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Abstract Innate lymphoid cells (ILCs) were originally classified based on their cytokine profiles,

placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into

different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like

cells that are limited to the tumor microenvironment and whether this conversion occurs beyond

this environment remains unknown. Here, we describe Toxoplasma gondii infection converts NK

cells into ILC1-like cells that are distinct from both steady-state NK cells and ILC1s in uninfected

mice. These cells were Eomes-dependent, indicating that NK cells can give rise to Eomes– Tbet-

dependent ILC1-like cells that circulate widely and persist independent of ongoing infection.

Moreover, these changes appear permanent, as supported by epigenetic analyses. Thus, these

studies markedly expand current concepts of NK cells, ILCs, and their potential conversion.

DOI: https://doi.org/10.7554/eLife.47605.001

Introduction
Innate lymphoid cells (ILCs) comprise diverse populations. Like T and B cells, they are derived from

common lymphoid progenitors (CLPs) but do not undergo antigen receptor recombination

(Spits and Cupedo, 2012). ILCs are tissue-resident within mucosal sites where they participate in tis-

sue homeostasis and survey for pathogens (Sojka et al., 2014a; Gasteiger et al., 2015), although

recent studies showed that inflammation can induce ILC2 mobilization (Huang et al., 2018). ILC clas-

sification was initially based on their cytokine production, with type 1 ILCs (ILC1s) producing IFNg,

ILC2s producing IL-5 and IL-13, and ILC3s producing IL-17 and IL-22. ILC classification was subse-

quently corroborated by distinctive markers and developmental requirements.

Prior to the discovery of ILCs, NK cells were the only known innate CD3– lymphocytes. Their clas-

sification within the larger scheme of ILCs has been challenging, in particular due to their strong

resemblance to ILC1s while also maintaining important distinctions. For example, mouse ILC1s and

NK cells both express NK1.1 and NKp46 and produce IFNg , and as such were initially classified

together as Group 1 ILCs (Spits et al., 2013). However, grouping NK cells with ILC1s was con-

founded by several discordant features. Whereas ILC1s are restricted to organs, and CD49a expres-

sion is a faithful marker of tissue-resident populations under steady-state conditions (Peng et al.,

2013; Sojka et al., 2014a), most NK cells freely circulate. These cells also differ in their
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developmental requirements, with NK cells requiring Eomes for development, while Eomes is not

expressed in ILC1s and is dispensable for development (Daussy et al., 2014). Moreover, ILC1s are

completely Tbet-dependent (Daussy et al., 2014; Sojka et al., 2014a), whereas NK cells require

Tbet only for maturation (Townsend et al., 2004; Gordon et al., 2012). Consistent with their differ-

ential requirements for T-box transcription factors, NK cells and ILC1s arise at different branch points

downstream of the CLP. While NK cells originate from NK cell precursor cells (Rosmaraki et al.,

2001), other ILCs further differentiate along a pathway that includes the common helper innate lym-

phoid progenitor (CHILP) and ILC precursor (ILCP), which do not have NK cell potential

(Klose et al., 2014; Constantinides et al., 2014; Yang et al., 2015). Given the many ways in which

NK cells and ILC1s differ, ILC classification was recently revised so that NK cells and ILC1s are now

considered distinct ILC lineages (Vivier et al., 2018).

Constructing clear definitions of NK cells and ILC1s is complicated, however, by their plasticity

and heterogeneity upon stimulation, which can alter the features that discriminate between them

under steady state conditions. For example, within the tumor microenvironment or upon in vitro cul-

ture with TGF-b, NK cells may downregulate Eomes and resemble ILC1s (Gao et al., 2017;

Cortez et al., 2016). However, these cells are found only in the tumor microenvironment in vivo and

it is not clear if they can persist in the absence of tumor. Moreover, NK cells and ILC1s become acti-

vated under similar circumstances, such as murine cytomegalovirus (MCMV) infection and tumorigen-

esis (Weizman et al., 2017; Dadi et al., 2016; Yokoyama, 2013). As it is currently difficult to assess

NK cells independently of ILC1s, changes undergone by either population may be masked by the

presence of the other. Independent examination of each population, especially in settings known to

stimulate NK cells and ILC1s, is required to better understand these cells and their relationship to

each other.

Both NK cells and ILC1s respond to infection with Toxoplasma gondii, an intracellular parasite

that infects a third of the global population and is a natural pathogen in mice (Montoya and Liesen-

feld, 2004). During acute infection, rapidly replicating tachyzoites disseminate systemically, trigger-

ing dendritic cells to produce IL-12, which subsequently stimulates NK cells to produce IFNg and

ILC1s to produce IFNg and TNFa (Klose et al., 2014; Goldszmid et al., 2012). Tachyzoites eventu-

ally differentiate into slowly replicating bradyzoites, which are primarily encysted within cells of the

central nervous system and skeletal muscle (Yarovinsky, 2014). As T. gondii infection elicits activa-

tion of both NK cells and ILC1s, herein we sought to investigate how NK cells and ILC1s respond to

gain better insight into inflammation-induced changes. Indeed, we found that ILC1s become perma-

nently heterogeneous after infection, largely owing to the surprising conversion of NK cells into

ILC1-like cells.

Results

T. gondii infection results in expansion of ILC1-like cells
Following administration of anti-NK1.1, acute infection with the type II Prugniaud (Pru) strain of T.

gondii resulted in increased parasite load and higher mortality rates as compared to isotype control-

treated mice (Figure 1—figure supplement 1A–C), consistent with previous reports

(Goldszmid et al., 2007). Since anti-NK1.1 affects both NK cells and ILC1s and both have been pre-

viously implicated in the immune response to T. gondii (Goldszmid et al., 2012; Klose et al., 2014),

we sought to investigate how NK cells and ILC1s respond to infection. Here, we assessed these pop-

ulations by following expression of Eomesodermin (Eomes) and CD49a among CD3– CD19– NK1.1+

NKp46+ cells, as NK cells express Eomes and not CD49a while ILC1s express CD49a but not Eomes

at steady-state. In the uninfected spleen, the vast majority of NK1.1+ NKp46+ cells were NK cells

(Figure 1A). There was a small population of spleen cells resembling ILC1s in uninfected mice, even

though ILC1s are primarily found in other organs including the liver and small intestine and are gen-

erally tissue-resident (Sojka et al., 2014a; Fuchs et al., 2013), whereas cells in the spleen are gener-

ally circulating cells (Gasteiger et al., 2015; Sojka et al., 2014a; Peng et al., 2013). Interestingly,

over the course of infection, NK cells decreased both as a proportion of NK1.1+ NKp46+ cells and in

absolute number (Figure 1A,B). By contrast, there was an increase in cells resembling ILC1s that was

clearly evident at 21-day post-infection (p.i.) (Figure 1A,C). Since ILC1 markers were established for

ILC1s in uninfected mice, we have termed these cells resembling ILC1s as ‘ILC1-like cells.’ Notably,
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ILC1-like cells from infected mice mostly expressed Ly6C (Figure 1A,D), a marker that correlates

with NK cell maturity (Omi et al., 2014) and is expressed by MCMV-induced memory NK cells

(Sun et al., 2012) and is not expressed by the vast majority of ILC1-like cells present in the spleen

under steady-state conditions. The expansion of splenic ILC1-like cells persisted for at least 4 months

p.i. (Figure 1E).

Figure 1. T. gondii infection results in expansion of ILC1-like cells. (A–E) Wild-type mice were infected by i.p. injection of 200 tachyzoites of the

Prugniaud (Pru) strain of T. gondii. Splenocytes were analyzed at indicated time points p.i. (A) Representative flow cytometry plots for the analysis of NK

cells (Eomes+ CD49a–) and ILC1-like cells (Eomes– CD49a+), and Ly6C expression by NK cells and ILC1-like cells, at indicated time points p.i., among

CD3– CD19– NK1.1+ NKp46+ cells. (B,C) Frequency and absolute number of NK cells (B) and ILC1-like cells (C) from spleens of uninfected mice and

mice at indicated time points p.i. Numbers derived from gates indicated in (A), n = 5 mice. (D) Frequency of ILC1s that express Ly6C at indicated time

points p.i., n = 5 mice. (E) Representative flow cytometry plots for the analysis of NK cells and ILC1-like cells, and their frequency and absolute number

four mo p.i., n = 6 mice (uninfected) or n = 7 mice (infected). Mean + s.e.m (B–E); one-way ANOVA with Bonferroni correction (B–D); unpaired t-test (E);

*p�0.05, **p�0.01, ***p�0.001, ****p�0.0001. Data are representative of 5 independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.002

The following figure supplement is available for figure 1:

Figure supplement 1. Anti-NK1.1 depletion increases parasite burden and mortality in T.gondii infection.

