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Simple Summary: Rapid population growth and urbanization, continued economic growth, shifts in
dietary patterns towards more animal source foods are major challenges that sub-Saharan Africa is
currently facing. These challenges exert a high demand on agricultural production. Insect species
such as the black soldier fly (Hermetia illucens) have been identified as potential alternatives for the
traditional protein sources used in livestock feed due to their rich nutrient content and the fact that
they can be reared on organic side streams. However, black soldier fly larvae are very sensitive to
external environments such as temperature and rearing medium. Currently, little is known about the
combined influence of temperature and organic waste streams that are readily available in the urban
environments of sub-Saharan Africa. Therefore, the aim of this study was to investigate the influence
of temperature and organic waste streams on the development of black soldier fly larvae reared on
two different organic substrates, i.e., brewers’ spent grain and cow dung. The results show that black
soldier fly larvae reared on brewers’ spent grain were more efficient and tolerated a wider range of
temperatures in comparison with those reared on cow dung.

Abstract: In sub-Saharan Africa, urban populations are projected to increase by 115% in the coming
15 years. In addition, economic growth and dietary shifts towards animal source foods have put
high pressure and demand on agricultural production. The high ecological footprint of meat and
dairy production, as well as high feed costs, prevent the livestock sector from meeting the increasing
demand in a sustainable manner. Insects such as the black soldier fly (BSF) have been identified
as potential alternatives to the conventionally used protein sources in livestock feed due to their
rich nutrient content and the fact that they can be reared on organic side streams. Substrates
derived from organic byproducts are suitable for industrial large-scale production of insect meal.
Although efficient in waste management and in feed production, BSF larvae are very sensitive to
the external environment such as temperature and rearing medium. Therefore, we studied the
effect of temperature and substrate type, i.e., brewers’ spent grain (SG) and cow dung (CD), on the
development and survival of BSF larvae. Both organic substrates were readily available in Nairobi,
Kenya, the location of the experiments. In our experiment, 100 3–5-day-old BSF larvae were placed
into containers that contained either SG or CD and further treated at temperatures of 15 ◦C, 20 ◦C,
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25 ◦C, 30 ◦C, and 35 ◦C. The duration of larval development was recorded, and the prepupae were
removed, weighed, and placed individually in separate, labeled, 35-mL plastic cups filled with
moist sawdust. After emergence, 10 2-day-old adults (5 males and 5 females) from every replica
per substrate were transferred into a cage (40 × 40 × 40 cm) and allowed to mate for 24 h at their
respective temperatures. The laid egg batches were collected and counted, and the adult flies’
longevity was recorded. The data were subjected to a two-way analysis of variance (ANOVA) using
the general linear model procedure. BSF larvae reared on SG developed faster than those reared on
CD; the former also favored higher temperatures for their larval development and emergence into
adults. The optimum range was 25–30 ◦C. With increasing temperatures, the longevity of adult BSF
decreased, while the fecundity of females increased. Thus, it is possible to take advantage of the
readily available SG waste streams in the urban environments of Kenya to produce BSF larvae-derived
livestock feed within a short duration of time and at relatively high temperatures.

Keywords: organic waste bioconversion; black soldier fly (BSF); rearing temperature; development;
growth; longevity; fecundity

1. Introduction

In 2014, 54% of the world’s population resided in urban areas, while in 1950, this number only
constituted 30%; by 2050, two-thirds of the world’s population will live in urban areas [1]. In particular,
urban populations in sub-Saharan Africa (SSA) are projected to increase by 115% from today’s figures,
from 170 to 360 million, in the next 15 years [1]. As a result, it has been estimated that the global
food supply will need to increase by 60% in order to meet the demand of the global population,
which is expected to reach 10 billion people by 2050 [2]. Rapid urbanization and the growing human
population are coupled with continued economic growth, as well as shifts in dietary preferences
towards favoring more animal source foods (ASFs) [3–6]. Therefore, it is not surprising that both the
production and consumption of ASFs in the developing world are forecasted to increase sharply [2].
However, this increase represents a major challenge due to the high ecological footprint associated
with the production of meat and dairy products [7–11]. In addition, the level of productivity of many
agricultural systems in the developing world is still quite low in terms of the efficiency of land and
water resource use [12]. On the other hand, the level of malnutrition associated with insufficient
protein consumption in developing countries is still very high [13–17]. Moreover, the costs of livestock
production, such as poultry farming, in the developing world are increasing mainly because of the
high feed costs, now more than 70% of the production costs [18–20]. The use of food ingredients
in livestock feed production that are also directly consumed by humans, such as fish and soybean,
create a food–feed competition, leading to further increases in ingredient costs and consequently to
higher feed costs [19]. Moreover, the massive expansion of soybean cultivation has put pressure on
land availability, especially in the tropics, often leading to deforestation and other negative effects
for the environment [21]. Therefore, access to affordable feed is significant for more profitable and
affordable poultry production.

