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Abstract

Motivation: Classical methods of comparing the accuracies of variant calling pipelines are based

on truth sets of variants whose genotypes are previously determined with high confidence. An al-

ternative way of performing benchmarking is based on Mendelian constraints between related

individuals. Statistical analysis of Mendelian violations can provide truth set-independent bench-

marking information, and enable benchmarking less-studied variants and diverse populations.

Results: We introduce a statistical mixture model for comparing two variant calling pipelines from

genotype data they produce after running on individual members of a trio. We determine the accur-

acy of our model by comparing the precision and recall of GATK Unified Genotyper and Haplotype

Caller on the high-confidence SNPs of the NIST Ashkenazim trio and the two independent Platinum

Genome trios. We show that our method is able to estimate differential precision and recall be-

tween the two pipelines with 10�3 uncertainty.

Availability and implementation: The Python library geck, and usage examples are available at the

following URL: https://github.com/sbg/geck, under the GNU General Public License v3.

Contact: peter.komar@totient.bio

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) has enabled entire human

genomes to be sequenced in a single experiment and has, since its de-

velopment, played a crucial role in many areas including population

genetics (Auton et al., 2015; Mallick et al., 2016), disease genetics

(Bamshad et al., 2011) and the study of human mutations (Veltman

and Brunner, 2012). Many variant callers have been developed to

call genetic variants from NGS data (Sandmann et al., 2017),

employing multiple steps of data processing and statistical inference

(Li, 2011). Due to their wide impact, benchmarking variant calling

pipelines is of utmost importance (Li, 2014; Shringarpure et al.,

2015).

A widely-used method of measuring the accuracy of variant call-

ing pipelines is tallying mis-called variants on samples that have

been characterized previously (Cornish and Guda, 2015; Hwang

et al., 2015; Olson et al., 2015). High-confidence variant sets, or

‘truth sets’, are compiled by teams of experts, such as the Genome in

a Bottle (GIAB) Consortium, by integrating variant calls from sev-

eral sequencing and data processing technologies. Due to careful

curation, these datasets reach very high fidelity and provide a bench-

marking reference for SNPs, indels (Boutros et al., 2014; Talwalkar

et al., 2014; Zook et al., 2014) and structural variants (Fang et al.,

2016; Human Genome Structural Variant Consortium, 2017;

Nutsua et al., 2015; Parikh et al., 2016). In all cases, high-coverage

sequencing data from a handful of (often related) individuals are

required to produce a truth set (Eberle et al., 2017; Zook et al.,

2016). Such truth sets are expensive to create, specific to the pop-

ulation and biased toward the methods that produced them.

Sequencing data from related individuals provide an alternative

way to detect errors made by a variant calling pipeline. Since de-

novo mutation rates [�10�8 per locus (Veltman and Brunner,

2012)] are several orders of magnitude smaller than calling and gen-

otyping error rates (often 10�2 � 10�5), one can use the variant calls

inconsistent with the rules of Mendelian inheritance to assess
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genotyping errors. While not all errors result in a Mendelian viola-

tion, which limits the sensitivity of this strategy, as noted by Li

(2014), additional assumptions about the error probabilities permit

the estimation of genotyping error rates from parent-offspring dyads

(Haaland and Skaug, 2013), siblings (Johnson and Haydon, 2007;

Korostishevsky et al., 2009; Wang, 2004), trios (Douglas et al.,

2002; Jostins, 2011; Saunders et al., 2007; Sobel et al., 2002) and

larger pedigrees (Eberle et al., 2017). If sequencing reads from many

related individuals are available, recombination events can be

inferred and used to estimate locus-specific genotyping errors (Chen

et al., 2013; Kojima et al., 2013; Markus et al., 2011; Peng et al.,

2013). All these approaches have the advantage of not relying on a

truth set, thereby eliminating the bias towards established variant

callers.

When modeling genotyping calling errors in related individuals,

one is tempted to parametrize the genotyping error profile with a

couple of parameters and estimate their values independently for dif-

ferent variant callers. This method has two significant shortcomings

by neglecting the following correlations: First, errors made by differ-

ent variant calling pipelines are often correlated due to identical

assumptions (e.g. well-mapped reads) which, if violated in the input

data, make mistakes of the pipelines coincide at particular loci.

