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Abstract
Liver function is measured regularly in liver transplantation (LT) candidates. Currently, 
these previous disease development data are not used for survival prediction. By con-
structing and validating joint models (JMs), we aimed to predict the outcome based on 
all available data, using both disease severity and its rate of change over time. Adult LT 
candidates listed in Eurotransplant between 2007 and 2018 (n = 16 283) and UNOS 
between 2016 and 2019 (n = 30 533) were included. Patients with acute liver failure, 
exception points, or priority status were excluded. Longitudinal MELD(- Na) data were 
modeled using spline- based mixed effects. Waiting list survival was modeled with Cox 
proportional hazards models. The JMs combined the longitudinal and survival analy-
sis. JM 90- day mortality prediction performance was compared to MELD(- Na) in the 
validation cohorts. MELD(- Na) score and its rate of change over time significantly in-
fluenced patient survival. The JMs significantly outperformed the MELD(- Na) score at 
baseline and during follow- up. At baseline, MELD- JM AUC and MELD AUC were 0.94 
(0.92– 0.95) and 0.87 (0.85– 0.89), respectively. MELDNa- JM AUC was 0.91 (0.89– 
0.93) and MELD- Na AUC was 0.84 (0.81– 0.87). The JMs were significantly (p < .001) 
more accurate than MELD(- Na). After 90 days, we ranked patients for LT based on 
their MELD- Na and MELDNa- JM survival rates, showing that MELDNa- JM- prioritized 
patients had three times higher waiting list mortality.
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1  |  INTRODUC TION

The shortage of available donor livers creates waiting lists for liver 
transplant (LT) candidates with end- stage liver disease.1 In many 
countries, candidates with the lowest expected survival are ranked 
highest and thus usually treated first.2 In the Eurotransplant and 
United Network for Organ Sharing (UNOS) regions, the survival 
prediction and subsequent ranking of LT candidates is based on 
the Model for End- stage Liver Disease (MELD) or MELD sodium 
(MELD- Na) score.2 The MELD(- Na) score estimates 90- day mortality 
based on the last known measurement of serum creatinine, bilirubin, 
and the INR (and sodium).3– 5 For patients awaiting LT, MELD(- Na) 
scores are repeatedly and regularly measured. These data are valu-
able for outcome prediction as they show the patient- specific dis-
ease development over time.6,7 Clinically, it also makes sense to 
account for past disease and its severity when estimating progno-
sis. However, currently only the last available MELD(- Na) measure-
ment is used for survival prediction and subsequent LT allocation. 
Previous data are ignored.

Joint models (JMs) are a recent statistical development that 
join longitudinal and survival analysis.8 JMs can handle complex 
follow- up data, that is irregularity in number, interval, and miss-
ing of measurements.9 Also, JMs can use both the disease severity 
and its rate of change for survival prediction. This approximates 
disease as a dynamic process, whereas MELD(- Na) is static and 
underestimates fast- changing disease severity.10,11 Previous work 
has shown that JMs can outperform Cox models.12– 14 JMs have 
however never been used to model patients with end- stage liver 
disease or any other large cohort data. The LT setting is interest-
ing for evaluating JMs because statistical models, that is currently 
the MELD(- Na) score, determine who is offered transplantation 
first. The goal of this study was to use JMs to improve the predic-
tion of waiting list mortality, by considering disease severity and 
its rate of change over time. Therefore, this study develops and 
validates JMs for LT waiting list survival prediction based on re-
peated MELD(- Na) measurements. We constructed and validated 
JMs both in the Eurotransplant and the United Network for Organ 
Sharing (UNOS) regions. Online survival prediction tools of the re-
sulting MELD- JM and MELDNa- JM were created to allow predic-
tions based on single- patient data.

2  |  METHODS

The analyses were done separately for the Eurotransplant and 
UNOS regions. Thus, MELD-  and MELD- Na- based JMs, respectively 
for Eurotransplant and UNOS, were constructed and validated.