The current combination of inefficient production and unsustainable consumption patterns
points to the need to adopt cost effective production systems, in which alternative protein sources
for animal feed with lower ecological footprints are used in order to achieve more sustainable
agricultural production and improved food security while safeguarding the already fragile ecosystems
and natural resources in the developing world [22,23]. Mass-produced insects have emerged as
some of the promising alternatives, as some species can be reared on various types of organic
waste, including poultry, pig, and cattle manure, as well as on coffee bean pulp, vegetable residues,
catering waste, municipal organic waste, straw, dried distillers’ grains with solubles (DDGS), and fish
offal [24–27]. Among the insect species identified as alternative ingredients for animal feed are
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the black soldier fly (BSF) Hermetia illucens L. (Diptera: Stratiomyidae), the common house fly
Musca domestica L. (Diptera: Muscidae), and the yellow mealworm Tenebrio molitor L. (Coleoptera:
Tenebrionidae) [28–31]. In addition, insects contain high amounts of energy, fatty acids, micronutrients,
and especially proteins [32–34]. For instance, BSF larvae, which have been used as an accepted feed
ingredient for poultry, pigs, and a number of fish and shrimp species, contain about 35–49% crude
protein (CP) and 29–35% fat and have an amino acid pattern comparable to fishmeal [35–38].

Insects are known to inhabit a wide variety of environments, including extreme ones, due to their
adaptive behavioral and physiological mechanisms [39]. However, these tolerance mechanisms are
not well understood [39]. Moreover, insects, along with other ectotherms, depend largely on ambient
temperatures to regulate their metabolism and development rates [40]. Forecast modeling suggests
that due to climate change, insects inhabiting more temperature-versatile geographic regions will
survive elevated temperatures, while those inhabiting regions where little temperature variances occur
will experience a decline in their populations as global warming proceeds [41,42]. BSF, originally traced
back to the Americas, is currently known to be found in tropical, as well as temperate, regions across
the globe [34]. Various studies have looked into the effects of different diets on laboratory-reared
BSF [34,43–46], as well as the influence of temperature on the development and survival of BSF larvae
using laboratory-prepared diets [47]. Other studies have investigated the influence of organic waste
streams as rearing substrates on the development and survival of BSF larvae [25,48–50]. Yet, most of
these studies were carried out with the aim of understanding and developing BSF larvae large-scale
production systems in the developed world, where indoor climate-controlled facilities can be easily
established. However, to the best of our knowledge, no study so far has investigated the combined
influence of urban organic waste stream-based diets and temperature on the development and survival
of BSF in the developing world context.

Therefore, this study sought to investigate the influence of temperature on selected life-history
traits of BSF reared on two different and readily available urban organic waste streams in the urban
environment of a large city in SSA. This comparison allowed us to determine which of the two organic
waste streams performs best, as well as the accompanying optimum temperatures. Information from
this study is important for improving rearing methods in SSA, as well as for creating cost-effective and
environmentally sustainable alternative livestock feeds that can buffer the impact of climate change,
especially for small-scale livestock producers who are not connected to international feed markets
and local feed producers who can neither afford nor implement sophisticated climate-controlled
production facilities.

2. Materials and Methods

2.1. Study Location

The study was carried in the laboratories of the International Centre for Insect Physiology and
Ecology (icipe), in Nairobi, Kenya.

