dosage of the effect allele. X-linked SNPs were included. Fixed-effect meta-analysis

across three family platforms was conducted to evaluate the SNP-level effect among men and

women, respectively. We also implemented a fixed-effect meta-analysis across sex to test the

overall SNP-level effect. Meta-analysis was conducted with software METAL [47] and

Cochran’s Q statistic was used to test for heterogeneity between women and men. Additional

analyses were performed by restricting the analysis population to overweight/obese (BMI�25

kg/m2) and lean (BMI<25 kg/m2) subjects, respectively, due to concern about measurement

error in energy intake and the potential underreporting of energy intake among overweight/

obese population. Sensitivity analysis was conducted by applying deciles to rank energy intake

as the phenotype among all subjects.

We estimated the genome-wide SNP heritability (hg2) using LD score regression [48],

applied to the meta-analysis in the overall sample combining men and women.

SNP-set analyses. To determine the shared genetic contributions between energy traits

and BMI, we implemented two SNP-set analyses: a weighted fixed-effects approach [49] and

an unweighted random-effects (RE) model [50].

The fixed-effect approach tests for an association between a weighted genetic risk score for

BMI and energy traits using summary genetic association statistics for each trait. Denoting the

estimates of the effect of a BMI risk allele as X and the estimates of the effect of the same allele

on an energy trait as Y, the inverse-variance weighted estimate of the average BMI risk allele

effect on the energy trait is:

b̂IVW ¼

P
kXkYks� 2

YkP
kX2

ks
� 2
Yk

; seðb̂IVWÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P
kx

2
ks
� 2
Yk

s

; ð1Þ

where s2
Yk is the estimated variance Y.

The random-effects model assumes that each variant k belongs to one of two classes: an

"effect" class and a "no effect" class. For variants in the "effect class," the effect size of each vari-

ant k is assumed to be drawn from a normal distribution with variance s2
Yk and mean μ; vari-

ants in the "no effect" class are assumed to be drawn from a normal distribution with variance

s2
Yk and mean 0. A posterior probability mk that variant k is in the "effect" class is calculated

(assuming a N(0,0.2) prior on μ) and then used as a weight in a fixed-effects meta-analysis (i.e.

A GWAS of energy intake and expenditure

PLOS ONE | https://doi.org/10.1371/journal.pone.0201555 August 2, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0201555


replacing Xk with mk in (1)). This approach has the advantage of not assuming that every BMI-

associated SNP is associated with the tested energy trait; it also does not assume the effects of

the SNPs that are associated with the energy trait are proportional to the SNPs’ effect on BMI.

The summary statistics for genome-wide significant SNPs that were related to increasing

BMI (NSNPs = 76) in the SNP set were identified from the Genetic Investigation of ANthropo-

metric Traits (GIANT) study [51].

Results

Table 1 presents the descriptive statistics for the study population, stratified by sex. The average

age at the most recent questionnaire was 74.6 y for women and 75.9 y for men. Of the 18,773

participants, more than half were overweight or obese (54.6% and 59.6% for women and men,

respectively). The average physical activity intensity of women was half of men’s (17.0 and 33.4

MET-hr/week for women and men, respectively). Daily energy intake was 1724 and 2030 kcals

among women and men, respectively; and daily energy expenditure was 1732 and 2348 kcals

among women and men, respectively. The average reported energy intake was significantly

lower than energy expenditure (P< 0.001) as has been previously reported [52]. The change in

women’s average energy intake from premenopause to postmenopause was not significantly dif-

ferent (1812 and 1729 kcals for pre- and post-menopausal women, respectively; P = 0.88).

GWAS analysis in all subjects

Genome-wide significant (P< 5.0×10−8) variants were identified for daily energy traits among

men (Table 2, Fig 1). rs10876214, an intronic SNP on chromosome 12q13 showed the

Table 1. Demographic characteristics of the study population (N = 18,773).