DOI: https://doi.org/10.7554/eLife.47605.003
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ILC1-like cell expansion persists in the absence of ongoing infection
Two major possibilities could account for the sustained expansion of ILC1-like cells. They may repre-

sent a response to ongoing parasite replication, as bradyzoites develop following acute infection

with Pru T. gondii infection and parasite reactivation can occur. Alternatively, the increased ILC1-like

cells might represent a permanent change that persists even after infection subsides. To test

whether ongoing parasite replication plays a role, we infected mice with T. gondii, then suppressed

growth of tachyzoites with sulfadiazine at various time points p.i. (Eyles and Coleman, 1955). Inter-

estingly, infection-induced expansion of ILC1-like cells, as seen at 35 d.p.i, even in sulfadiazine-

treated mice when treatment began 7 or 10 d.p.i., with cell numbers comparable to those of

untreated, infected mice (Figure 2A). ILC1-like cell expansion also occurred following repeated

administration of the Cps1-1 T. gondii strain (Figure 2B), which does not replicate in vivo and there-

fore does not persist in a chronic form (Fox and Bzik, 2002). Moreover, the number of ILC1-like cells

Figure 2. ILC1-like cell expansion persists in the absence of ongoing infection. (A–D) Representative flow cytometry plots for the analysis of NK cells

(Eomes+ CD49a–) and ILC1-like cells (Eomes– CD49a+), and frequency and absolute number of ILC1-like cells in the spleen following (A) treatment with

sulfadiazine (SDZ) beginning at indicated time points p.i. and maintained on sulfadiazine until 35 d p.i. when they were analyzed, n = 5–11 mice; (B)

injection with 1 � 105 tachyzoites three times, two wk apart, and analyzed 42 d after initial injection, n = 4 mice (uninfected) or n = 5 mice (Cps1-1); (C)

infection with PruDku80 (WT) and PruDku80Dgra4 (Dgra4) T. gondii analyzed 35 d.p.i., n = 8 mice (WT) or n = 10 mice (Dgra4); (D) infection of BALB/c

mice 35 d.p.i., n = 3 mice. Mean + s.e.m (A–D); one-way ANOVA with Bonferroni correction (B); unpaired t-test (B–D); ns not significant, *p�0.05,

**p�0.01, ***p�0.001, ****p�0.0001. Data are representative of three independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.004
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was similar after infection with a single inoculum of Dgra4 parasites, which are defective in cyst for-

mation (Fox et al., 2011; Jones et al., 2017), as compared to the WT parental Pru strain

(Figure 2C). BALB/c mice, which have fewer cysts during chronic T. gondii infection (Suzuki et al.,

1993), also had increased numbers of ILC1-like cells after Pru infection (Figure 2D), also indicating

that expanded ILC1-like cells were not confined to infected C57BL/6 mice. In summary, we found

that T. gondii infection induced expansion of ILC1-like cells, which persisted independent of ongoing

parasite replication, suggesting a permanent change; in subsequent experiments, we further exam-

ined the impact of infection with the Pru strain of T. gondii.

Expansion of ILC1-like cells among circulating cells
ILC1s have previously been established as being tissue-resident under steady state conditions

(Gasteiger et al., 2015; Sojka et al., 2014a; Peng et al., 2013). Surprisingly, however, we found

that infected mice displayed ILC1-like cell expansion even in the blood, and a highly vascularized

organ, that is the lung, indicating that at least some of these cells circulate (Figure 3A,B). Consistent

with our previous findings in the spleen (Figure 1A,D), ILC1-like cells in the blood and lungs of

infected mice also expressed Ly6C (Figure 3—figure supplement 1A). However, there was no

increase of ILC1-like cells in the mesenteric lymph node, brain, peritoneum, bone marrow, uterus, or

salivary gland (Figure 3C, Figure 3—figure supplement 1B). Nonetheless, these data indicated that

T. gondii infection induced ILC1-like cell expansion, even in the circulation.

Parabiosis experiments could provide supportive evidence of circulating versus tissue-resident

cells, but the possible reactivation and spread of T. gondii following surgery, as seen clinically

(Bosch-Driessen et al., 2002), could confound analysis. Instead, we utilized Eomes-GFP reporter

mice to assess how ILC1-like cells and NK cells from spleens of infected mice behave following trans-

fer into uninfected mice (Daussy et al., 2014). We isolated NK cells and ILC1-like cells from congeni-

cally distinct Eomes-GFP mice 35 d.p.i. for adoptive transfer into naive Rag2-/-Il2 rg-/- mice

(Figure 4A). When we assessed the recipient mice 24 days later, we detected both transferred pop-

ulations in the spleen and liver, though there was a much smaller percentage of transferred NK cells

in the liver (Figure 4B). Although NK cells upregulated CD49a upon transfer into Rag2-/-Il2 rg-/-

mice, as previously reported (Gao et al., 2017), Eomes expression remained high in most transferred

NK cells, compared to most transferred ILC1-like cells which remained Eomes– (Figure 4C).

Figure 3. Expansion of ILC1-like cells among circulating cells. (A) Representative flow cytometry plots for the analysis of NK cells and ILC1-like cells in

the blood and lung of uninfected and d35-infected mice. (B) Absolute number of ILC1-like cells in the blood and lung of uninfected and d35 infected

mice. (C) Frequency of ILC1-like cells among NK1.1+ NKp46+ cells in indicated organ at 35 d.p.i., n = 3 mice (uninfected) or n = 5 mice (infected). Mean

+ s.e.m (A,C); unpaired t-test; ns not significant, *p�0.05, ***p�0.001, ****p�0.0001. Data are representative of three independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.005

The following figure supplement is available for figure 3:

Figure supplement 1. ILC1s expand at additional sites beyond the spleen.

DOI: https://doi.org/10.7554/eLife.47605.006

Park et al. eLife 2019;8:e47605. DOI: https://doi.org/10.7554/eLife.47605 5 of 25

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.47605.005
https://doi.org/10.7554/eLife.47605.006
https://doi.org/10.7554/eLife.47605


Interestingly, following adoptive transfer of ILC1-like cells, some Eomes– cells recovered from the

spleen expressed Eomes (Figure 4C), suggesting that in certain contexts, Eomes– ILC1-like cells may

give rise to Eomes+ cells, similar to what has been shown previously for ILC1s (Gordon et al., 2012;

Takeda et al., 2005). Therefore, in the setting of homeostatic expansion, most transferred NK cells

and ILC1-like cells from infected mice persist with generally stable Eomes expression, and trans-

ferred ILC1-like cells from infected mice circulate, providing complementary evidence, in addition to

above (Figure 2A–D), that they persist in the absence of ongoing infection.

Figure 4. Delineation of NK cells, ILC1s, and ILC1-like cells in the liver. (A) Overview of competitive transfer experiment. At 35 d.p.i., Eomes-GFP+

CD49a– and Eomes-GFP– CD49a+ cells were sorted from the spleens of CD45.2 and CD45.1 x CD45.2 Eomes-GFP reporter mice, respectively. Cells

were combined in a 1:1 ratio and intravenously injected into Rag2-/-Il2rg-/- mice. 24 days later, spleens and livers of recipients were assessed for

transferred cells. (B) Representative flow cytometry plots of CD45.1 and CD45.2 expression by transferred cells in the spleen and liver of Rag2-/-Il2rg-/-

mice, and frequency of transferred NK cells (CD45.2+) and ILC1s (CD45.1+ CD45.2+) 24 days post-transfer, as described in (A), n = 5 mice. (C)

Representative flow cytometry plots of Eomes-GFP and CD49a expression by transferred NK cells and ILC1-like cells in the spleen (top) and liver

(bottom) of Rag2-/-Il2rg-/- mice, and frequency of Eomes– CD49a+ 24 days post-transfer, as described in (A) n = 5 mice. (D) Representative flow

cytometry plots for the analysis of CD49a and Eomes among CD3– CD19– NK1.1+ NKp46+ cells, and Ly6C expression by Eomes+ CD49a–, Eomes+

CD49a+, and Eomes– CD49a+ cells in the liver at indicated time points p.i. (E,F) Frequency and absolute number of CD3– CD19– NK1.1+ NKp46+ cells

that are Eomes+ CD49a–, Eomes+ CD49a+, and Eomes– CD49a+ in the livers of uninfected and d35-infected mice, n = 3 mice (uninfected) or n = 5 mice

(infected). (G) Frequency of Ly6C+ cells among CD3– CD19– NK1.1+ NKp46+ Eomes+ CD49a–, Eomes+ CD49a+, and Eomes– CD49a+ cells in the livers

of d35-infected mice, n = 3 mice. (H) Frequency of CD3– CD19– NK1.1+ NKp46+ cells that are Eomes– CD49a+ (ILC1 and ILC1-like) and express Ly6C,

and absolute number of Ly6C+ ILC1-like cells and Ly6C– ILC1s from livers of uninfected and d35-infected mice, n = 3 mice (uninfected) or n = 5

(infected). Mean + s.e.m. (B,C,E–H) unpaired t-test (B,C,E,F,H) one-way ANOVA with Bonferroni correction (G); ns not significant, *p�0.05, **p�0.01,

***p�0.001, ****p�0.0001. Data are representative of 3 independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.007
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Interestingly, however, the ratio of transferred ILC1-like cells to NK cells was higher in the liver

than in the spleen, with ILC1-like cells comprising nearly all transferred cells in the liver (Figure 4B).