2.2. Preparation of Substrates

The tested substrates, cow dung (CD) and brewers’ spent grain (SG), were both sourced locally.
Fresh CD was collected from Farmers Choice slaughterhouse in Kahawa West in Nairobi; the bovines
originated from different ranches in Kenya where they had been raised on natural grassland. SG was
sourced from Tusker House, Kenya Breweries Ltd. off Thika Road in Nairobi after the fermentation
of the barley in the beer production process. The substrates were chosen based on their availability
in Nairobi with a view of their potential future use for large-scale industrial BSF larvae production.
Fresh CD and SG substrates were oven dried at 60 ◦C for 48 h and then stored for subsequent
experiments in a refrigerator at −20 ◦C.
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2.3. Stock Colony

The stock population of BSF populations was maintained at the insectary in icipe. Adult BSF
were housed in an outdoor, metal-framed cage with 1.5 mm screen mesh (1.8 × 1.8 × 1.8 m) with
direct access to daylight to encourage mating. The flies were supplied with water to prolong their life.
Corrugated cardboard and some SG were placed within the cage to attract adult females for oviposition.
The colony was maintained in the insectary for over 8 generations before use in this experiment.

2.4. Experimental Set-Up

First, 10 batches of eggs were collected from the stock colony and placed into smaller containers
(15 × 9.4 cm) containing an oviposition substrate of moist-to-liquefied SG (100 g). Each setup was
closely monitored 3 times a day to ensure egg hatching. After hatching, 100 3–5-day-old larval instars
were transferred into different, clear, plastic, 500-mL containers with the 2 test substrates, CD and
SG. Each container contained 100 g of the test substrate, which was mixed with water to achieve a
moisture content of 70% by weight [51]. The experiment was conducted in incubators (MIR-554-PE,
Sanyo/Panasonic cooled incubators, Osaka, Japan) with air humidity of 70% and a photoperiod of 12L:
12D. Each substrate was subjected to different temperature treatments of 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C,
and 35 ◦C. Each substrate–temperature treatment was replicated 5 times and was aerated daily to
ensure that the substrate was thoroughly turned and well moisturized.

Each treatment was monitored daily, and the duration of the larval development was recorded.
The recording of larval development stopped when all the larvae reached the prepupal stage.
The prepupae were removed, weighed, and placed individually in separate, labeled, 35-mL plastic
cups filled with moist sawdust. Each cup with the prepupae was covered with a breathable lid and
returned to its respective temperature regime for daily monitoring and subsequently recorded for
the numbers of puparia formed. Further, adult emergence was monitored daily. Upon emergence,
10 2-day-old adults (5 males and 5 females) from every replicate per substrate–temperature treatment
were transferred into a cage (40 × 40 × 40 cm) and allowed to mate for 24 h at their respective
temperatures. Thereafter, an oviposition device with a small bowl of moist chicken manure and
2–3 cardboards were placed in each cage to provide sites for oviposition. A 10% sugar solution in water
was provided daily in a vial through a filter paper inserted into the vial’s lid. The laid egg batches
were recorded, and the numbers of eggs per batch were counted under a microscope. The adult flies’
longevity was recorded daily until all the caged flies were dead.

2.5. Statistical Analysis

R Statistics (version R 3.3.3, R Foundation for statistical computing, Vienna, Australia) and
Stata Statistical Software (Release 15.1, StataCorp, College Station, TX, USA) were used for analyses.
The collected data were subjected to Levene’s test for normality, followed by a two-way analysis of
variance (ANOVA) using the general linear model (GLM) procedure. Where significant differences
existed, Tukey Honest Significant Difference (HSD) or Least Significant Difference (LSD) post hoc was
used to separate the means at the p < 0.05 level. For temperature-driven models, a parametrized square
function [52] was fitted to the developmental time stage-specific data of the insect. The linear model
expressed below evaluated the relationship between BSF developmental times and temperatures [51]:

y = a(x − b)2 + c (1)

where b is the temperature for the minimum development time and c is the minimum
development time.
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3. Results