Female Male

(N = 12,030) (N = 6,743)

Average energy intake, kcalsa 1724 (419) 2030 (507)

Average energy expenditure, kcals 1731 (216) 2348 (347)

Age at baseline, years 53.3 (7.5) 55.1 (8.7)

Age at most recent questionnaire, years 74.6 (8.2) 75.9 (8.0)

Height, inches 64.6 (2.4) 70.3 (2.6)

Weightb, pounds 157.4 (32.2) 184.3 (28.2)

Body mass index (BMI)b, kg/m2 26.5 (5.2) 26.2 (3.5)

BMI categories

Normal (<25 kg/m2) 5461 (45.4) 2726 (40.4)

Overweight (� 25 kg/m2) 4017 (33.4) 3189 (47.3)

Obese (� 30 kg/m2) 2552 (21.2) 828 (12.3)

Physical activityc, MET-hours/week 17.0 (15.2) 33.4 (25.8)

Age at menopause, yearsd 49.2 (6.9) -

Average premenopause energy intake, kcalsa 1812 (502) -

Average postmenopause energy intae, kcalsa 1729 (430)

Note: Continuous variables were displayed as mean (standard deviation). Categorical variables were displayed as

number (proportion).

NHS = Nurses’ Health Study, NHS II = Nurses’ Health Study II, HPFS = Health Professionals Follow-up Study
a Average from all available food frequency questionnaires. The number of questionnaire ranges from 2 to 7.
b Average from all available questionnaires.
c Data from 11,889 postmenopausal women during follow up.
d Average from all women with available pre-menopause food frequency questionnaires (N = 3,651).

https://doi.org/10.1371/journal.pone.0201555.t001
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strongest genome-wide significant association with a 58 kcal (95% CI = (39, 77), P = 9.86 ×
10−10) increase in daily energy intake per effect allele among men. This SNP was also associ-

ated with a 56 kcal increase in daily energy balance per effect allele among men (95% CI =

(36.6, 75.1), P = 1.22 × 10−8) (S2 Table). The SNP rs9669605 is in strong linkage disequilibrium

(LD) (r2 > 0.8) with rs10876214 (Fig 2) and was also associated with energy intake: the effect

allele of this SNP increased daily energy intake by 54 kcals(95% CI = (36, 73), P = 1.50 × 10−8).

These SNPs are located near the ANKRD33 (Ankyrin Repeat Domain 33) gene. Another signal

at chromosome 12q13, rs10783478, mapped to approximately 7 kb downstream of FLGNL2
(Fidgetin-like 2), was in modest LD (r2 = 0.59) with rs10876214 and increased energy intake

by 54 kcal (95% CI = (35, 74), P = 3.0 × 10−8) per effect allele in men. No SNPs were genome-

wide significant for energy intake among women. In the sensitivity analysis with deciles for the

rank of energy intake, the p-values shrank for most signals as expected, considering the fact

that the decile coding contains less information than the continuous coding. We observed

genome-wide significance of rs9669605 and energy intake (P = 1.42 × 10−8) in the sensitivity

analysis.

Table 2. Association between SNPs and daily energy traits among women, men, and meta-analyses combining women and men GWAS.

Markera, allelesb, chromosomec, locationc, and genesd Subset Total population (N = 18,774)

EAF Effect (95% CI) Peffect value PHet valuee

Daily energy intake

rs10876214 (T, C) Female 0.33 6 (-6, 17) 0.35

12q13 (52257245) Male 0.32 58 (39, 77) 9.86 × 10−10

ANKRD33 Overall 0.32 22 (12, 3) 1.38 × 10−5 4.38 × 10−6

rs9669605 (T, G) Female 0.31 6 (-5, 18) 0.30

12q13 (52254674) Male 0.30 54 (36, 73) 1.50 × 10−8

Overall 0.30 21 (11, 30) 3.52 × 10−5 4.10 × 10−5

rs10783478 (A, G) Female 0.28 3 (-9, 17) 0.67

12q13 (52232476) Male 0.27 54 (35, 74) 3.0 × 10−8

FIGNL2 Overall 0.27 18 (8, 28) 3.58 × 10−4 1.37 × 10−5

Daily energy expenditure

rs142343672 (A, G) Female 0.01 67 (45, 90) 5.16 × 10−9

11p15 (17871273) Male 0.01 -5 (-69, 59) 0.89

LOC107984317 Overall 0.01 59 (38, 80) 4.85 × 10−8 0.036

rs146169233 (T, C) Female 0.01 52 (34, 70) 2.10 × 10−8

16p13 (9158320) Male Did not pass quality control

Overall NA

rs61957289 (C, T) Female 0.99 53 (35, 72) 1.27 × 10−8

13q22 (74400573) Male 0.98 -15 (-69, 39) 0.58

KLF12 Overall 0.98 46 (29, 63) 1.90 × 10−7 0.019

Note: Results from the unconditional logistic regression of the genotypes in the pooled GWAS for total subjects (12,031 women and 6,743 men. The analyses were

adjusted for five principal components accounting for population substructure. Additionally, age, height, weight, and physical activity were adjusted for in energy

intake.