This suggested that the ILC1-like cells from infected mice may not uniformly circulate and rather

they might preferentially migrate to the liver despite originating in the spleen. Alternatively, the

adoptive transfer studies may be revealing properties of heterogeneous populations of cells. To fur-

ther evaluate these issues, we studied the liver, which contains a large population of ILC1s in unin-

fected mice (Sojka et al., 2014a; Peng et al., 2013), in more detail directly following primary

infection. Infection decreased the frequency of liver NK cells among NK1.1+ NKp46+ cells, although

the total NK cell number did not change (Figure 4D–F). Notably, we observed that infection

resulted in a striking population of liver Eomes+ CD49a+ cells (Figure 4D–F). The frequency and

absolute number of ILC1s also did not change (Figure 4D–F). We examined Ly6C expression by

Eomes+ CD49a–, Eomes+ CD49a+, and Eomes– CD49a+ cells in the infected liver and found that

Ly6C was expressed most highly by Eomes– CD49a+ cells after infection (Figure 4D,G), and to a

lesser extent by Eomes+ CD49a+ cells. Interestingly, Ly6C was expressed at a higher percentage by

cells with an ILC1 phenotype (Eomes– CD49a+) in the infected spleen (~80%, Figure 1D) than in the

infected liver, where only half of such cells expressed Ly6C (Figure 4H), suggesting heterogeneity

among liver cells resembling ILC1s. Accordingly, the number of liver Ly6C+ ILC1-like cells (Eomes–

CD49a+) was increased relative to uninfected mice, whereas the number of Ly6C– ILC1s (Eomes–

CD49a+) remained comparable (Figure 4H), suggesting that at 35 d.p.i. Ly6C expression may distin-

guish between steady-state ILC1s and ILC1-like cells induced by infection. Taken together, the data

suggest that in infected mice, steady-state ILC1s are maintained while an additional ILC1-like subset

arises and circulates.

ILC1-like cells are distinct from NK cells and ILC1s
Ly6C is expressed by ILC1-like cells in the spleen, blood, and liver of infected mice, suggesting that

T. gondii induces ILC1-like cells that are rare under steady-state conditions. To assess the possibility

of a novel ILC1-like subset, we first performed more detailed comparisons of NK cells and ILC1-like

cells in the spleens of uninfected and infected mice. As circulatory capacity was specific to ILC1-like

cells in infected mice, we examined expression of molecules typically associated with ILC1 tissue-res-

idency (Sojka et al., 2014a; Daussy et al., 2014). ILC1-like cells in both uninfected and infected

mice did not express CD62L and expressed higher levels of PECAM-1 and CXCR6 compared to NK

cells (Figure 5A). However, infection resulted in NK cells and ILC1-like cells gaining expression of

CCR8 and CX3CR1 compared to NK cells and ILC1s in uninfected mice. We also assessed expression

of DNAM-1 and KLRG1, which correlate with the maturational state of NK cells (Goh and Hunting-

ton, 2017). We found that ILC1-like cells from infected mice expressed DNAM-1 more highly than

NK cells, and KLRG1 at higher levels than NK cell or ILC1 populations (Figure 5B). We also observed

that T. gondii-induced ILC1-like cells were unique in their expression of Neuropilin-1, a cell surface

protein involved in activation of regulatory T cells (Sarris et al., 2008), but not previously described

in NK cells or ILC1s.

NK cell development is classically described as a stepwise maturation process through CD27–

CD11b–, CD27+ CD11b–, CD27+ CD11b+, and CD27– CD11b+ stages (Chiossone et al., 2009), while

ILC1s do not undergo these stages and are primarily CD27+ CD11b– (Sojka et al., 2014a). In the

spleen, we found that ILC1s from uninfected mice were predominantly CD27+ CD11b– and NK cells

from uninfected and infected mice encompassed all subsets (Figure 5—figure supplement 1A), as

previously shown. However, ILC1-like cells from infected mice were mainly CD27– CD11b+ (Fig-

ure 5—figure supplement 1A). With respect to NK cell receptor expression, ILC1-like cells from

infected mice resembled ILC1s from uninfected mice, expressing NKG2A and low frequencies of

Ly49 receptors (Figure 5—figure supplement 1B). Regarding cytokine production, NK cells and

ILC1s in both uninfected and infected mice produced IFNg in response to stimulation (Figure 5C), a

hallmark of both cell types (Sojka et al., 2014b). Similarly, ILC1-like cells also produced IFNg. How-

ever, only ILC1s from uninfected mice produced TNFa (Figure 5D). Similar results were obtained

from studies of ILC1-like cells in blood of infected mice (Figure 5—figure supplement 1C,D). Thus,

the spleens and blood of infected mice contained a novel ILC1-like subset.

Studies of the infected liver solidified the notion that infection induced a distinct ILC1-like sub-

population. In the liver, we separately assessed the Ly6C– ILC1s that are present in uninfected mice,

as well as both Ly6C– ILC1s and Ly6C+ ILC1-like cells in infected mice (Figure 5—figure supplement
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2A). Ly6C+ ILC1-like cells expressed higher levels of CX3CR1, Neuropilin-1, KLRG1, and CD11b,

lower levels of CXCR6 and CD27, and produced less TNFa than Ly6C– ILC1s in uninfected and

infected mice, which were similar (Figure 5—figure supplement 2B–D). Therefore, the Ly6C+ ILC1-

like cells in the liver therefore resembled those in the infected spleen (Figure 5A–D, Figure 5—fig-

ure supplement 1A,B), suggesting that while ILC1s in uninfected mice and ILC1-like cells in infected

Figure 5. ILC1-like cells are distinct from NK cells and ILC1s. (A,B) Representative flow cytometry plots showing expression of indicated markers by

indicated cells from spleens of uninfected and d35-infected mice, and frequency of each cell population that expresses each marker, n = 3 mice (A)

uninfected) or n = 5 mice (A) infected and B). (C,D) Representative flow cytometry plots and frequency of indicated cells in uninfected and d35-infected

mice after 4 hr culture with indicated stimulus that contain intracellular IFNg (C) or TNFa (D), n = 5. Mean + s.e.m. (A–D) one-way ANOVA with

Bonferroni correction (A–D); *p�0.05, **p�0.01, ***p�0.001, ****p�0.0001, in comparisons of ILC1-like cells from infected mice with the NK cells in

infected mice, and the ILC1s in uninfected mice. When these comparisons were not significant, the comparison is not shown. Data are representative of

three independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.008

The following figure supplements are available for figure 5:

Figure supplement 1. Phenotypic comparison of NK cells, ILC1s, and ILC1-like cells in the spleen and blood.

DOI: https://doi.org/10.7554/eLife.47605.009

Figure supplement 2. Ly6C expression distinguishes between ILC1 subpopulations in the liver.

DOI: https://doi.org/10.7554/eLife.47605.010
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mice share the Eomes– CD49a+ phenotype, they can be distinguished by marker expression and

cytokine production profile.

T. gondii infection induces heterogeneity of NK cells and ILC1s
ILC1-like cells from spleens of infected mice expressed high levels of Tbet (Figure 6A), which was

previously identified as a requirement for ILC1 development (Daussy et al., 2014; Sojka et al.,

2014a). We therefore hypothesized that Tbet may be required for ILC1-like cell expansion after

infection. As Tbx21-/- mice succumb to T. gondii infection (Harms Pritchard et al., 2015), we studied

WT:Tbx21-/- mixed bone marrow chimeras. In spleens of both uninfected and infected chimeras, NK

cells were present though they were biased towards WT origin (Figure 6—figure supplement 1A),

consistent with a requirement for Tbet to complete NK cell maturation (Gordon et al., 2012). How-

ever, no ILC1-like cells (Eomes– CD49a+) were found of Tbx21-/- origin in infected WT:Tbx21-/- chi-

meras, as with ILC1s in naive chimeras (Figure 6B). Thus, splenic ILC1-like cells are Tbet-dependent.