3.1. Development of BSF Larvae

Both temperature and substrate type significantly influenced BSF larval development, with the
SG-fed BSF larvae needing significantly less time to reach prepupal stage in the temperature treatments
tested. The time needed for larval development decreased gradually with the increasing temperatures
and was the shortest at 30 ◦C for the SG-fed larvae and 35 ◦C for the CD-fed larvae (Table 1). The CD-fed
BSF needed 24%, 63%, 64%, and 65% less time at 20 ◦C, 25 ◦C, 30 ◦C, and 35 ◦C, respectively,
in comparison with the time needed at 15 ◦C. Similarly, the SG-fed BSF needed 53%, 84%, 88%,
and 86% less time at 20 ◦C, 25 ◦C, 30 ◦C, and 35 ◦C, respectively, in comparison with the time needed
at 15 ◦C.

Table 1. Mean (±SD) duration of development (in days) of black soldier fly larvae reared on two
different organic substrates at five different temperature regimes.

Temperature (◦C) CD-fed BSF SG-fed BSF

15 238.800 ± 0.450 aA 206.200 ± 5.020 bA
20 180.400 ± 32.810 aA 96.300 ± 1.510 bB
25 86.800 ± 2.170 aB 32.800 ± 2.060 bC
30 85.200 ± 3.960 aB 24.700 ± 3.590 bC
35 83.400 ± 4.040 aB 29.600 ± 1.400 bC

Means (n = 5) in the same row followed by different lowercase letters and in the same column by different uppercase
letters are significantly different at p < 0.05; BSF, black soldier fly; CD, cow dung; SG, spent grain.

Prepupal weight was significantly influenced by both temperature and substrate type, with the
SG-fed BSF larvae weighing more than those fed with CD. Prepupal weights increased with the
increasing temperatures, with the prepupae reared on CD substrate weighing the most at 30 ◦C,
while those reared on SG were heaviest when reared at 25 ◦C and 30 ◦C (Table 2). At their heaviest
(30 ◦C), the weight of the CD-fed prepupae increased by 33%, while that of the SG-fed prepupae
increased by 20% in comparison with their lightest weight (15 ◦C). On the other hand, the weight of
the SG-fed prepupae was 51%, 38%, and 46% greater than that of the CD-fed prepupae at 15 ◦C, 30 ◦C,
and 35 ◦C, respectively.

Table 2. Mean (±SD) prepupal weight (in grams) of black soldier fly reared on two different organic
substrates at five different temperature regimes.

Temperature (◦C) CD fed BSF SG fed BSF

15 0.076 ± 0.005 aB 0.128 ± 0.004 bB
20 0.082 ± 0.004 aB 0.132 ± 0.010 bB
25 0.088 ± 0.004 aB 0.153 ±0.013 bA
30 0.106 ± 0.027 aA 0.156 ± 0.011 bA
35 0.086 ± 0.005 aB 0.137 ± 0.013 bB

Means (n = 5) in the same row followed by different lowercase letters and in the same column by different uppercase
letters are significantly different at p < 0.05; BSF, black soldier fly; CD, cow dung; SG, spent grain.

3.2. Development of BSF Pupae

Pupal developmental time differed significantly across different temperatures for BSF pupae
previously reared on both substrates. The pupal developmental time decreased gradually with
increasing temperatures and was shortest at 35 ◦C and 30 ◦C for prepupae reared on CD and SG
substrates, respectively (Table 3). Pupae reared on SG needed significantly less time to emerge as
adults than those reared on CD. For instance, pupae reared on CD needed 28%, 70%, 72%, and 74%
less time at 20 ◦C, 25 ◦C, 30 ◦C, and 35 ◦C, respectively, in comparison with the time needed at 15 ◦C.
Similarly, pupae reared on SG needed 59%, 85%, 95%, and 91% less time, respectively, in comparison
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with the time needed at 15 ◦C. Moreover, pupae reared on SG needed 22%, 53%, 59%, 75%, and 64%
less time than the ones reared on CD at 15 ◦C, 30 ◦C, and 35 ◦C, respectively.

Table 3. Mean (±SD) pupal developmental time (in days) of black soldier fly reared on two different
organic substrates at five different temperature regimes.