Second, mapping and calling errors depend on sequence context,

which is similar among closely related individuals and induces corre-

lations between genotyping errors in samples of different family

members. To the extent of our knowledge, there exists no published

method that addresses both correlations.

Here, we present a statistical model that addresses both shortcom-

ings for the case of a family trio. First, we aggregate the number of

different genotype trios for the two pipelines jointly, and model this

data. This way, we take correlations between two variant callers ex-

plicitly into account. Second, our model consists of a statistical mix-

ture of different genotyping error profiles. Although each error profile

assumes independence between family members, enabling an efficient

mathematical solution, their mixture captures the correlations.

We validate our model in a series of experiments on real trios.

First, we run two variant caller pipelines on publicly available NGS

data from trios, and let our model estimate the precision and recall

of the two pipelines. Then we compare these estimated performance

metrics with their true values. The truth is directly calculated by

comparing the calls on the children with their correct genotypes

from the truth datasets. We demonstrate that our model is able to

detect differential performance (absolute difference of precision or

recall) between two pipelines as small as �10�3. With this level of

accuracy, our model enables informed development of pipelines tar-

geting less-studied variants and populations for which no curated

truth set is available.

The rest of the paper is divided into three parts: In Section 2, we

introduce our notation, describe the structure and assumptions of

our model and show how one can use it to infer the number of geno-

typing errors and stratify them by type. In Section 3, we describe

how we validate our method on publicly available trio data. Finally,

in Section 4, we present the results of the validation experiment.

2 Model

2.1 Definitions and notation
Trio genotypes. Let I ¼ f00; 01;11g denote the set of individual, bi-

allelic, unphased genotypes: homozygous reference (00), heterozygous

(01) and homozygous alternate (11). Let g ¼ fgp 2 I : p ¼ 1; 2;3g
be an ordered trio of individual genotypes, representing the genotypes

of variants in the genomes of father (g1), mother (g2) and child (g3).

Let T denote the set of mathematically possible genotype trios, i.e.

T ¼ I�3, and let t � T denote its subset that conforms with

Mendelian inheritance, i.e. t ¼ fg 2 T : g3;1 2 g1 and g3;2 2 g2

� �
or

g3;1 2 g2 and g3;2 2 g1

� �
g, where g3;1 and g3;2 are the first and se-

cond symbols (0 or 1) of g3. One can show that jTj ¼ 33 ¼ 27 and jtj
¼ 15 by enumeration.

Observed genotypes. Two variant calling pipelines run inde-

pendently on samples from the three family members produce

six separate sets of variant calls. We require that variant represen-

tations are harmonized, after which we can aggregate the counts

of different genotype trio pairs of one class of variants (e.g. SNPs,

short indels, structural variants) called by the two pipelines

across all loci. This yields the joint counts of genotype trios

N ¼ fNG1 ;G2 : G1;G2 2 Tg, where NG1 ;G2 is the number of var-

iants whose trio genotypes are called G1 by pipeline 1, and G2 by

pipeline 2. An example is shown in Figure 1.

Correct genotypes. Explicit information about the correct

trio genotypes g 2 t is missing from the observed counts N. Let N ¼
fNG1 ;G2 ;g : G1;G2 2 T; g 2 tg denote the (hidden) complete distri-

bution of called and correct genotype trios, where NG1 ;G2 ;g is the

number of variants with called genotype trios G1;G2 and correct

genotype trio g, such that
P

gNG1 ;G2 ;g ¼ NG1 ;G2 ; 8G1;G2. In the

next section, we explicitly model the genotyping errors in order to

infer the hidden components in N , examples of which are shown in

Supplementary Figures S3–S5. Uncovering this data, N , from the

observed mixture, N, is our main goal.