2.1  |  Study population

For this study, waiting list data were used from Eurotransplant 
and the UNOS regions. For the Eurotransplant region, patients 

were followed between January 1, 2007 and December 31, 
2018. For the UNOS, the study interval was from January 
16, 2016 (MELD- Na implementation) to December 31, 2019. 
Patients with acute liver failure, exception points or priority sta-
tus at registration and listing for multiple organs were excluded. 
All other adult patients listed for a first LT were included. 
Longitudinal exception points were not modeled, as they do not 
reflect disease severity within the patient. Separate training 
(67% of the patients) and testing (33%) sets were constructed 
through random sampling. The longitudinal data of the waiting 
list contained repeated measurements of the MELD(- Na) score.4 
Data from first active listing until delisting were used. Reasons 
for delisting were death, transplantation, removal, or the end 
of study. Patients who were removed due to deteriorating clini-
cal condition or who died within 30 days of removal were also 
counted as deceased. “Removal” comprised of removal from the 
waiting list due to improved clinical condition and censoring for 
exception points or priority status acquired during follow- up. 
The primary outcome of survival analysis was the overall wait-
ing list mortality. Predictors were (repeated) MELD(- Na) scores. 
In Table S7, results are shown of an additional model that also 
considers, for example, age, region, and sex. For the longitudinal 
analysis, patients were censored at the end of the study follow-
 up. Also, patients receiving priority status or exception points 
during waiting were censored from that date, as transplant and 
thus death chances would change from that time point on. The 
sample size was set by the retrospective study design. Complete 
case analysis was done.

2.2  |  Statistical analysis

Study variables following normal distributions are presented as 
mean ± SD (standard deviation) and nonnormal variables as me-
dian ± IQR (interquartile range). Categorical variables are reported 
as counts and percentages.

2.3  |  Longitudinal analysis

The longitudinal MELD(- Na) data were modeled with mixed effect 
models. These calculate both the average (population) and individual 
(deviation of each patient from the average) MELD(- Na) development 
over time. Importantly, they model developments as continuous tra-
jectories, which can also be nonlinear, for example hyperbolical. This 
gives a natural approximation of disease over time, which contrasts 
the last measurement carried- on- forward approach of Cox models 
(Figure S4). The fixed effects included intercept (representation of 
disease severity at baseline) and time on the waiting list which were 
modeled with natural cubic splines (3 degrees of freedom). The ran-
dom effect components, which varied to randomly deviate from the 
average for each individual, were intercept (baseline disease sever-
ity) and follow- up time on the waiting list.
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2.4  |  Combining longitudinal and survival analysis

Next, the abovementioned mixed effects model was combined with 
a Cox model. The latter was fit to the outcome of waiting list mor-
tality, censoring for all other outcomes, with MELD(- Na) as predic-
tor. Thus, the MELD(- Na) JMs (MELD- JM and MELDNa- JM) were 
constructed using the R package “JMbayes.”15 The JMs predicted 
survival using both the value of the MELD(- Na) score and its rate 
of change at each moment in time (i.e., time- dependent slope). By 
considering time- dependent slopes, a more nuanced definition of 
disease severity is used for survival prediction (Figure 1). Also, pre-
dictions are updated for each newly available measurement, that is 
the model is dynamic.

2.5  |  Prediction performance

The JMs' ability to predict 90- day mortality was assessed by calculat-
ing the area under the receiver operator curve (AUC) and prediction 
errors (Brier scores). Model performance was assessed at baseline 
(start of waiting list follow- up) and 3- monthly during follow- up of 
2 years through bootstrap cross validation with 100 repetitions. To 
clarify, patients were censored if they did not die, but their data up 
until censoring would still be used when calculating performance. 
For comparison, MELD(- Na) prediction performance was also calcu-
lated at these time points.