Temperature (◦C) CD-fed BSF SG-fed BSF

15 182.909 ± 29.680 aA 150.333 ± 32.260 bA
20 131.090 ± 36.670 aA 61.500 ± 16.240 bB
25 54.428 ± 15.140 aB 22.333 ± 3.810 bC
30 51.820 ± 17.690 aB 13.000 ± 2.110 bC
35 48.256 ± 15.490 aB 17.500 ± 3.690 bC

Means (n = 5) in the same row followed by different lowercase letters and in the same column by different uppercase
letters are significantly different at p < 0.05; BSF, black soldier fly; CD, cow dung; SG, spent grain.

3.3. Longevity and Fecundity of BSF Adults

The longevity of BSF adult flies was significantly influenced by both temperature and substrate
type, with BSF adults previously reared as larvae on SG living significantly longer than those previously
reared on CD (Table 4). Longevity decreased with increasing temperatures, with all BSF adults
irrespective of their larval rearing substrate living the longest at 15 ◦C. For instance, the longevity of
BSF adults previously reared on CD at 20 ◦C, 25 ◦C, 30 ◦C, and 35 ◦C decreased by 26%, 28%, 37%,
and 46%, respectively, in comparison with longevity at 15 ◦C. Similarly, the longevity of BSF adults
previously reared as larvae on SG decreased by 11%, 28%, 35%, and 48%, respectively, in comparison
with longevity at 15 ◦C.

Table 4. Mean (±SD) longevity (in days) of adult black soldier fly reared on two different organic
substrates at five different temperature regimes.

Temperature (◦C) CD-fed BSF SG-fed BSF

15 13.200 ± 1.304 aA 14.200 ± 0.447 bA
20 9.800 ± 2.683 aB 12.600 ± 2.503 bB
25 9.600 ± 0.548 aB 10.200 ± 0.616 bC
30 8.375 ± 0.518 aB 9.200 ± 1.373 bD
35 7.100 ± 0.316 aC 7.400 ± 0.699 bE

Means (n = 5) in the same row followed by different lowercase letters and in the same column by different uppercase
letters are significantly different at p < 0.05; BSF, black soldier fly; CD, cow dung; SG, spent grain.

Both temperature and substrate type significant affected the number of eggs laid or oviposited by
adult BSF (Table 5). BSF adults obtained from larvae previously reared on both CD and SG produced
more eggs at higher temperatures and the most eggs at 30 ◦C. However, at 35 ◦C, egg production by
adult BSF previously reared on both CD and SG declined by 27% and 39%, respectively. The eggs
produced by flies derived from the SG substrate produced 34% more eggs than those derived from the
CD substrate at 30 ◦C.
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Table 5. Mean (±SD) number of eggs produced by black soldier flies reared on two different organic
substrates at five different temperature regimes.

Temperature (◦C) CD-fed BSF SG-fed BSF

15 0.000 aE 238.800 ± 50.500 bD
20 169.900 ± 90.750 aD 422.000 ± 4.240 bC
25 472.900 ± 79.560 aC 503.800 ± 68.028 bC
30 916.100 ± 125.110 aA 1,230.400 ± 242.510 bA
35 669.100 ± 25.260 aB 751.800 ± 114.960 bB

Means (n = 5) in the same row followed by different lowercase letters and in the same column by different uppercase
letters are significantly different at p <0.05; BSF, black soldier fly; CD, cow dung; SG, spent grain.

3.4. A Linear Temperature-Driven Model (Square Function)

The mean minimum development duration was estimated to be 77.5 days (range 69.5–85.5 days) at
31.9 ◦C (range 30.2–33.7 ◦C) for CD-fed immatures and 16.1 days (range 9.0–23.2 days) at 30.3 ◦C (range
29.4–31.3 ◦C) for SG-fed ones (Figure 1a, Table 6). For the pupae, the mean minimum development
time was estimated to be 45 days (range 39.4–50.6 days) at 32.8 ◦C (range 39.1–50.9 ◦C) (Figure 1b,
Table 7). The mean temperature threshold for SG-fed pupae was not significant.
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Figure 1. Temperature-driven model (parametrized square function) of (a) larval and (b) pupal
developmental time (in days) of black soldier fly reared on two different organic substrates at five
different temperature regimes.