Benchmarking metrics. If obtained, the complete distribution

N contains all necessary information to directly evaluate any

Fig. 1. An example of the joint counts of observed trio genotypes N. Each cell

at row G1 and column G2 counts the number of variants for which pipeline

1 calls G1 and pipeline 2 calls G2 trio genotypes. The 27 trio genotypes (T) are

sorted such that the first 15 comply with Mendelian inheritance (t). Most var-

iants populate the main diagonal, indicating strong correlation between the

pipelines. If the pipelines could exploit that the three individuals form a trio,

none of them would call invalid trios and only the upper left corner of the ma-

trix would contain counts. Still some of the counts would be placed off the

main diagonal, because the pipelines would not always agree
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benchmarking metric. We will use the notation l �ð Þ : N 7!l

to denote any benchmarking metric, derivable from N . One

important metric is the genotype confusion matrix,

n pð Þ ¼ fn pð Þ
i;j;k 2N : i; j;k 2 Ig, for individual p, where

n
pð Þ

i;j;k ¼
X

G1 ;G2 ;g

i ¼ gp

� �
j ¼ G1

p

h i
k ¼ G2

p

h i
NG1 ;G2 ;g; (1)

where [x¼ y] is 1, if x¼ y and 0 otherwise. n
pð Þ

i;j;k counts how many

variants of person p, with correct genotype i 2 I, are called j 2 I by

pipeline 1 and k 2 I by pipeline 2.

Genotyping can be understood as a classification task with

one negative (00) and two positive classes (01 and 11). For person p,

we define the true positive, false negative, false positive and ‘mixed-

up positive’ counts for pipeline 1 as TP
pð Þ

1 ¼ n
pð Þ

01;01;• þ n
pð Þ

11;11;•,

FN
pð Þ

1 ¼ n
pð Þ

01;00;• þ n
pð Þ

11;00;•, FP
pð Þ

1 ¼ n
pð Þ

00;01;• þ n
pð Þ

00;11;• and MP
pð Þ

1 ¼
n

pð Þ
01;11;• þ n

pð Þ
11;01;•, respectively, where • denotes summation over the

third index. For pipeline 2, similar formulas apply where the sum-

mations are prescribed for the second index. We define precision

and recall with the usual formulas: prec ¼ TP= TPþ FPþMPð Þ and

rec ¼ TP= TPþ FNþMPð Þ, for each person and each pipeline.

2.2 Generative model
We introduce a generative model in a form of a mixture of categorical

distributions over G1;G2
� �

2 T � T pairs, where each mixture com-

ponent is labeled by a correct trio genotype g 2 t, and an error cat-

egory m (defined in this section). The graphical representation of this

model is shown in Figure 2. We define the parameters f ; h;E below.

Correct frequencies. Let f ¼ ffg : g 2 tg denote the frequencies of

each correct genotype trio g among the variants under investigation, i.e.

P gð Þ ¼ fg; (2)

where f is subject to normalization, i.e.
P

g fg ¼ 1. By treating all 15

components of f as independent parameters, our model is able to fit

aggregate data of variants not showing Hardy–Weinberg equilibrium

[a limitation of the models used by Douglas et al. (2002) and Haaland

and Skaug (2013)]. This way of parameterizing the correct frequen-

cies makes our model more flexible than previous approaches that as-

sume global allele frequencies (Browning and Browning, 2013;

Douglas et al., 2002; Haaland and Skaug, 2013; Johnson and

Haydon, 2007; Korostishevsky et al., 2009; Saunders et al., 2007;

Wang, 2004). Supplementary Material E contains more discussion.

Error categories. We assume that each variant is affected by one

of the error categories M ¼ fa; b; c; d; eg: (a) Both pipelines are cor-

rect, (b) Pipeline 1 is correct, (c) Pipeline 2 is correct, (d) Pipelines

agree (but not necessarily correct) and (e) Unrestricted joint distribu-

tion. Let h ¼ fhg;m : g 2 t; m 2Mg denote the fractions of variants,

with correct genotype trio g, that are affected by error category m, i.e.