EAF, effect allele frequency; CI, confidence interval; Het, heterogeneity.
aNCBI dbSNP identifier
beffect allele, reference allele
cchromosome and NCBI Human Genome Build 37 location
dclosest genes, genes located within 25 kb
eHeterogeneity between women and men

https://doi.org/10.1371/journal.pone.0201555.t002
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We detected three SNPs that were genome-wide associated with daily energy expenditure

(Table 2). Locus rs142343672 at chromosome 11p15 increased expenditure in women by 67

kcal (95% CI = (45, 90), P = 5.16 × 10−9) and in women and men combined by 59 kcal (95%

CI = (38, 80), P = 4.85 × 10−8). Another two loci, rs146169233 and rs61957289, increased

expenditure in women by 52 kcal (95% CI = (34, 70), P = 2.10 × 10−8) and 53 kcal (95% CI =

(35, 72), P = 1.27 × 10−8) per effect allele, respectively.

Aside from these individual SNP associations, we also observed a collective contribution of

common genetic variants to energy intake and expenditure. The estimate of genome-wide

Fig 1. A) QQ plot for the SNP effect on daily energy intake for men. B) Manhattan plot for the SNP effect on daily energy intake for men. C) LocusZoom plot of the

region associated with daily energy intake among men on chromosome 12q13.

https://doi.org/10.1371/journal.pone.0201555.g001
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SNP heritability for energy intake and energy expenditure was hg
2 = 6.05% (95%CI = (1.76,

10.34), P = 0.006) and hg
2 = -2.96% (95% CI = (-7.33, 1.41), P = 0.184), respectively. (The LD

score estimator of hg
2 is unbiased but not constrained to the interval [0,1].)

GWAS analysis in overweight/obese and lean subjects

Table 3 presents the association between SNPs and daily energy traits among overweight/

obese women and men. We detected locus rs111431452, which mapped to gene ADORA3

Fig 2. A) QQ plot for the SNP effect on daily energy expenditure for lean women and men. B) Manhattan plot for the SNP effect on daily energy expenditure for lean

women and men. C) LocusZoom plot of the region associated with daily energy expenditure for lean women and men on chromosome 2q22.1.

https://doi.org/10.1371/journal.pone.0201555.g002
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(Adenosine A3 Receptors), significantly increased daily energy intake in this population by

145 kcal (95% CI = (94, 197), P = 3.59 × 10−8) per effect allele. The effect of rs111431452 on

energy intake was consistent between men and women (PHet = 0.29) but was not genome-wide

significant when stratifying the population by sex.

Two SNPs were significantly associated with energy expenditure among overweight/obese

men (Table 3). At chromosome 2p24, SNP rs62131523 is an intron variant of gene VSNL1 (visi-

nin-like 1). We found the effect allele of rs62131523 significantly increased energy expenditure

among overweight and obese men by 124 kcal (95% CI = (80, 169), P = 3.41 × 10−8). SNP

rs7162556 at chromosome 15q25 decreased energy expenditure of men with high BMI (effect =

-72 kcal per effect allele, 95% CI = (-97, -46), and P = 3.66 × 10−8). Both of the two SNPs showed

significant sex-differential effects on energy expenditure in the overweight and obese population

(PHet = 3.71 × 10−8 for rs62131523 and PHet = 4.45 × 10−7 for rs7162556). In the analysis of daily

energy balance, the minor allele of rs2723689 significantly decreased energy balance by 78 kcal

among overweight/obese men (95% CI = (-107, -50), P = 8.02 × 10−8) (S1 Table). The effect of

rs2723689 on energy balance was significantly different between women and men (PHet =

4.44 × 10−5).