In the livers of infected WT:Tbx21-/- chimeras, the picture was more complex. There were no

ILC1s (Eomes– CD49a+) of Tbx21-/- origin in the infected liver, as with infected spleens (Figure 6B).

However, the livers of infected WT:Tbx21-/- chimeras displayed an accumulation of Tbx21-/- Eomes+

CD49a+ cells that were not present in the spleen (Figure 6B). Eomes+ CD49a+ cells were also pres-

ent among counterpart WT cells, though at lower frequencies. These data suggested that ILC1-like

cells in infected mice may be derived from Eomes+ cells, that is, NK cells.

To better assess the heterogeneity induced by T. gondii infection and the role of Tbet in this pro-

cess, we performed single-cell RNA-seq (scRNA-seq) on sorted WT (CD45.1+) or Tbx21-/- (CD45.2+)

NK1.1+ NKp46+ cells from uninfected and d35-infected WT:Tbx21-/- chimeras. We chose to examine

the liver for this analysis for several reasons: 1) infection appears to induce a novel ILC1-like subset

that is common to the liver and spleen; 2) the liver contains ILC1s under steady-state, allowing for

direct comparison of steady-state ILC1s and T. gondii-induced ILC1-like cells; and 3) the infected

liver uniquely contains a Tbx21-/- Eomes+ CD49a+ population. Using t-distributed stochastic neigh-

bor embedding (t-SNE) analysis, we grouped the cells into 17 clusters, C1-C17 (Figure 6C). In the

uninfected WT sample, C1 was the largest cluster, whereas C1 was diminished in the infected WT

and Tbx21-/- samples (Figure 6D,E). C1 cells expressed Eomes and Itgam but did not express Cd27

or Itga1 (Figure 6F,G), consistent with C1 being mature NK cells, which are indeed the predominant

NK1.1+ NKp46+ cells present in the steady-state liver (Figure 6—figure supplement 1B–D). C3 was

the second largest cluster in the uninfected WT sample, and C3 cells did not express Eomes or

Ly6c2, expressed Itga1, Cd27, and Cxcr6, and were absent in Tbx21-/- samples, indicating that C3

comprised ILC1s (Figure 5F,G, Figure 6—figure supplement 1D).

Two closely related clusters, C10 and C11, were unique to the infected WT sample (Figure 6D,E).

Cells in C10 and C11 expressed Itga1, Ly6c2, and Klrg1, and did not express Eomes (Figure 6F,G).

This specificity to infection, Tbet-dependence, and gene expression identified these cells as T. gon-

dii-induced ILC1-like cells. Interestingly, these two clusters indicated heterogeneity even within the

T. gondii-induced ILC1-like population. The t-SNE analysis placed C10 closer to mature NK cells (C1)

and C11 closer to ILC1s (C3). Comparison of C10 and C11 revealed that C10 expressed signature

NK cell genes at higher levels (Robinette et al., 2015), whereas C11 expressed higher levels of sig-

nature ILC1 genes (Figure 6—figure supplement 1E). Interestingly, C10 also highly expressed

Cx3cr1 whereas C11 did not (Figure 6F,G). We corroborated these findings with flow cytometric

analysis that showed that Ly6C+ ILC1-like cells in the infected liver contained both a CX3CR1
+

CXCR6– population that expressed higher levels of Zeb2, mirroring the C10 phenotype, and also a

CX3CR1
– CXCR6+ population that mirrors C11 (Figure 6—figure supplement 1F,G). Furthermore,

C10 expressed lower levels of Il7ra than C3 and C11 (Figure 6F). As IL-7 receptor signaling is

required for ILC1 development but not for NK cells (Klose et al., 2014), this finding is suggestive of

discrete developmental origins of C10 and C11, which we further discuss below. C5 was also

increased in the infected samples, and these cells co-expressed Eomes and Itga1, and were espe-

cially prominent in the infected Tbx21-/- sample (Figure 6E,G), suggesting that this cluster includes

the Eomes+ CD49a+ cells that arose in the liver after infection (Figures 4E and 6B). In summary,

scRNA-seq analysis revealed that T. gondii infection induces heterogeneous NK cell and ILC1 popu-

lations, including two distinct ILC1-like subpopulations that are unique to infected mice.
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Figure 6. T.gondii infection induces heterogeneity of NK cells and ILC1s. (A) Representative flow cytometry plots showing Tbet expression by indicated

cells from spleens of uninfected and d35-infected mice, and gMFI of Tbet expression by each population, n = 3 mice (uninfected) or n = 5 mice

(infected). (B) Representative flow cytometry plots for the CD49a and Eomes expression among CD3– CD19– NK1.1+ NKp46+ cells of CD45.1-derived

(WT) or CD45.2-derived (Tbx21-/-) cells from spleens and livers of uninfected and d35-infected WT:Tbx21-/- bone marrow chimeras, and frequency of

Eomes+ CD49a+ cells from spleen and liver, n = 4 mice (uninfected) or n = 7 mice (infected). In right panel, KO cells indicated by open bars. (C) Biaxial

t-SNE analysis of cells pooled across all samples. Points represent individual cells, colors denote different clusters. (D) Biaxial t-SNE analysis of cells in

Figure 6 continued on next page
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NK cells downregulate Eomes during T. gondii infection
scRNA-seq analysis revealed heterogeneity of NK1.1+ NKp46+ cells and showed that some T. gon-

dii-induced ILC1-like cells have core NK cell traits. To assess if NK cell conversion into ILC1-like cells

might account for this population by means of Eomes downregulation, we examined Ncr1iCre

Eomesf/f (Eomes conditional KO or cKO) mice, in which NK cells are absent owing to their require-

ment for Eomes, as shown by a drastic reduction of NK1.1+ NKp46+ cells (Figure 7—figure supple-

ment 1A). Meanwhile, the number of CD49a+ ILC1s is unaffected while the frequency of these cells

among CD3– CD19– NK1.1+ NKp46+ cells is increased due to the absence of NK cells (Figure 7A,B)

(Gordon et al., 2012; Pikovskaya et al., 2016). Following T. gondii infection, the numbers of

CD49a+ and CD49a+ Ly6C+ cells in the spleen were significantly reduced in Eomes cKO compared

to Eomesf/f controls (Figure 7A,B), showing that expansion of these cells requires Eomes. However,

while the overall number of CD49a+ cells did not change between uninfected and infected Eomes

cKO mice, the number of CD49a+ Ly6C+ cells increased slightly (Figure 7B), and a greater frequency

of the CD49a+ cells expressed Ly6C (Figure 7C), showing that mild ILC1 expansion occurs in the

absence of NK cells (indicated by bracket). However, approximately three times as many CD49a+

Ly6C+ cells were derived from Eomes-dependent cells, that is, NK cells (Figure 7B, indicated by

bracket), suggesting Eomes expression by NK cells contributes to the development of most ILC1-

like cells.

The role of Eomes-expressing NK cells in formation of T. gondii-induced ILC1-like cells could be

either cell-intrinsic or cell-extrinsic. Although an Eomes fate-mapping mouse, that is, EomesCre,

could be used to identify a cell-intrinsic role for Eomes, this was not possible due to the ubiquitous

expression of Eomes during development (data not shown). Another approach would be to examine

Eomes downregulation following adoptive transfer of congenic NK cells prior to infection but this

was hindered due to the inability to find transferred cells after 14 d.p.i. (data not shown), possibly

due to the high turnover of cells during infection. Rather, we used mixed bone marrow chimeras to

examine a cell-intrinsic or cell-extrinsic requirement for Eomes during ILC1-like cell expansion. In

uninfected mixed bone marrow chimeras reconstituted with WT cells and either Eomesf/f or Eomes

cKO cells, the contributions of Eomesf/f and Eomes cKO cells to CD49a+ cells were comparable, con-

sistent with CD49a+ cells being Eomes-independent ILC1s (Figure 7D). This degree of chimerism

did not change upon infection of WT:Eomesf/f chimeras. However, infection of WT:Eomes cKO chi-

meras resulted in a significant reduction of CD49a+ cells of Eomes cKO origin. Although there were

a few CD49a+ ILC1s of Eomes cKO origin, consistent with Eomes-independent ILC1 origin, T. gondii

infection resulted in ILC1-like cells that were mostly dependent on a cell-intrinsic effect of Eomes in

NKp46-expressing cells, that is, NK cells. Therefore most T. gondii-induced ILC1-like cells are ex-NK

cells.