P m j gð Þ ¼ hg;m; (3)

where h is subject to normalization, i.e.
P

m hg;m ¼ 1; 8g. The

error category m is assumed to be the same for all three genomes at

a given locus. Now, we extend the definition of N with this add-

itional index, N ¼ fNG1 ;G2 ;g;m : G1;G2 2 T; g 2 t; m 2Mg, whereP
mNG1 ;G2 ;g;m ¼ NG1 ;G2 ;g. The idea of alternative error categories is

used in Heid et al. (2008) and Korostishevsky et al. (2009), but none

considered a mixture over error categories.

Error rates. Let E ¼ fE g;mð Þ
i;j;k : g 2 t; m 2M; i; j; k 2 Ig denote

the probabilities of calling the genotypes (j, k), when the correct

genotype is i for a variant whose correct genotype trio is g and is

subject to error category m. Under a given g and m, we assume that

errors happen independently and with the same rate, for all mem-

bers of the trio. In practice, this requires that the samples are pre-

pared, sequenced and analyzed in the same way, separately from

each other. This allows us to write the probability of each type of

genotyping event g!m G1;G2
� �

as the product

P G1;G2 j g;m
� �

¼
Y

p

P G1
p; G2

p j g;m
� �

¼
Y

p

E
g;mð Þ

gp ;G1
p ;G2

p
; (4)

where E is subject to the normalization
P

j;k E
g;mð Þ

i;j;k ¼ 1; 8g;m; i.
Different error categories m 2M allow only certain components of

E to be non-zero:

E
g;mð Þ

i;j;k 6¼ 0; only if

m ¼ a and j ¼ i and k ¼ i ðboth are correctÞ

m ¼ b and j ¼ i ðpipeline 1 is correctÞ

m ¼ c and k ¼ i ðpipeline 2 is correctÞ

m ¼ d and j ¼ k ðpipelines agreeÞ

m ¼ e ðunrestrictedÞ

8>>>>>>>><
>>>>>>>>:

Previously published models either assume an error rate independent of

the correct genotype (Browning and Browning, 2013; Jostins, 2011;

Saunders et al., 2007; Sobel et al., 2002) or model the E matrix with a

few parameters (Douglas et al., 2002; Heid et al., 2008; Johnson and

Haydon, 2007; Korostishevsky et al., 2009; Wang, 2004). It is worth

emphasizing that we only assume conditional independence of the

errors in different family members (conditioned on fixed g and m). The

marginal probability P G1;G2
� �

¼
P

g;m P G1;G2; g;m
� �

does not fac-

torize under our assumptions, enabling our model to capture correlated

errors across family members.

2.3 Limiting complexity
The model described so far has 480 algebraically independent

parameters (Supplementary Material A.1.1), which is comparable to

27�27¼729, the number of entries in the input data N. To im-

prove the stability of our estimates, we lower the complexity of the

model in two ways: limiting the range of error rates, and using par-

ameter sharing.

Limiting error rates. We limit the error rates by requiring that

maxj;k E
g;mð Þ

i;j;k

� �
¼ E

g;mð Þ
i;i;i 8i; g;m. This guarantees that the largest

fraction of the calls (j, k) are indeed correct (¼ i), separately for each

error category.

(a) (b)

Fig. 2. Graphical representation of the model. (a) Parameters, f, h, E, deter-

mine the distributions of hidden variables: correct genotype trio g and error

category m, and the observed genotype trios: G1 and G2. (b) Transitions from

correct genotype trio g to observed genotype trios ðG1;G2Þ are caused by

genotyping errors. The correct genotype i 2 I of a variant in the genome of

each family member undergoes a transition, subject to the same error cat-

egory m, resulting in called genotypes ðj ; kÞ 2 I � I
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Parameter sharing. We partition t into three disjunct subsets

t ¼ t0 [ t1 [ t2, where t0 ¼ f 00; 00; 00ð Þg; t2 ¼ f 11;11;11ð Þg and

t1 ¼ tn t0 [ t2ð Þ, and require, whenever both g; g0 are in t1, that hg;m

¼ hg0 ;m and E
g;mð Þ

i;j;k ¼ E
g0;mð Þ

i;j;k 8m; i; j; k. We choose this partitioning

expecting that variants that are present in none (t0) or all (t2) of the

genomes will be subject to different error rates than variants for

which at least one family member is heterozygous (t1). These

constraints allow us to introduce the notation hs;m :¼ hg;m and

E
s;mð Þ

i;j;k :¼ E
g;mð Þ

i;j;k for all g 2 ts where s¼0, 1, 2, and reduce the num-

ber of algebraically independent parameters to 96. (Supplementary

Material A.1.2)