Table 4 shows the association between SNPs and daily energy traits among lean women

and men. We identified a region on chromosome 2q22 with eight SNPs which are in strong LD

(r2 > 0.8) that were significantly associated with daily energy expenditure among lean women

and men (Fig 2). SNP rs55691047 had the strongest association with expenditure (effect = 21

kcal per copy of the risk allele, 95% CI = (14, 29), P = 2.35 × 10−8). SNP rs7138102 on chromo-

some 12q14 was associated with energy expenditure among lean women (effect = -18 kcal per

copy of the risk allele, 95% CI = (-25, -12), and P = 3.68 × 10−8) but not among lean men.

SNP set analysis

In the SNP set analysis, the fixed effect analysis suggested that the alleles that increase BMI were

associated with a decrease in daily energy intake (PFixed = 0.015) (Fig 3) among the study popula-

tion combining women and men. The random effects analysis supported the finding (PRandom =

0.008) and suggested that alleles associated with BMI were also associated with expenditure with-

out considering the direction of the alleles’ effect on expenditure (PRandom = 0.016).

Discussion

To the best of our knowledge, this is the first reported GWAS pertaining to total daily energy

intake and energy expenditure among a European-ancestry population. We established that

energy intake is a heritable trait, with hg
2 = 6.05% (95%CI = (1.76, 10.34)). Although small, the

estimated hg
2 for energy intake is statistically significant (P = 0.006). The modest hg

2 value

likely reflects the fact that energy intake is a complex, challenging-to-measure trait.

We identified a region on 12q13 that was associated with total energy intake among men

and a region on 2q22 that was associated with total energy expenditure. We also found a

shared genetic contribution between increasing BMI and decreasing energy intake among

women and men.

Newly discovered signals associated with energy traits

At chromosome 12q13, the SNP showing the strongest association with energy intake was

rs10876214. This SNP is located approximately 25 kb upstream of ANKRD33 (encoding an

ankrytin repeat-containing protein). Another SNP associated with energy intake at this locus,

rs107834787, is located 7 kb downstream of FIGNL2 (fidgetin-like 2). Previous in silico, in vitro
and in vivo experiments have linked these genes to photoreceptor signaling (ANKRD33) and
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ATP binding (FIGNL2) [53–55], but the mechanisms linking genetic variation in this region to

energy intake are unclear and require further study.

Among lean men and women, we identified eight SNPs at region 2q22.1 that were associ-

ated with energy expenditure. These SNPs are in modest LD (0.4<r2<0.6) with SNPs that have

been previously reported to be associated with adiposity-related traits, including body weight

[56], waist:hip ratio [57], and cardiovascular functions [58]. These previously-reported SNPs

are in an intron of THSD7B (thrombospondin type 1 domain containing 7B), which expresses

most tissue-specific proteomes in fat tissues [59].

Replication of previously identified energy trait-related genes

FTO (alpha-ketoglutarate dependent dioxygenase) has been identified as an obesity-associated

gene [60]. Previous studies reported inconsistent effects of FTO on both energy intake and

energy expenditure [22–25, 61]. In our study, no FTO genetic effect on energy intake or energy

expenditure was detected. None of another three previously reported energy trait-related

genes, including CLOCK [21], MC4R [62], and FGF21 [63], showed significant effects in our

GWAS nor are in LD with our top SNPs. The discrepancy between the effect of these genes on

energy traits may due to the different food items that investigators used to calculate energy

intake [23], the different methods to measure energy expenditure, or differences between

study populations [22].

Table 3. Association between SNPs and daily energy traits among overweight and obese (BMI� 25 kg/m2)

women, men, and meta-analyses combining women and men.