2.6  |  Impact on the waiting list

Next, we estimated the possible impact of using the JMs in-
stead of MELD(- Na) for waiting list prioritization. To do this, 
data from baseline to 90 days were used. At day 90, patients 
still on the waiting list were ranked highest- to- lowest based on 
their predicted 90- day mortality probability. This created a dif-
ferent ranking for the MELD(Na)- JM and MELD(- Na) models. The 
number of available donor livers in the first 90 days was then 
assigned to the highest ranking patients. This created a rough 
estimate who would have been offered LT first.16,17 To further 
explain the possible differences in prioritization, baseline charac-
teristics and the MELD(- Na) developments over time were com-
pared between patients prioritized either by the MELD(Na)- JM 
or MELD(- Na).

2.7  |  Online LT- JM prediction tool

Lastly, online prediction tools of the MELD- JM (https://predi ction 
models.shiny apps.io/meld- jm/) and MELDNa- JM (https://predi ction 
models.shiny apps.io/MELDN a- JM/) were created. This allows inter-
ested readers to predict survival probabilities based on individual 
patient data. For the instruction manual, see supplement page 3. All 
the analyses were done with R v4.0.0 (R Foundation for Statistical 
Computing).

F I G U R E  1  Two hypothetical patient trajectories on the LT waiting list are shown. Patient A initially increases and then stabilizes in disease 
severity. B is initially stable and later deteriorates. Under the current MELD(- Na) allocation, patient A would be prioritized over patient B in 
liver allocation, because the most recent MELD(- Na) is used. However, the JM uses both the past and current disease severity (value) and the 
rate of change at each moment in time (slope). At any given time, the JM combines the hazard ratios for value and slope to calculate the risk 
of death. Thus, the JM would calculate a higher mortality risk and thus LT priority for patient B, because the disease is increasing fast [Color 
figure can be viewed at wileyonlinelibrary.com]

https://predictionmodels.shinyapps.io/meld-jm/
https://predictionmodels.shinyapps.io/meld-jm/
https://predictionmodels.shinyapps.io/MELDNa-JM/
https://predictionmodels.shinyapps.io/MELDNa-JM/
www.wileyonlinelibrary.com
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3  |  RESULTS

3.1  |  Population characteristics

Table 1 shows the baseline characteristics for the Eurotransplant 
and UNOS populations. The 16 283 Eurotransplant LT candidates 
had a median age of 55 (48– 61) at listing. Most (66.3%) patients 
were male and the most common liver diseases were (post)alcoholic 
(39.5%), cholestatic (11.7%), and hepatitis- C (10.7%)- induced cirrho-
sis. At the end of follow- up, 50.2% were transplanted, 20.9% de-
ceased, 20.2% were removed, and 8.7% were censored at the end of 
study. The 30 533 UNOS patients had a median age of 58 (50– 64) 
years and were mostly (63.3%) male. Alcohol (30.5%)-  and NASH 
(20.7%)- related cirrhosis were most common. The median MELD at 
listing was 18 (13– 26), which was higher than the MELD 15 (11– 21) 
for the Eurotransplant region. Median MELD- Na at listing was 19 
(12– 27) points in the UNOS cohort. At the end of follow- up, 52.2% 
was transplanted, 13% had died while waiting or was removed be-
cause of worsening clinical condition, 31% was removed due to 
improved condition, exception point, or status 1 approval during 
follow- up, and 3.8% was censored at the end of study.