We postulated that STAT4 may play a role in the expansion of ILC1-like cells because STAT4 and

IL-12 signaling is critical for NK cell and ILC1 activation during T. gondii infection (Hunter et al.,

1994; Cai et al., 2000; Klose et al., 2014). To test the relevance of this signaling in vivo, we

infected WT:Stat4-/- mixed bone marrow chimeras. Indeed, STAT4-deficient ILC1-like cells were

diminished following infection, while chimerism of NK cells and ILC1s remained equal between unin-

fected and infected chimeric mice (Figure 7e), suggesting that T. gondii-induced ILC1-like cells were

dependent on STAT4. Additionally, in vitro culture of splenocytes from infected mice resulted in an

increased frequency of ILC1-like cells following culture in IL-2 and IL-12, compared to culture in IL-2

alone (Figure 7—figure supplement 1B), suggesting that IL-12 may contribute to ILC1-like cell

Figure 6 continued

individual samples. (E) Fraction of cells in C1-C17 within each sample. (F) Heatmap of average expression of select genes that are characteristic of C1-

C17. (G) Expression of indicated genes by cells in each sample. Mean + s.e.m. (A,B); one-way ANOVA with Bonferroni correction (A,B); ns not

significant *p�0.05, **p�0.01, ****p�0.0001; data are representative of three independent experiments (A–C).

DOI: https://doi.org/10.7554/eLife.47605.011

The following figure supplement is available for figure 6:

Figure supplement 1. Single-cell RNA-seq reveals extensive NK cell and ILC1 heterogeneity in the liver.

DOI: https://doi.org/10.7554/eLife.47605.012
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expansion. However, culture of purified NK cells from infected mice did not result in Eomes downre-

gulation (Figure 7—figure supplement 1C), showing there may be IL-12 cell-extrinsic effects

involved in this conversion. Notably, T. gondii-induced ILC1-like cells stably maintained their pheno-

type after 2 days in culture (Figure 7—figure supplement 1C). Taken together, these results sug-

gest that STAT4 and IL-12 contribute to ILC1-like cell expansion in the context of T. gondii infection,

with contributions from additional factors as well.

Figure 7. Most ILC1-like cells are derived from NK cells during T.gondii infection. (A) Representative flow cytometry plots for the analysis of ILC1s

(CD3– CD19– NK1.1+ NKp46+ CD49a+) or ILC1-like cells (CD3– CD19– NK1.1+ NKp46+ CD49a+ Ly6C+), and (B) absolute number of these cells in the

spleens of Eomesf/f and Eomes cKO mice that are uninfected and at 35 d.p.i., n = 7 mice (uninfected Eomesf/f), n = 8 mice (infected Eomesf/f), n = 7

mice (uninfected cKO), or n = 9 mice (infected cKO). The increased number of CD49a+ Ly6C+ cells in infected versus uninfected Eomesf/f mice

represent both NK cells and ILC1 origin, whereas in cKO mice, the increased number represents ILC1 origin only, as indicated by the brackets. (C)

Representative flow cytometry plot showing expression of Ly6C and frequency of ILC1s that express Ly6C, n = 7 mice (uninfected Eomesf/f), n = 8 mice

(infected Eomesf/f), n = 7 mice (uninfected cKO), or n = 9 mice (infected cKO). (D) Representative flow cytometry plots for the analysis of chimerism in

the spleens of uninfected and d35-infected WT:Eomesf/f and WT:Eomes cKO bone marrow chimeras, and frequency of ILC1s that are derived from WT,

Eomesf/f, or Eomes cKO bone marrow, n = 4 mice (uninfected) or n = 5 (infected). (E) Representative flow cytometry plots for the analysis of chimerism

in the spleens of uninfected and d35-infected WT:Stat4-/- bone marrow chimeras, and frequency of NK cells and ILC1-like cells that are derived from

WT or Stat4-/- bone marrow, n = 3 mice. Mean + s.e.m. (B–D); one-way ANOVA with Bonferroni correction (B–D); ns not significant *p�0.05, **p�0.01,

****p�0.0001. Data are representative of three independent experiments.

DOI: https://doi.org/10.7554/eLife.47605.013

The following figure supplement is available for figure 7:

Figure supplement 1. IL-12 contributes to Eomes downregulation.

DOI: https://doi.org/10.7554/eLife.47605.014
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Eomes downregulation within NK cells accompanies extensive
transcriptional and epigenomic changes
Our scRNA-seq data suggested that T. gondii infection drastically rewires NK cells and ILC1s to

induce permanent changes. To provide confirmatory evidence, we performed bulk RNA sequencing

(RNA-seq) to inform epigenomic analyses, even though we realize that these approaches lose single

cell resolution. For this analysis, we used splenocytes, sorted into NK cells (Ly6C– CD49a–) from unin-

fected and infected mice, and ILC1-like cells (Ly6C+ CD49a+) from infected mice, which were accu-

rately identified Eomes+ and Eomes– cells, respectively (Figure 8—figure supplement 1A). With

respect to our scRNA-seq analysis, these cells represent Eomes+ (conventional) NK cells from unin-

fected and infected mice, and T. gondii-induced ILC1-like cells (both converted NK cells and Ly6C+

ILC1s), of which most were converted NK cells (Figures 6 and 7B). Principal component analysis and

hierarchical clustering showed a higher degree of similarity between NK cells from uninfected and

infected mice, relative to ILC1-like cells (Figure 8A,B). As expected, Ly6c1, Ly6c2, Itga1, and Eomes

were differentially expressed (Figure 8C). We found extensive differences between NK cells and

ILC1-like cells, including differences in the expression of surface markers, transcription factors,

secreted factors, adhesion molecules, chemokine receptors, and signaling molecules (Figure 8D).

Since NK cells and ILC1s display distinct patterns of chromatin accessibility (Shih et al., 2016),

and infection can induce long-lasting epigenomic changes in NK cells (Lau et al., 2018), we per-

formed the assay for accessibility for transposase-accessible chromatin using sequencing (ATAC-seq)

(Buenrostro et al., 2015) to compare the NK cells and ILC1-like cells present in T. gondii-infected

mice at the epigenomic level. We found widespread chromatin remodeling in ILC1-like cells, which

clustered separately from NK cells (Figure 8E,F). Most differentially accessible regions fell within

intronic and intergenic regions, consistent with categorization as putative enhancers (Figure 8—fig-

ure supplement 1B).

We organized differentially accessible regulatory elements (REs) into a non-redundant peak set

containing six groups (Figure 8—figure supplement 1C,D). Groups 1, 3, and 5 contained REs that

were uniquely more accessible in uninfected NK cells, NK cells from infected mice, and ILC1-like

cells, respectively. Groups 2, 4, and 6 contained REs that were shared between two groups. Group 2

encompassed REs that were more accessible in both NK cell groups relative to ILC1-like cells, and

accounted for the largest fraction of peaks, showing that NK cells from both uninfected and infected

mice share many epigenetic features. Group 4, which contained REs that were more accessible in

both NK cells and ILC1-like cells from infected mice relative to uninfected NK cells, was the second

largest group, suggesting that infection may induce epigenetic changes common to both

populations.

We directly compared the REs in groups 3 and 5 to identify additional differences between NK

cells and ILC1-like cells following infection. Analysis of transcription factor binding motifs revealed

motifs that were significantly enriched in each population, such as NF-kb in group 3, whose motif

was present in 13.2% of REs, and Klf4 in group 5, whose motif was present in 25.8% of REs (Fig-

ure 8—figure supplement 1E). We also identified the specific loci that contained the most differen-

tially accessible REs, and noted that the presence of more accessible REs generally correlated with

greater gene expression. Notably, many of the epigenetic features shared by memory NK cells and

memory CD8+ T cells (Lau et al., 2018) were among the loci that gained accessibility in ILC1-like

cells (Figure 8—figure supplement 1F). Among the differentially accessible regions were the Eomes

and Tbx21 loci, supporting our data above detailing expression changes of these transcription fac-

tors (Figure 8G, Figure 8—figure supplement 1G). Overall, our data suggest that T. gondii induces

the conversion of NK cells into ILC1-like cells in a process that encompasses changes in gene expres-

sion and chromatin accessibility.