Markera, allelesb, chromosomec, locationc, and

genesd
Subset Overweight/Obese population (N = 10,583)

EAF Effect (95% CI) Peffect value PHet valuee

Daily energy intake

rs111431452 (A, T) Female 0.02 128 (67, 189) 4.19 × 10−5

1p31 (112056878) Male 0.02 189 (93, 286) 1.27 × 10−4

ADORA3 Overall 0.02 145 (94, 197) 3.59 × 10−8 0.29

Daily energy expenditure

rs62131523 (G, A) Female 0.96 -14 (-36, 8) 0.21

2p24 (17746338) Male 0.96 124 (80, 169) 3.41 × 10−8

VSNL1 Overall 0.96 13 (-6, 33) 0.19 3.71 × 10−8

rs7162556 (A, G) Female 0.10 2 (-11, 16) 0.73

15q25 (80675244) Male 0.10 -72 (-97, -46) 3.66 × 10−8

Overall 0.10 -13 (-25, -2) 0.03 4.45 × 10−7

Note: Results from the unconditional logistic regression of the genotypes in the pooled GWAS for overweight/obese

subjects only (6,563 women and 4,020 men). The analyses were adjusted for five principal components accounting

for population substructure. Additionally, age, height, weight, and physical activity were adjusted for in energy

intake.

EAF, effect allele frequency; CI, confidence interval; Het, heterogeneity.
aNCBI dbSNP identifier
beffect allele, reference allele
cchromosome and NCBI Human Genome Build 37 location
dclosest genes, genes located within 25 kb
eHeterogeneity between women and men

https://doi.org/10.1371/journal.pone.0201555.t003

A GWAS of energy intake and expenditure

PLOS ONE | https://doi.org/10.1371/journal.pone.0201555 August 2, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0201555.t003
https://doi.org/10.1371/journal.pone.0201555


Association between obesity and energy traits

We observed that the established SNPs for increasing BMI decreased energy intake. The

inverse association may due to the fact that obese people are less likely to feel hungry than

lean people [64]. Such difference may be caused by chemicals in human subjects, such as

the glucagon-like peptide-1 (7–36) amide (GLP-1) which could suppress energy intake [65]

and feelings of hunger [66] among obese people. Neuroimaging also demostrated different

brain responses to meals between obese and non-obese groups [67]. Obesity could also alter

Table 4. Association between SNPs and daily energy traits among lean (BMI< 25kg/m2) women, men, and meta-analyses combining women and men.

Markera, allelesb, chromosomec, locationc, and genesd Subset Lean population (N = 8,187)

EAF Effect (95% CI) Peffect value PHet valuee

Daily energy expenditure

rs7138102 (A, G) Female 0.40 -18 (-25, -12) 3.68 × 10−8

12q14 (66353891) Male 0.42 -3 (-19, 13) 0.73610

Overall 0.41 -16 (-22, -10) 1.80 × 10−7 0.07

rs13002862 (A, C) Female 0.21 19 (11, 27) 2.52 × 10−6

2q22 (137613935) Male 0.19 32 (12, 52) 0.00198

Overall 0.21 21 (13, 28) 3.55 × 10−8 0.25

rs35893283 (T, C) Female 0.21 19 (11, 27) 2.54 × 10−6

2q22 (137618545) Male 0.19 32 (12, 52) 0.00203

Overall 0.21 21 (13, 28) 3.63 × 10−8 0.25

rs72844022 (G, A) Female 0.21 19 (11, 27) 2.32 × 10−6

2q22 (137610788) Male 0.19 32 (11, 52) 0.00198

Overall 0.21 21 (13, 28) 3.25 × 10−8 0.25

rs6720647 (G, A) Female 0.20 20 (12, 28) 1.52 × 10−6

2q22 (137615688) Male 0.18 31 (10, 52) 0.00390

Overall 0.20 21 (14, 29) 3.19 × 10−8 0.35

rs55691047 (G, A) Female 0.21 19 (11, 27) 1.80 × 10−6

2q22 (137624876) Male 0.19 32 (12, 53) 0.00180

Overall 0.21 21 (14, 29) 2.35 × 10−8 0.24

rs34197312 (G, C) Female 0.21 19 (11, 27) 3.84 × 10−6

2q22 (137608941) Male 0.19 33 (12, 53) 0.00162

Overall 0.21 21 (13, 28) 4.93 × 10−8 0.21

rs35845238 (G, C) Female 0.21 19 (11, 27) 2.39 × 10−6

2q22 (137617708) Male 0.19 32 (12, 52) 0.00208

Overall 0.21 21 (13, 28) 3.45 × 10−8 0.25

rs34399632 (G, A) Female 0.21 19 (11, 27) 2.39 × 10−6

2q22 (137571174) Male 0.19 31 (11, 51) 0.00270

Overall 0.21 21 (13, 28) 4.07 × 10−8 0.29

Note: Results from the unconditional logistic regression of the genotypes in the pooled GWAS for lean subjects (5,461 women and 2,726 men). The analyses were

adjusted for five principal components accounting for population substructure. Additionally, age, height, weight, and physical activity were adjusted for in energy

intake.