Table 6. Estimates of linear model parameters describing the relationship between temperature and
developmental time of black soldier fly larvae reared on two different organic substrates.

CD fed BSF SG fed BSF

Model Parameter Estimate (±SE) p-Value 95% CI Estimate (±SE) p-Value 95% CI

a 0.586 ± 0.068 <0.001 0.445–0.723 0.792 ± 0.065 <0.001 0.661–0.923
b 31.925 ± 0.871 <0.001 30.174–33.676 30.348 ± 0.477 <0.001 29.389–31.307
c 77.490 ± 3.972 <0.001 69.504–85.477 16.114 ± 3.546 <0.001 8.983–23.244

R2 0.798 0.852

Development time = a × (temperature − b) 2 + c; where b is the temperature for the minimum development time
and c is the development time at the minimum development time; means (n = 5) (±SE) are significantly different at
p < 0.05; CI = Confidence Intervals; BSF = black soldier fly; CD = cow dung; SG = spent grain.
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Table 7. Estimates of linear model parameters describing the relationship between temperature and
pupal developmental time of black soldier fly reared on two different organic substrates.

CD fed BSF SG fed BSF

Model Parameter Estimate (±SE) p-Value 95% CI Estimate (±SE) p-Value 95% CI

a 0.452 ± 10.520 <0.001 0.367–0.536 0.685 ± 0.061 <0.001 0.566–0.804
b 32.751 ± 0.801 <0.001 31.164–34.337 29.581 ± 0.592 <0.001 28.416–30.746
c 45.014 ± 2.843 <0.001 39.423–50.606 n.s. 0.433 n.s.

R2 0.913 0.99

Development time = a × (temperature − b) 2 + c; where b is the temperature for the minimum development time
and c is the development time at the minimum development time; means (n = 5) (±SE) are significantly different at
p < 0.05; CI = Confidence Intervals; BSF = black soldier fly; CD = cow dung; SG = spent grain; n.s, not significant.

4. Discussion

Temperature has proven to be a key factor in the development and survival of insects [53].
Moreover, it is well established that BSF larvae are sensitive to their external environments and that
temperatures influence their development and survival [47,54]. On the other hand, temperature
and nutrition interact to affect key life-history traits in insects, such as maturity, development rate,
reproduction, and survival [55]. Several studies looked into the influence of either laboratory-reared
diets at a constant temperature or organic side streams as feeding substrates on life-history traits of BSF
larvae [44–47,56]. However, no previous study investigated the combined influence of temperature and
urban organic waste material as rearing substrates in a developing world context. Those waste streams,
cow dung and spent grain, were readily available in Nairobi, Kenya, and are arguably also available in
other megacities in the developing world. We measured the influence of five different temperatures
and two organic waste streams on the fitness of BSF larvae as a proposed alternative protein source
for livestock feed. We measured the duration of development of immature BSF larvae, as well as BSF
prepupae weights. We recorded significantly faster durations for BSF larvae and heavier weights
for BSF prepupae reared on SG compared with those reared on CD even at the low temperatures of
15 ◦C and 20 ◦C. The development times of BSF immatures reared on both substrates decreased with
increasing temperatures. The weights of BSF prepupae increased with increasing temperatures and
were the heaviest at 25 ◦C and 30 ◦C.