Discussion
Infection with T. gondii, a natural mouse pathogen, causes the expansion of a novel ILC1-like sub-

population that stably persists even after acute infection resolves. These ILC1-like cells are heteroge-

neous, due to contributions from both ILC1s and NK cells, though NK cells give rise to most ILC1-

like cells by means of Eomes downregulation. These findings disrupt current notions surrounding NK

cells and ILC1s, which were recently established as discrete ILC lineages (Vivier et al., 2018), and
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Figure 8. Eomes downregulation within NK cells accompanies extensive transcriptional and epigenomic changes. (A) Principal component analysis

using top 2000 most variable genes from RNA-seq analysis comparing NK cells from spleens of uninfected and infected mice and Ly6C+ ILC1s (ILC1-

like cells) from d35-infected mice, each dot represents a sample from different mice, n = 3 mice (NK cells-uninfected) or n = 5 mice (NK cells-infected

and Ly6C+ ILC1-like). Color legend shown applies to all panels. (B) Unsupervised hierarchical clustering of each sample in (A). (C) Volcano plots showing

Figure 8 continued on next page
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exemplify the limitations of categorizing NK cells and ILC1s based solely on their phenotypes under

steady-state conditions.

Previous studies indicated that Eomes downregulation may occur in NK cells within the tumor

microenvironment (Gill et al., 2012; Gao et al., 2017) and in vitro (Cortez et al., 2016). Akin to the

intermediate ILC1s (intILC1s) described within tumors (Gao et al., 2017), we found T. gondii infec-

tion induced Eomes+ CD49a+ NK cells in the liver, which are possibly intermediates between NK

cells and ex-NK cells. However, our findings differ in several significant ways. The tumor studies indi-

cated that Eomes– NK cells were restricted to tumors and emphasized the importance of the micro-

environment (Gao et al., 2017; Gill et al., 2012), concluding that within tumors, Eomes

downregulation transiently silences NK cells to hamper immunosurveillance (Silver and Humbles,

2017). There was no evidence presented that these Eomes– cells can circulate, though they prolifer-

ate when adoptively transferred into lymphocyte-deficient hosts. Moreover, it is not clear if these

cells persist in the absence of tumor. By contrast, T. gondii-induced ILC1-like cells are disseminated

throughout the circulation, retain the ability to produce IFNg, do not produce TNFa, and are main-

tained in the absence of ongoing stimulus.

Our findings further indicate a permanent transformation of T. gondii-induced ILC1-like cells

rather than a transient response to inflammation, a notion that is further bolstered by the observa-

tions that ILC1-like cells possess a unique gene expression profile. Moreover, T. gondii infection

induced epigenetic modifications in NK cells and ILC1-like cells, although our analysis did not specifi-

cally examine each of the different individual NK and ILC1-like subsets we identified by scRNA-seq.

However, these modifications were extensive and could not be readily explained by heterogeneity in

the ILC1-like cells that we discovered by scRNA-seq. Nonetheless, our studies go beyond just the

differences between tumor-induced and T. gondii-induced Eomes downregulation. Our findings indi-

cate that DX5 and CD49a expression to identify NK cells and ILC1s may not always faithfully reflect

Eomes expression, as is the case during early T. gondii infection. Moreover, although there is clear

evidence supporting conversion from NK cells to Eomes– NK cells, such as intILC1s (Gao et al.,

2017), there is a general inability to distinguish between preexisting ILC1s and de novo converted

ILC1s. Indeed, this may explain discrepancies that currently exist within the field, such as the conflict-

ing report that ILC1-like cells confer protection against certain tumors (Dadi et al., 2016). Thus, our

studies suggest that ILC1s may be more heterogeneous than currently thought, as they can arise

from distinct precursors (Vivier et al., 2018).

In T. gondii infection, IL-12 is critical for NK cell activation (Gazzinelli et al., 1993) and our data

suggest that it can have long-lasting effects. This parallels the requirements for development of

memory and memory-like NK cells induced by MCMV and cytokine stimulation (Cooper et al.,

2009; Sun et al., 2012; Romee et al., 2012). In addition to IL-12 dependence, MCMV-induced

memory NK cells and T. gondii-induced ILC1-like cells share Ly6C expression, as well as alterations

in their receptor repertoire, although ILC1-like cells primarily express the inhibitory receptor NKG2A

while MCMV-induced memory NK cells are Ly49H+. Moreover, memory and memory-like NK cells

have few markers that differentiate them from resting NK cells, whereas NK cells converted by T.

gondii infection lose expression of Eomes and gain expression of Ly6C, KLRG1, CX3CR1, and Nrp-1,

Figure 8 continued

Log2(Fold Change) differences versus –Log10(False Discovery Rate) for indicated comparisons, using pooled data from each indicated sample type.

Genes exhibiting Log2FC > 1 and FDR < 0.1 are colored. (D) Heatmaps showing centered DESeq2 variance-stabilized expression values of select genes

exhibiting Log2FC > 1 and FDR < 0.1, n = 3 mice (NK cells-uninfected) or n = 5 mice (NK cells-infected and Ly6C+ ILC1-like). Each column represents a

different mouse sample of a given cell type, indicated by color code shown in (A). (E) Principal component analysis from ATAC-seq analysis comparing

NK cells from spleens of uninfected and infected mice and Ly6C+ ILC1s (ILC1-like cells) from d35-infected mice, n = 3 mice. (F) Unsupervised

hierarchical clustering of samples in (E). (G) Representative UCSC genome browser tracks showing ATAC-seq peaks in NK cells from uninfected mice,

and NK cells and Ly6C+ ILC1s from d35-infected mice, at the Eomes locus. Differentially accessible REs are highlighted in blue.

DOI: https://doi.org/10.7554/eLife.47605.015

The following figure supplement is available for figure 8:

Figure supplement 1. ATAC-seq analysis reveals widespread changes in chromatin accessibility in T.

DOI: https://doi.org/10.7554/eLife.47605.016
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with scRNA-seq revealing global transcriptional differences that identify them as a discrete

subpopulation.

The persistence of ILC1-like cells after clearance of infection is reminiscent of classical immune

memory and suggests that ex-NK cells play a role beyond what has been attributed to NK cells and

ILC1s in T. gondii infection thus far. One possibility is that ILC1-like cells are an inflammatory sub-

population, such as the inflammatory ILC2s that gain circulatory capacity in response to activation by

cytokines or infection (Huang et al., 2018). These inflammatory ILC2s can be distinguished from tis-

sue-resident ILC2s based on their increased expression of KLRG1 and S1P receptors, features that

are also characteristic of T. gondii-induced ILC1-like cells, but not steady-state tissue-resident NK

cells. Most ILC1-like cells express CX3CR1, which has previously been shown to regulate NK cell

recruitment into the circulation (Ponzetta et al., 2013; Sciume et al., 2011). Another possibility is

that ILC1-like cells may provide a protective role in subsequent T. gondii infections, as shown previ-

ously (Denkers et al., 1993), although this finding remains controversial (Goldszmid et al., 2007).

Moreover, we have not been able to show that repeated injection of an avirulent T. gondii strain

confers NK1.1-dependent protection against subsequent lethal re-challenge. Regardless, we have

observed ILC1-like cell expansion following repeated exposure to avirulent T. gondii strains, and

future studies may illuminate how gaining circulatory capacity affects the functionality of ILC1-like

cells, and how these cells may contribute to subsequent immune responses to T. gondii.

In summary, we found that T. gondii infection induced permanent changes to NK cells and ILC1s,

including conversion of NK cells into ILC1-like cells. Our studies indicate that the current system of

ILC classification, based on their phenotype and development under steady state conditions, may

not apply following inflammation. Rather, plasticity may give rise to populations that resemble one

another at first glance, but actually represent the convergence of multiple developmental paths to

form interrelated populations.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

D-Luciferin,
Potassium Salt

Gold Biotechnology Cat#LUCK-1G;
CAS 115144-35-9

Chemical
compound, drug

Sulfadiazine Sigma Cat#S8626-25G

Chemical
compound, drug

Uracil Sigma Cat#U1128

Chemical
compound, drug

Percoll Sigma Cat#P1644

Chemical
compound, drug

Recombinant
murine IL-12

Pepro Tech Cat#210–12

Chemical
compound, drug

Recombinant
mouse IL-18

MBL Cat#B002-5

Chemical
compound, drug

Recombinant
murine IL-15

Peptro Tech Cat#210–15

Chemical
compound, drug

DNase I Sigma Cat#10104159001

Chemical
compound, drug

Collagenase Type IV Sigma Cat#C5138-100mg

Commercial
assay or kit

Foxp3/Transcription
Factor Staining
Buffer Set

eBioscience Cat#00-5523-00

Commercial
assay or kit

EasySep Magnet BD Biosciences Cat#1800

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay or kit

EasySep Mouse
Streptavidin
Rapidspheres
Isolation Kit

BD Biosciences Cat#19860

Commercial
assay or kit

Nextera Index Kit Illumina Cat#FC-121–1011

Commercial
assay or kit

SMARTer PCR
cDNA Synthesis Kit

Clontech Cat#634926

Genetic reagent
(Homo sapiens)