3.2  |  JM properties

The JMs calculate hazard ratios at a specific time (HRt) though the 
following equations, for MELD- JM: 
HRt =

(

1. 29MELDvalue

)

∗

(

8. 12MELDslope

)

 and MELDNa- JM 
HRt =

(

1. 24MELDNavalue

)

∗

(

8. 02MELDNaslope

)

. The MELD- JM coeffi-
cient for MELD values is 1.29 with 95% CI (1.28– 1.31). The MELD- JM 
slope coefficient is 8.12 (95% CI 1.27– 50.38). For the MELDNa- JM, 
these are 1.23 (95% CI 1.24– 1.26) and 8.02 (95% CI 3.65– 17.1), re-
spectively. This means that at a given moment in time, a 1- point in-
crease in MELD value will increase mortality risk by a factor 1.29, 
and a 1- point faster or slower change gives a factor 8.12 difference. 
These equations, combined with the baseline risks, can be used to 
calculate specific risks. However, the JM is needed to calculate the 
MELD(- Na) value and slope at a given time point. To enable easy ac-
cess to JM predictions, we developed online applications of the 
MELD- JM (https://predi ction models.shiny apps.io/meld- jm/) and 
MELDNa- JM (https://predi ction models.shiny apps.io/MELDN a- 
JM/). Interested readers can upload repeated MELD(- Na) measure-
ments of individual patients into these applications, to generate 
personalized predictions. See supplement page 3 for an instruction 
manual. The performance of these JMs is tested below.

3.3  |  JM performance

The JM performance was assessed in the independent valida-
tion data at baseline (Figure 2 and Figure S1) and during follow- up 
(Table 2: UNOS; Table S1: Eurotransplant). At baseline, MELDNa- JM 
AUC was 0.91 (0.89– 0.93) and MELD- Na AUC was 0.84 (0.81– 0.87). 

In Eurotransplant, MELD- JM AUC was 0.94 (95% CI 0.92– 0.95) com-
pared to 0.87 (0.85– 0.89) for MELD (Figures S1 and S2). For both the 
MELD(Na)- JM and MELD(- Na), prediction performance was best in 
the 5 months of follow- up. The MELD(Na)- JMs AUCs were signifi-
cantly (p < .001) better than the MELD(- Na) for the first 12 months 
of follow- up. During this period, the majority of transplantations 
was done, that is 94% (UNOS) and 84% (Eurotransplant). After 
12 months, JM AUCs were still notably but not significantly better 
than MELD(- Na). Over time, MELD(- Na) might be less representative 
of disease severity in LT candidates, which could explain the decrease 
in AUC over time for both models. MELD(Na)- JM prediction errors 
were always significantly lower than the MELD(- Na) (Figure 2B, 
Figure S2, Tables S1 and S2). In other words, the JM predictions 
were more accurate and thus better resembled the observed risks 
in the population. The subset analysis of prior (2007– 2012) versus 

TA B L E  1  Baseline characteristics for the Eurotransplant and 
UNOS regions

Eurotransplant UNOS

Study interval 2007– 2018 2016– 2019

n 16 283 30 533

Age (median [IQR]) 55.0 [48.0, 61.0] 58.0 [50.0, 64.0]

Gender male (%) 10 796 (66.3) 19 334 (63.3)

BMI (median [IQR]) 25.6 [22.9, 29.2] 29.0 [25.0, 33.0]

Disease (%)

Cirrhosis, alcoholic 6432 (39.5) 9309 (30.5)

Cirrhosis, HCV 1742 (10.7) 4001 (13.1)

Cirrhosis, NASH NA 6328 (20.7)

Cirrhosis, other causes 3794 (23.3) 4754 (15.6)

Cholestatic disease 1905 (11.7) 2422 (7.9)

Other 2410 (14.8) 3725 (12.2)

Serum measurement at listing (mean (SD))

Creatinine in mg/dl 1.3 (3.0) 1.5 (1.4)

Bilirubin in mg/dl 6.0 (10.6) 7.0 (9.4)

INR 1.5 (0.6) 1.8 (0.9)

Sodium in mmol/L NA 136 (5.0)

Dialysis dependency (%) 937 (5.8) 3223 (10.6)

MELD at listing (median 
[IQR])

15.0 [11.0, 21.0] 18.0 [13.0, 26.0]

MELD- Na at listing 
(median [IQR])

NA 19.0 [12.0, 27.0]

Status at delisting (%)

Transplanted 8174 (50.2) 15928 (52.2)