EAF, effect allele frequency; CI, confidence interval; Het, heterogeneity.
aNCBI dbSNP identifier
beffect allele, reference allele
cchromosome and NCBI Human Genome Build 37 location
dclosest genes, genes located within 25 kb
eHeterogeneity between women and men

https://doi.org/10.1371/journal.pone.0201555.t004
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the gene expression of bacterial genes and metabolic pathways in gut microbiome among

obese people [68, 69], which triggers feeding behaviors in human subjects [70]. Alterna-

tively, obese individuals may be more likely to underreport energy intake on dietary ques-

tionnaires [71, 72].

Limitations and strengths

Our study is subject to several limitations. The major concern is measurement error in energy

intake assessed via FFQ. Correlations between energy intake from a single FFQ with two to

four weeks of diet records are in the range of 0.3 to 0.4 [73]. We used the average of between

two and seven FFQs in order to somewhat reduce within-person measurement error [34];

however, our assessment is still far from perfect. The measurement error will be unrelated to

genetic factors, so our results should be unbiased, but our statistical power is greatly attenu-

ated. The large sample size of our analysis compensates for the attenuated power and enables

us to at least discover the large effects. This perspective was justified by the sensitivity analysis

in which we used deciles for the rank of energy intake as phenotype and re-ran the analysis

among all subjects. Second, in the SNP set analysis, we only measured the effect of BMI-related

allele sets on energy traits, but we could not comprehensively or reliably test for the association

between energy intake and expenditure alleles and BMI because our discovery GWAS had lim-

ited power. Larger GWAS studies of total energy traits are warranted to identify more genetic

risk alleles and the newly identified signals from our study can be candidates for the future

studies. Moreover, a potential future study is to see if energy intake in smaller samples with

more accurate measures of energy intake could replicate the effects of our identified SNPs. Pre-

vious studies suggested that energy density may modify the relationship between obesity and

Fig 3. Plot of the regression coefficients for the effect of BMI-increasing alleles on energy intake (and their 95% confidence intervals) as function of per-allele

effect on BMI. The marked SNPs in panel (a) are: 1, rs11583200 (Chr 1:50559820); 2, rs9400239 (Chr 6:108977663); 3, rs11126666 (Chr 2:26928811); 4, rs17405819 (Chr

8:76806584); 5, rs3101336 (Chr 1:72751185); 6, rs10938397 (Chr 4:45182527); 7, rs1516725 (Chr3:185824004).

https://doi.org/10.1371/journal.pone.0201555.g003
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energy intake [74] as well as obesity and energy expenditure [75]. Future studies may explore

the genetic variations that contribute to energy density and the possible shared genetic compo-

nents between energy density and obesity to understand the underlying mechanisms of obesity

and the energy system.

To the best of our knowledge, there are no previous GWAS that explored the genetic varia-

tion in energy traits among European-ancestry populations. The strengths of our study

include: the comprehensive and valid genetic information in our combined GWAS subjects

[44] and repeated assessment of dietary intakes via a validated semiquantitative food frequency

questionnaire [32]. Another strength of our study is that we used results from a previous large

GWAS of BMI to identify candidate sets of SNPs to include in allele-score and SNP-set analy-

ses. This allowed us to explore the genetic contribution to BMI that is shared with energy

intake and energy expenditure.

Conclusions

In summary, we demonstrated that energy intake is a heritable trait and that three SNPs at

12q13 were associated with total daily energy intake among European-ancestry men. Eight

SNPs at 2q22.1 with high LD were associated with energy expenditure among lean European-

ancestry women and men. Our findings suggest there is a shared genetic contribution to BMI

and energy intake as well as BMI and energy expenditure. Further investigation is warranted

to replicate our findings and detect the additional genetic variants associated with energy

intake and expenditure.
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