Human: HFF John C. Boothroyd

Cell line (Rattus
norvegicus,
Mus musculus)

2.4G2 hybridoma ATCC ATCC HB-197

Cell line (Rattus
norvegicus,
Mus musculus)

PK136 hybridoma ATCC ATCC HB-191

Genetic reagent
(Mus musculus)

wild-type; C57BL/6NCr Charles River Cat#556

Genetic reagent
(Mus musculus)

CD45.1+;

B6.SJL-PtprcaPepcb/BoyCrCrl
Charles River Cat#564

Genetic reagent
(Mus musculus)

Balb/c; BALB/cAnNCr Charles River Cat#555

Genetic reagent
(Mus musculus)

NKp46iCre;
Ncr1tm1.1(icre)Viv/J

Eric Vivier MGI:5308410

Genetic reagent
(Mus musculus)

Eomesf/f;
B6.129S1(Cg)-
Eomestm1.1Bflu/J

The Jackson Laboratory MGI:4830338,
Cat#017293

Genetic reagent
(Mus musculus)

Stat4-/-;
C.129S2-Stat4tm1Gru/J

The Jackson Laboratory MGI: 1857248,
Cat#002826

Genetic reagent
(Mus musculus)

Tbx21-/-; B129.
S6-Tbx21tm1Glm/J

The Jackson Laboratory MGI: 2180194,
Cat#004648

Genetic reagent
(Mus musculus)

Tgfbr2f/f; B6;129-
Tgfbr22tm1Karl/J

The Jackson Laboratory Cat#012603,
MGI: 98729

Genetic reagent
(Mus musculus)

Zeb2-GFP;
Zfhxlbtm2.1Yhi

Kenneth Murphy

Genetic reagent
(Toxoplasma gondii)

Prugniaud; Pru;
PRU-FLuc-GFP

John C. Boothroyd

Genetic reagent
(Toxoplasma gondii)

WT T. gondii;
PruDku80 Dhx

L. David Sibley

Genetic reagent
(Toxoplasma gondii)

Dgra4 T. gondii;
PruDku80 Dhx
Dgra4::HX/mcherry

L David Sibley

Software,
algorithm

Flowjo 10 Treestar https://www.flowjo.com/ ;
RRID: SCR_008520

Software,
algorithm

Prism 7 Graphpad https://www.graphpad.com/ ;
RRID: SCR_002798

Software,
algorithm

Bowtie2
version 2.4.3.2b

Langmead and
Salzberg, 2012

http://bowtie-bio.sourceforge.
net/bowtie2/manual.shtml

Software,
algorithm

Samtools
version 1.4

Li et al., 2009 http://samtools.
sourceforge.net/

Software,
algorithm

Picard Tools
version 2.18.14

Broad Institute http://broadinstitute.
github.io/picard/

Software,
algorithm

BEDTools
version 2.27.0

Quinlan and Hall, 2010 https://bedtools.
readthedocs.io/en/latest/

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

MACS2 version 2.1.0 Zhang et al., 2008 https://github.
com/taoliu/MACS

Software,
algorithm

deepTools version 3.1.2 Ramı́rez et al., 2014 https://deeptools.
readthedocs.io/en/develop/

Software,
algorithm

Homer version 4.10 Heinz et al., 2010 http://homer.ucsd.
edu/homer/

Software,
algorithm

RStudio version 3.5.1 R Core Team 2014 https://www.r-project.org/

Software,
algorithm

Bioconductor
package DESeq2
version 1.21.22

Love et al., 2014 http://bioconductor.org/
packages/release/bioc/
html/DESeq2.html

Software,
algorithm

Kallisto version 0.44.0 Bray et al., 2016 https://pachterlab.github.io/
kallisto/download

Software,
algorithm

GSEA Mootha et al., 2003;
Subramanian et al., 2005

http://software.broadinstitute.
org/gsea/index.jsp

Software,
algorithm

Seurat Butler et al., 2018 https://cran.r-project.org/web/packages/
Seurat/index.html

Mice
Eomesf/f, Tbx21-/-, and Stat4-/- were purchased from The Jackson Laboratory. C57BL/6, CD45.1+,

and BALB/c mice were purchased from Charles River. Ncr1iCre mice were a kind gift from Eric Vivier.

Zeb2-GFP mice were a generous gift from Kenneth Murphy (Wu et al., 2016). Eomes-GFP mice

were graciously provided by Thierry Walzer (Daussy et al., 2014). Ncr1iCre were bred to Eomesf/f

mice to generate Eomes cKO mice and Cre-negative littermate controls. Rag2-/- were bred to Il2rg-/-

to generate Rag2-/-Il2 rg-/- mice. Age and sex-matched animals were used in all experiments. Mice

were infected at 6–12 wk of age. All protocols were approved by the Institutional Animal Care and

Uses Committee (Washington University School of Medicine, St. Louis, MO) under animal protocol

number 20160002.

Parasites
PRU-FLuc-GFP Type II strain of T. gondii was a generous gift from John C. Boothroyd and used in all

infections unless otherwise specified. PruDku80DhxDgra4::HX/mCherry and the wildtype parental

strain PruDku80Dhx were previously described (Jones et al., 2017). The attenuated Cps1-1 mutant

on the type I RH background was described previously (Fox and Bzik, 2002).

All T. gondii strains used in this study were maintained in human foreskin fibroblast (HFF) mono-

layers grown in D-10 medium (Dulbecco’s modified Eagle medium, 10% fetal bovine serum (FBS), 2

mM glutamine, 10 mM HEPES pH 7.5, 20 mg/mL gentamicin), maintained at 37˚C with 5% CO2. The

Cps1-1 mutant was grown as described above but supplemented with 200 mM uracil (Sigma). Mature

parasites were lysed from host cells by vigorous pipetting and egressed parasites were filtered

through 3 mm polycarbonate membranes and resuspended in HHE medium (Hanks’ balanced salt

solution, 10 mM HEPES, 0.1 mM EGTA). Cell cultures were determined to be mycoplasma-negative

using the e-Myco plus kit (Intron Biotechnology).

Infection
Mice were injected intraperitoneally (i.p.) with 200 PRU-FLuc-GFP, PruDku80Dhx, or

PruDku80DhxDgra4::HX/mCherry tachyzoites that were propagated in culture as described above. In

indicated experiments, mice were treated with 0.5 g/L sulfadiazine in drinking water to suppress par-

asite growth. To generate non-persistent infections, 1 � 105 Cps1-1 tachyzoites were injected three

times, 2 weeks apart.
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Luciferase imaging
Mice were injected i.p. with 150 mg D-luciferin (Gold Biotechnology) per kg body weight, incubated

for 10 min, then anesthetized with continuous isoflurane anesthesia at a flow rate of 1 L/min. Images

were captured using an IVIS Spectrum In Vivo Imaging System (Perkin Elmer). Luminescence was

quantitated using Living Image software (Perkin Elmer). NK1.1-depleted mice and control mice were

injected i.p. with 100 mg of anti-NK1.1 or isotype control antibody 3 days and 1 day prior to infec-

tion. Purified anti-NK1.1 antibody and isotype control were generated at the Rheumatic Diseases

Core Center Protein Purification and Production Facility using the PK136 hybridoma (ATCC) and

MAR 18.5 hybridoma (ATCC), respectively.

Cell isolation
Spleens were mashed through a 70 mm cell strainer and treated with Tris-NH4Cl to lyse red blood

cells. Livers were mashed through a 70 mm cell strainer, resuspended in isotonic 38.5% Percoll

(Sigma- Aldrich), centrifugated at 325 x g for 20 min, and treated with Tris-NH4Cl. Peritoneal cells

were isolated by lavage of the peritoneal cavity with PBS. Bone marrow was flushed from femurs

and tibias, mashed through a 70 mm cell strainer, and treated with Tris-NH4Cl. Lymph nodes were

mashed through a 70 mm cell strainer. Brains were mashed through a 70 mm cell strainer, resus-

pended in 38.5% isotonic Percoll, and centrifugated at 325 x g for 20 min. Lungs were perfused with

PBS, minced, digested in RPMI-1640 containing 2% FBS, 1 mg/mL Collagenase Type IV (Sigma-

Aldrich), and 0.2 mg/mL DNase (Sigma-Aldrich), mashed through a 70 mm cell strainer, resuspended

in 38.5% isotonic Percoll, and centrifugated at 325 x g for 20 min. Uterus and salivary gland were

minced, digested in RPMI-1640 containing 0.17 mg/mL Liberase TL (Sigma-Aldrich) and 0.1 mg/mL

DNase (Roche), mashed through a 70 mm cell strainer, resuspended in 38.5% isotonic Percoll, and

centrifugated at 325 x g for 20 min.