Deceased 3404 (20.9) 3974 (13.0)

Removed from the 
waiting list

3289 (20.2) 9460 (31.0)

Censored at study end 1417 (8.7) 1171 (3.8)

Abbreviations: HCV, hepatitis- C virus induced; HCC, hepatocellular 
carcinoma; HU, high urgent status; NA, Eurotransplant has no complete 
data regarding this item; NSE, (non)standard exception points; MELD, 
Model of End- stage Liver Disease.

https://predictionmodels.shinyapps.io/meld-jm/
https://predictionmodels.shinyapps.io/MELDNa-JM/
https://predictionmodels.shinyapps.io/MELDNa-JM/
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F I G U R E  2  (A) 90- day mortality ROC 
plot of the MELDNa- JM and MELD- Na. 
(B) Calibration plot of the MELDNa- JM 
and MELD- Na score. Each dot represents 
10% of the population. The lines show 
how well the predicted risks match the 
observed risks [Color figure can be viewed 
at wileyonlinelibrary.com]

(A)

(B)

TA B L E  2  Ninety- day mortality AUCs of the MELDNa- JM versus the MELD- Na, at baseline and during waiting list follow- up in the 
validation cohort

Time (months) MELDNa- JM low95 upp95 MELD- Na low95 upp95 p

0 0.91 0.89 0.93 0.84 0.81 0.87 ***

3 0.79 0.75 0.82 0.67 0.62 0.73 ***

6 0.80 0.76 0.84 0.69 0.61 0.75 ***

9 0.81 0.75 0.86 0.75 0.69 0.81 ***

12 0.74 0.66 0.81 0.69 0.58 0.79 NS

15 0.76 0.67 0.84 0.70 0.54 0.83 ***

18 0.78 0.69 0.86 0.76 0.62 0.87 NS

21 0.88 0.78 0.97 0.83 0.62 0.96 NS

24 0.72 0.60 0.85 0.68 0.42 0.86 NS

Abbreviations: AUC, area under receiver operator curve; JM, joint model; MELD- Na, model for end- stage liver disease sodium score.
***p < .001.

www.wileyonlinelibrary.com
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recent (2013– 2018) years showed slightly better performance in 
the 2007– 2012 cohort (Table S4). Excluding HCV patients as sen-
sitivity analysis increased AUCs (Table S5). MELDNa- JM performed 
better in males (Figure S5), possibly because MELD- Na tends to un-
derestimate female disease severity through lower creatinine lev-
els.18 Performance was comparable for most diseases and worst in 
HCV disease (Figure S6). The implications for LT candidates might 
be limited, as the number of listed HCV patients is decreasing.19 
Performance for non- Black candidates was slightly better than for 
Black candidates (Figure S7).

3.4  |  JM impact on the waiting list

The possible differences in MELDNa- JM and MELD- Na prioritiza-
tion were assessed.

Table 3 shows the baseline characteristics of patients who would 
have been prioritized both by MELDNa- JM and MELD- Na, by one of 
the models or by neither (Table S6: MELD and MELD- JM compar-
ison). Compared to MELD- Na, the MELDNa- JM prioritized slightly 
younger (56 vs. 58 years) and female (46.5% vs. 35.4%) patients, 
who less often had hepatitis- C- induced cirrhosis. Most importantly, 
MELDNa- JM- prioritized patients had a 3.6 times higher 90- day mor-
tality rate, that is 15.4% versus 4.3%. For the Eurotransplant region, 
MELD- JM prioritized patients with five times higher 90- day mortality 
compared to MELD, that is, 23.2% versus 4.6% (Table S6). A possible 
cause of this difference in mortality is illustrated in Figure 3. The JM 
prioritized patients with lower median MELD- Na scores (Table 3), 
but these patients had increasing disease severity at the time of liver 
graft allocation. This illustrates how not only the MELD- Na value, 
but also the rate of change is considered when estimating survival 

(Figure S3 for Eurotransplant plots). The MELDNa- JM could there-
fore have prioritized patients with a higher waiting list mortality, 
possibly not captured by MELD- Na.