Several factors may have contributed to the differential development observed between the
two rearing substrates. The most important contributing factor was the difference in the quality of
the nutritional content between the rearing substrates. Several studies emphasized the importance
of nutritional components, such as proteins and carbohydrates, in the development of insect
larvae [57–59]. Therefore, we assume that SG better provided the BSF immatures with the nutritional
resources and energy required to complete their development stage faster. This observation is
supported by findings of Harnden and Tomberlin [60], who recorded faster development for BSF
larvae reared on a grain-based diet in comparison with those reared on an animal tissue diet at 32.2 ◦C.
Meneguze et al. [27] also reared BSF larvae on SG but recorded faster durations in comparison with
what we report in this study. Yet, on the other hand, we noted heavier weights for BSF prepupae
reared on SG than Tomberlin et al. [43] in a similar study. The main reasons for these discrepancies
are differences in methodologies and experimental set-ups, as well as varying temperatures at which
the BSF larvae were kept. Another factor that may have influenced the overall development of BSF
could be related to its phenotypic plasticity. Phenotypic plasticity is the ability of an individual
organism to alter its phenotype or to modify developmental events in response to changes in
environmental conditions, allowing it to maintain high fitness regardless of the environmental
variability [61,62]. Phenotypic plasticity permits organismal diversification within species without
having to couple it with speciation through the evolution of environment-specific responses in
phenotype expression [62]. The stock colony from which we obtained the BSF eggs was housed in an
outdoor insectarium subjected to light cycles and temperature regimes reflective of the seasonality
in Nairobi. Zhou et al. [63] collected BSF strains from three different climatic regions in the USA and
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China, reared them under identical conditions, and showed that they could reveal strikingly different
BSF life-history traits. They attributed such differential development to the phenotypic plasticity of
BSF. Further studies are needed to verify whether phenotypic plasticity in BSF is exclusively influenced
by the environment or may also be genetically determined.

Food availability and access to nutritional resources are other crucial factors affecting larval
and adult life history traits [64,65]. For instance, the weight of BSF prepupae reared on CD in our
study were lighter than those recorded by Myers et al. [56] for prepupae reared on a similar type of
substrate. While Myers et al. [56] provided the larvae with fresh increments of CD on a daily basis,
we opted for a lump sum amount of CD at the start of our experiment. Unlike fresh incremental diets,
materials in lump sum diets age with time, leading to reduced amounts of nutritional components,
such as proteins and carbohydrates, which are crucial for the development of insect larvae [57–59].
Facing such reductions in nutritional components, larvae refer to compensatory feeding, leading to
faster development times and reduced weight gains [66,67]. This is also corroborated by Sheppard [68],
who observed an optimal development of BSF reared on fresh CD provided at low increments.
The consistency and physical texture of the rearing substrates used in our study may also have affected
the results. Although, we did not specifically test the consistency and physical texture of the rearing
substrates, it was visually evident during our experiments that CD was quite thick in texture and
therefore may have limited the BSF immatures’ mobility and access to the little amount of nutrients
available, consequently affecting their life-history traits. Most importantly, the chemical composition
of cow dung has been extensively summarized by Azevedo and Stout [69] and Graber [70], showing
a high fiber ratio of about 27% and a proportionately lower percentage of protein. A complex set
of factors influence the extent to which fiber will be digested by BSF, including the physical state of
the cow dung, the level of intake, and the amount of readily fermented nutrients (i.e., carbohydrate
and protein) in the ration. Moreover, cow dung constituent of largely non-nutritive elements and the
variability of BSF ability to break down fiber might explain the considerable variation observed using
the two substrates regardless of the rearing temperature. On the other hand, brewer’s spent grain has
been found to contain several essential nutrients, which are crucial for BSF growth. Couch [71] reported
a proximate constituent of over 20% crude protein, about 6% ether extract, over 15% crude fiber, and 4%
ash in brewer’s spent grain. This is further supported by the National Research Council NRC [72],
which reported that spent grain contains 25.3% crude protein (CP), 6.3% crude fat, and around
2080 Kcal/Kg of metabolizable energy and that spent grain is also a good source of B vitamins,
thus rendering it a good potential substrate in BSF production. The use of spent grain in BSF diet
compared with cow dung might be the reason for the improvement in the body weight gain of BSF
prepupae, which translates to an increased profit margin. We did not conduct any tests on the influence
of temperature and diet on food ingestion or substrate reduction, as our objective was to test the
influence of temperature and diet on the development of BSF in terms of development duration,
weight, longevity, and fecundity. However, based on our visual observations, BSF consumed SG more
efficiently than CD, indicating that waste reduction might also be influenced by the nutritional quality,
texture, and moisture content of the substrate.