Flow cytometry and cell sorting
Cells were stained with Fixable Viability Dye and Fc receptors were blocked with 2.4G2 hybridoma

(ATCC) culture supernatants prior to staining in PBS containing 2% FBS and 2.5 mM EDTA on ice.

Data was acquired using a FACSCanto instrument (BD Biosciences) or FACSAria instrument (BD Bio-

sciences) using FACSDiva software (BD Biosciences). Data was analyzed with Flowjo v10 (Treestar).

For cell sorting, splenocytes were enriched for NK1.1+ NKp46+ cells by negative selection. Sple-

nocytes were incubated with 0.2 mg/mL biotin mouse CD4, 0.2 mg/mL biotin anti-mouse CD8, and 1

mg/mL biotin anti-mouse CD19. One hundred mL of EasySep Mouse Streptavidin Rapidspheres (BD

Biosciences) were added per 1 � 108 splenocytes. Cells were placed in an EasySep magnet (BD Bio-

sciences) and enriched cells were poured off and subjected to extracellular staining. Sorting was per-

formed using a FACSAria instrument (BD Biosciences) using FACSDiva software (BD Biosciences).

NK cells were identified as CD3– CD19– NK1.1+ NKp46+ Eomes-GFP+ CD49a– and T. gondii-induced

ILC1-like cells were identified as CD3– CD19– NK1.1+ NKp46+ Eomes-GFP– CD49a+.

Stimulations and intracellular staining
Following extracellular staining, cells were fixed with FoxP3/Transcription Factor Staining Buffer Set

for 30 min at room temperature and washed with 1x Permeabilization buffer (eBiosciences). Tran-

scription factor antibodies were diluted in 1x FoxP3 permeabilization buffer and cells were incubated

for 30 min at room temperature.

To assess Eomes downregulation after culture in IL-12, 5 � 106 splenocytes were cultured in R-10

medium (RPMI-1640 medium containing 10% FBS, 2 mM glutamine, 100 U/mL penicillin, and 100

mg/mL streptomycin) with 300 IU/mL IL-2 with 20 ng/mL IL-12 (Pepro Tech). Unstimulated control

wells contained only 300 IU/mL IL-2.

For detection of IFNg production, 5 � 106 splenocytes were cultured for 5 hr in R-10, with the

addition of 20 ng/mL IL-12, 20 ng/mL IL-12 + 5 ng/mL IL-18, or 0.5 mg/mL PMA + 4 mg/mL Ionomy-

cin. Brefeldin A was added after 1 hr.

Generation of bone marrow chimeras
Donor bone marrow was harvested by flushing femurs and tibias and mashing through a 70 mm cell

strainer. Cells were mixed in a 1:1 ratio with CD45.1+ bone marrow, and intravenously injected into
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irradiated mice. Recipient mice were lethally irradiated (900 rad) and reconstituted with a 1:1 ratio of

CD45.1+ bone marrow cells and CD45.2+ Eomes cKO, Eomesf/f, Tbx21-/-, or Stat4-/- bone marrow

cells (Kaplan et al., 1996; Zhu et al., 2010; Finotto et al., 2002). Mice were maintained on sulfa-

methoxazole/trimethoprim oral suspension added to the drinking water for 2 weeks after reconstitu-

tion and used for experiments 6–8 weeks after reconstitution. To prevent chimeric mice from

succumbing to acute T. gondii infection, bone marrow chimeras were treated with 0.5 g/L sulfadia-

zine in drinking water beginning 10 d.p.i. and maintained on sulfadiazine until the end of the

experiment.

Single-cell RNA-Seq
Sorted cells were subjected to droplet-based 3’ end massively parallel single-cell RNA sequencing

using Chromium Single Cell 3’ Reagent Kits as per manufacturer’s instructions (10x Genomics). The

libraries were sequenced using a HiSeq3000 instrument (Illumina).

Sample demultiplexing, barcode processing, and single-cell 3’ counting was performed using the

Cell Ranger Single-Cell Software Suite (10x Genomics). Cellranger count was used to align samples

to the mm10 reference genome, quantify reads, and filter reads with a quality score below 30.

The Seurat package in R was used for subsequent analysis (Butler et al., 2018). Genes expressed

in fewer than 3 cells and cells that expressed less than 400 or greater than 3500 genes were

removed for downstream analysis. Data was normalized using a scaling factor of 10,000 s and nUMI

was regressed with a negative binomial model. Principal component analysis was performed using

the top 3000 most variable genes and t-SNE analysis was performed with the top 40 PCAs. Cluster-

ing was performed using a resolution of 0.8. For heatmaps, the mean expression by all cells within

the cluster was used.

RNA sequencing
RNA was isolated from 5 � 104 sorted cells using Trizol. Libraries were prepared using the Clontech

SMARTer Kit. Sequencing was performed using 1 � 50 single-end reads with a HiSeq3000 instru-

ment (Illumina). Reads were quantified using kallisto and differential expression was assessed using

the DESeq2 package in R (Bray et al., 2016; Love et al., 2014). Using a log2FC cutoff of 1 and an

FDR threshold of 0.1, we identified 657 differentially expressed (DE) genes between the NK cells

from uninfected and d35-infected mice, 2288 DE genes between NK cells from infected mice and T.

gondii-induced ILC1-like cells, and 1685 DE genes between NK cells from uninfected mice and T.

gondii-induced ILC1-like cells. Variance-stabilized transform values were used for subsequent analy-

sis. All plots were generated in R using the ggplot2, pheatmap, and hclust packages. GSEA was per-

formed using the GSEA Preranked module in GenePattern (Subramanian et al., 2005;

Mootha et al., 2003; Reich et al., 2006).

ATAC-seq
Samples were prepared as previously described (Buenrostro et al., 2015), then purified with MinE-

lute spin columns (Qiagen). DNA fragments were amplified using Nextera index adapters as per

manufacturer’s instructions (Illumina). Libraries were purified with AMPure XP beads (Beckman Coul-

ter). Three libraries were pooled and sequenced with 2 � 50 paired end reads using a HiSeq3000

instrument (Illumina).

Sequences were aligned to the mm10 reference genome using Bowtie2 (Langmead and Salz-

berg, 2012). Reads with a quality score below 30 were removed with Samtools (Li et al., 2009) and

duplicate reads were filtered with PicardTools (Broad Institute). Peaks were called using MACS2

(Zhang et al., 2008) with an FDR cutoff of 0.05. Narrowpeak files generated from MACS2 were con-

verted to Bigwig files with deepTools (Ramı́rez et al., 2014), and visualized using the UCSC genome

browser. Differential peaks were identified using Homer (Heinz et al., 2010) with a Log2FC > 1 and

an FDR cutoff of 0.05. Heatmaps of differentially accessible regions were generated with deepTools.

Transcription factor binding motifs were identified de novo with Homer.

Across all samples, we identified 71,504 peaks. We further analyzed 9640 discrete peaks that dis-

played two-fold changes between at least two groups. Between NK cells from control and infected

mice, there were 1809 differential peaks (1445 were larger in the NK cells from infected mice and

364 were larger in NK cells from uninfected mice), between NK cells from infected mice and T.
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gondii-induced ILC1-like cells, there were 6710 differential peaks (4572 were larger in the NK cells

and 2138 were larger in T. gondii-induced ILC1-like cells), and between NK cells from uninfected

mice and T. gondii-induced ILC1-like cells, there were 5938 differential peaks (3065 were larger in

the uninfected NK cells and 2973 were larger in T. gondii-induced ILC1-like cells).

Statistical analysis
Prism (GraphPad) was used for statistical analysis. Student’s t-test was used for comparison of two

groups and two-way ANOVA with Bonferroni correction was used in analyses involving multiple com-

parisons. p-Values are shown in figures and figure legends. In all graphs, points represent biological

replicates, bar position represents the mean, and error bars represent + s.e.m.
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Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D,
Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A. 2014.
Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell
157:340–356. DOI: https://doi.org/10.1016/j.cell.2014.03.030, PMID: 24725403

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9:357–359.
DOI: https://doi.org/10.1038/nmeth.1923, PMID: 22388286

Lau CM, Adams NM, Geary CD, Weizman O-E, Rapp M, Pritykin Y, Leslie CS, Sun JC. 2018. Epigenetic control of
innate and adaptive immune memory. Nature Immunology 19:963–972. DOI: https://doi.org/10.1038/s41590-
018-0176-1

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Montoya JG, Liesenfeld O. 2004. Toxoplasmosis. The Lancet 363:1965–1976. DOI: https://doi.org/10.1016/
S0140-6736(04)16412-X

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle
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