3.5  |  Online prediction tools

To access MELD- JM or MELDNa- JM predictions for the individual 
patient, please visit https://predi ction models.shiny apps.io/meld- jm/ 
or https://predi ction models.shiny apps.io/MELDN a- JM/, respec-
tively. See page 3 of the supplement for instructions. For clinical JM 
implementation in individual patients, repeated measurements of 
MELD(- Na) can be loaded into the online app. This essentially is the 
same data as uploaded to organ procurement organizations. The JM 
app then calculates prognosis based on these measurements and lets 
the user choose the moment in time and prediction horizon, for ex-
ample assess 90- day survival probabilities after 5 months of waiting. 
These individual predictions can improve clinical decision- making.

4  |  DISCUSSION

This retrospective cohort analysis aimed to improve LT candidate sur-
vival prediction by using longitudinal data. Therefore, we developed 
and validated the MELD- JM and MELDNa- JM for waiting list mortal-
ity prediction in the Eurotransplant and UNOS regions. We report 
several important findings. First, the JM- calculated MELD(- Na) values 
and their time- dependent rate of change are significantly associated 
with LT candidate waiting list mortality. Second, using time- dependent 
value and slope, the JMs significantly outperformed both MELD and 
MELD- Na when predicting mortality. Third, the JMs would have 

TA B L E  3  Characteristics of prioritized recipients

Both
MELDNa- JM 
prioritized

MELD- Na 
prioritized Not prioritized p

n 3196 611 611 5658

Age (median [IQR]) 55.0 [47.0, 62.0] 56.0 [48.0, 63.0] 58.0 [51.0, 63.0] 59.0 [53.0, 64.0] <.001

Female sex (%) 1209 (37.8) 284 (46.5) 216 (35.4) 1978 (35.0) <.001

BMI (mean [SD]) 29.9 (6.6) 28.5 (6.6) 28.6 (5.8) 29.1 (5.9) <.001

Death within 90 days (%) 498 (15.6) 94 (15.4) 26 (4.3) 135 (2.4) <.001

Disease (%)

Cirrhosis HCV 235 (7.4) 39 (6.4) 87 (14.2) 973 (17.2) <0.001

NASH 597 (18.7) 140 (22.9) 138 (22.6) 1204 (21.3)

Cirrhosis alcoholic 1413 (44.2) 209 (34.2) 230 (37.6) 1245 (22.0)

Cirrhosis other 575 (18.0) 108 (17.7) 83 (13.6) 761 (13.4)

Cholestatic disease 185 (5.8) 68 (11.1) 33 (5.4) 533 (9.4)

Metabolic disease 73 (2.3) 16 (2.6) 13 (2.1) 107 (1.9)

Malignant/benign tumor 52 (1.6) 12 (2.0) 22 (3.6) 705 (12.5)

Other 66 (2.1) 19 (3.1) 5 (0.8) 130 (2.3)

MELD (median [IQR]) 30.0 [26.0, 37.0] 21.0 [18.0, 24.0] 22.0 [19.0, 24.0] 14.0 [10.0, 17.0] <.001

MELD- Na (median [IQR]) 31.0 [27.0, 35.0] 21.0 [19.0, 22.0] 25.0 [24.0, 27.0] 13.0 [9.0, 17.0] <.001

https://predictionmodels.shinyapps.io/meld-jm/
https://predictionmodels.shinyapps.io/MELDNa-JM/
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prioritized patients with three to five times higher mortality on the 
waiting list, who would not have been prioritized under MELD(- Na).