Pupation, a complex process involving significant morphological and physiological
transformations, is essential for holometabolous insects [73]. Therefore, we additionally measured
the duration of pupation, as well as the adult longevity and fecundity, as affected by the previously
experienced temperature and substrate regimes. Adult emergence took longer at lower temperatures
and was significantly shortest at 25–35 ◦C and shorter for BSF previously reared on SG than those
reared on CD at those temperatures. The relationship between temperature and adult emergence
observed in our study is not uncommon in insects. For instance, Telles-Romero et al. [73] studied
the effects of four temperature regimes (18 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C) on the West Indian fruit
fly Anastrepha obliqua and found a decrease in the duration until adult emergence with increasing
temperatures. Moreover, moist sawdust, the pupation substrate used in our study, may have also
collectively accelerated the developmental time of pupae to adult emergence. Our results are further



Animals 2019, 9, 79 10 of 14

supported by Holmes et al. [48], who also observed low pupal mortality, a higher proportion of adult
emergence, and increased adult longevity when using wood shavings and concluded that such a
pupation substrate significantly enhances BSF development. The reason for this is most likely the high
moisture content (70%) and low compaction density of wood shavings, which facilitates pupation and
the emergence of BSF [48].

Adult longevity significantly decreased with increasing temperatures, with BSF adults derived
from larvae previously reared on SG recording higher longevity. This confirms our previously stated
assumption regarding the influence of the nutritional content of the rearing substrate, as well as
access to nutritional resources, on larval and adult life-history traits and explains why we observed
–even at a similar temperature range (25–30 ◦C)—shorter adult longevity in comparison with Myers
et al. [56], who also reared BSF on CD. However, they noted greater longevity in adults that were
previously fed with higher increments of fresh CD as BSF larvae. Moreover, because adult BSF do not
feed and only consume water, exposing them to high temperatures will cause dehydration leading to
an increased mortality rate and reduced lifespan [44]. BSF fecundity was highest at 30 ◦C and was
significantly affected by the type of substrate fed to the larvae. The higher weight gain recorded at the
prepupal stage is likely to translate into larger adult body size in both males and females [74]. Several
studies have reported that larger-sized females lay more eggs due to their greater energy reserves [74].
Although we did not measure the size of the BSF females, the fact that the females that emerged from
larvae reared on SG had significantly higher fecundity compared with those from CD, could clearly
point in this direction.

5. Conclusions and Outlook

Our study is the first to provide information regarding the influence of temperature on the life
history of BSF reared on two diets readily available in urban SSA. Such information is necessary for
developing BSF potential in the developing world, both as a tool for the bioconversion of organic waste
and as an alternative protein source in feed stock. Our results demonstrate that both temperature
and substrate type significantly influence the development, longevity, and fecundity of the flies.
Black soldier flies needed less time to develop on higher temperatures during their immature and
pupal stages, while adults’ longevity decreased at higher temperatures. Similarly, BSF reared on spent
grain outperformed the ones reared on cow dung by surpassing them in weight and requiring less
time to develop. Regardless of the waste stream used, BSF production systems have to be designed
in a manner that provides BSF with adequate access to fresh nutritional content. Also, considering
that the BSF could be used to feed livestock that are part of the human food chain, it is important to
assess the potential risks associated with contamination by pathogens and the bioaccumulation of
heavy metals. Moreover, the influence of the rearing substrate influenced the fecundity of adult flies,
with the ones reared on spent grain as larvae producing more eggs, underlining the importance of the
nutritional quality of the rearing substrate. Considering that BSF is produced for feed and not only for
the purpose of organic waste recycling, this interesting information suggests the need to introduce
starter-culture production facilities with customized rearing substrates for the production of BSF
eggs as compared with organic waste recycling facilities. Hence, future research should focus on the
development of adapted technologies in terms of the following: (1) rearing temperatures, (2) feeding
methods, and (3) substrate hygiene and safety measures for small- to medium-scale industrial mass
production systems of insects, such as BSF, into which commonly available urban organic waste
streams can be fed. The availability of such production systems would considerably lower the cost of
livestock feeds and consequently would make animal protein more affordable for the growing urban
populations in SSA, thereby improving food security and nutrition, especially for women, children,
and other vulnerable members of society.
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