4.1  |  Longitudinal analysis

The progression of liver disease changes within and between pa-
tients over time. The current models that determine transplanta-
tion priority for patients with end- stage liver disease, that is the 
MELD(- Na), ignore previous disease development. However, for the 
clinician it is evident that the history of disease is important when 
estimating prognosis. Therefore, JMs were used to combine longi-
tudinal and survival analysis.8 The resulting MELD(Na)- JM estimate 
both the value and slope— that is, current disease severity and the 
current rate of change— at each new measurement in time to pre-
dict survival, while also considering all previous measurements 
(Figure 1). The resulting disease developments are a continuous and 
flexible trajectory over time, whereas, for example, time- dependent 
Cox (TDC) models carry the last measured value on forward.20 This 
can fail to adequately model changing disease severity (Figure S4) 

and can lead to underestimation of mortality in severely ill LT can-
didates.11 The idea of using MELD(- Na) rate of change for survival 
prediction is not new. Previously, the MELD spike and delta- MELD 
have been proposed.6,21 The MELD spike indicates a 30% or higher 
difference between current MELD and the MELD score measured 
7 days ago. It is a binary parameter based on cutoffs (30% and 
7 days). However, through joint modeling, we achieved a continu-
ous representation of disease based on all data (not only assessing 
30% differences or the past 7 days). MELD spike was intended as 
tiebreaker between patients with the same MELD scores. The JMs 
could however prioritize patients even if their MELD- Na values are 
lower, as long as the product of the value and slope is higher (Figures 
1 and 3). The delta- MELD is the difference between lowest MELD 
in previous 30 days and current MELD. It averages the slope over a 
varying number of previous days or measurements (depending on 
the date of lowest MELD). In our view, this makes it an imprecise ap-
proximation of current rate of change. Still, it is often considered as 
predictor in LT analysis.22– 26 However, Bambha et al. already showed 
that the effect of delta- MELD depends on the frequency of meas-
urements.27 In contrast, the estimated slope of the MELD(Na)- JM 

F I G U R E  3  The MELDNa- JM and MELD- Na would prioritize different patients for liver transplantation. For these patients, we plotted the 
individual (black lines) and average (red line) MELD- Na score development during 90 days. Although the MELD- Na- prioritized patients had a 
higher initial MELD- Na score (value), their average scores remained stable (slope). In contrast, the JM- prioritized patients had lower MELD- 
Na (value) scores but with faster increasing disease severity (slope). Interestingly, the JM- prioritized patients had a five times higher 90- day 
mortality rate. Indicating that JM prioritization could possibly be more just [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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is updated with each new measurement and is not altered by the 
frequency of measurements.

4.2  |  Prediction performance

The MELD(Na)- JM prediction performance was significantly bet-
ter than MELD(- Na). The predictions also more accurately resem-
bled the actual survival rates on the waiting list. Models on which 
treatment decisions are based should ascertain excellent accuracy.28 
Using additional predictors in JMs, such as age and sex, slightly im-
proved AUCs after 12 months (Table S7). However, this was a small 
improvement, while using these predictors adds to complexity and 
might be considered unethical. Therefore, MELD(- Na)- only JMs 
were primarily constructed. Others have also studied possible im-
provements to MELD(- Na). Recently, a machine learning MELD- Na 
alternative was constructed by Bertsimas et al., that is the optimized 
prediction of mortality (OPOM) model.29 Although OPOM outper-
formed MELD- Na, it also considered more (n = 25 or 28) variables. 
Moreover, OPOM is based on classification analysis, which investi-
gates whether a patient is alive after 90 days yes or no. This differs 
from survival analysis, which investigates how much time passed 
until death or censoring. We believe that survival analysis is more 
appropriate in the waiting list setting. Other machine learning tech-
niques, like random survival forests and neural networks, do not 
seem to outperform Cox models, even in high- dimensional data.30 
Previous work did show that JMs outperform time- dependent Cox 
(TDC) models,12– 14 which is interesting considering the frequent use 
of TDC analysis for LT candidates.6,7,24,27,31– 33 We believe that the 
TDC last measurement carried- on- forward can give a suboptimal 
representation of disease (Figure S4). With changing disease sever-
ity, the TDC model either underestimates or overestimates disease 
severity. This is especially the case if few measurements are avail-
able or data are missing, which often occurs in LT candidate data.

4.3  |  Impact on the waiting list

We investigated the prioritization differences between the 
MELDNa- JM and MELD- Na, to give clinical meaning to the found sta-
tistical improvements. Considering the rate of change in disease sever-
ity helped to identify patients with worse prognosis, which illustrates 
the concepts shown in Figure 1. To optimize the sickest- first allocation 
and transplantation benefit, it could therefore be interesting to use the 
JM- approximated course of disease for LT evaluation. Physicians can 
use the MELD(Na)- JM as online tool (see above) to predict outcome 
based on individual patient data. Also, on a center or waiting list popu-
lation level, JMs can be applied to predict the survival of each eligible 
patient every time a donor liver graft is offered. These predictions can 
be used alongside or eventually perhaps instead of MELD(- Na), be-
cause JM performance is good compared to MELD- Na and the same 
data are used. This is practical, because no changes would have to be 
made in the centers’ routine of collecting and uploading data.

4.4  |  Limitations

A limitation is that data could be missing dependent on unobserved 
values. Statistical methods, like the JM and Cox model, assume 
missing at random (MAR) data. For the waiting list, this means that 
MELD(- Na) missingness should not depend on unobserved values, 
but it may depend on observed values. Because unobserved values 
cannot be observed, MAR cannot be proven in this study or any 
other Eurotransplant/UNOS registry analysis. We did however as-
sess the relation between MELD(- Na) value and reporting frequency 
(supplement “missingness analysis”). The involuntary updates of 
low MELD(- Na) scores were done in only a small part of the data. 
Also, despite the fact that the most recent score was lower than the 
previous one, centers still reported these values and often well in 
time. The average time between measurements that were previ-
ously higher or lower did not differ substantially. Dependent miss-
ingness in low MELD(- Na) scores could lead to overestimation of 
waiting list mortality. A solution to alleviate possible bias could be 
to increase the mandatory update frequency of MELD(- Na) scores. 
Another limitation is that patients with exception points were ex-
cluded, because longitudinal modeling of arbitrarily assigned MELD 
points does not reflect disease severity. However, JMs could be used 
to model repeated AFP measurements, tumor characteristics, and 
response to therapy. Also, the difference in waiting list prioritiza-
tion between the MELD(- Na) and MELD(Na)- JM is a rough estimate, 
which depends on the chosen interval, that is for a shorter follow- up, 
presumably prioritization of the two indices would be more similar 
and vice versa. Furthermore, we did not study postoperative sur-
vival if the MELD(Na)- JM would have been used for allocation. This 
is because the JMs were not used to drive allocation. We therefore 
only could have assessed postoperative survival after MELD(- Na) 
allocation and would not know how the JMs would have changed 
that. These questions concern counterfactual outcomes in causal 
inference, for example what would have happened to patients had 
they not been transplanted.34 The best way to evaluate a new al-
location system is to bring it in practice and measure the difference. 
Evaluating a new allocation system through simulation is probably 
the next best option. These extensive simulations were beyond the 
scope of this study. One should be aware, however, that assessment 
through simulation is based on intrinsically unverifiable assumptions, 
namely that with changing the allocation priorities nothing else in 
the system will change. Lastly, JMs are statistically complex and can 
give biased results if mis- specified. Therefore, construction should 
be done with care. To aid clinicians, we made online versions of our 
models freely available.

4.5  |  Conclusion

This study developed and validated the Eurotransplant MELD- JM 
and UNOS MELDNa- JM prediction models. The MELD(Na)- JM sig-
nificantly outperformed current models that drive liver allocation. 
Thus, patient survival can be dynamically predicted based on past 
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and current disease. These predictions could more accurately direct 
treatment to those most in need.
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