2.4 Inference
Hidden components. The product of Equations (2), (3) and (4)

yields the joint distribution of observed G1;G2
� �

and hidden (g, m)

variables,

PG1 ;G2 ;g;m ¼ fg hg;m

Y
p

E
g;mð Þ

gp ;G1
p ;G

2
p
: (5)

Under the assumption that the attributes G1;G2; g;m
� �

of different

variants are independent and identically distributed (given f ; h;E),

one can write the full and conditional distributions of the complete

distribution N as (Supplementary Material A.2)

P N j f ; h;Eð Þ ¼Mult N jN total;Pð Þ; (6)

P N jN; f ; h;Eð Þ ¼
Y

G1 ;G2

Mult NG1 ;G2 ;:;:jNG1 ;G2 ;RG1 ;G2 ;:;:

� �
; (7)

where N total is the total number of variants (both in N
and N), NG1 ;G2 ;:;: is a shorthand for fNG1 ;G2 ;g;m : g 2 t; m 2Mg;
P ¼ fPG1 ;G2 ;g;mg; RG1 ;G2 ;:;: ¼ fRG1 ;G2 ;g;m : g 2 t; m 2Mg where

RG1 ;G2 ;g;m ¼ PG1 ;G2 ;g;m=
P

g0 ;m0 PG1 ;G2 ;g0 ;m0 and Mult fnng j ntot; fpngð Þ
¼ ntot!

Q
n pnð Þnn=nn! is the multinomial distribution. The distribu-

tion in Equation (6) describes an unconstrained sampling process

where the variants can be freely distributed between bins with dif-

ferent G1;G2; g;m
� �

labels. The distribution of Equation (7) rep-

resents a constrained sampling process where the number of

variants in each observable bin G1;G2
� �

are fixed to the actually

observed value NG1 ;G2 , and only their hidden attributes (g, m) are

subject to random sampling.

Model parameters. Using Bayes theorem, the conditional poster-

ior of f ; h;Eð Þ can be written as a product

P f ; h;E jNð Þ / P N j f ; h;Eð ÞP f ; h;Eð Þ; (8)

where the last term stands for the prior of the model parameters.

Since P N j f ; h;Eð Þ depends only on products of the model parame-

ters [via Equations (5) and (6)], using a product of Dirichlet distribu-

tions as prior for f ; h;Eð Þ,

P f ; h;Eð Þ ¼ P f ja 0ð Þ
� �

P hjb 0ð Þ
� �

P Ejc 0ð Þ
� �

; (9)

yields a posterior with identical structure (Supplementary Material

A.3),

P f ; h;E j Nð Þ ¼ P f jað ÞP hjbð ÞP Ejcð Þ; (10)

where, in Equations (9) and (10),

P f jað Þ ¼ Dir f j að Þ (11)

P hjbð Þ ¼
Y

s

Dir hs;: jbs;:

� �
(12)

P Ejcð Þ ¼
Y
s;m;i

Dir E
s;mð Þ

i;:;: j cs;m;i;:;:

� �
(13)

Here, Dir stands for the Dirichlet distribution, Dir xjað Þ ¼
C
P

n an

� �Q
n xnð Þ an�1ð Þ=C anð Þ, and its parameters are a ¼

fag : g 2 tg, b ¼ fbs;m : s 2 f0; 1;2g; m 2Mg, c ¼ fcs;m;i;j;k :

s 2 f0; 1; 2g; m 2M; i; j; k 2 Ig. In Supplementary Material A.3, we

show that the posterior values of a, b, c are

ag ¼ a 0ð Þ
g þ

X
G1 ;G2 ;m

NG1 ;G2 ;g;m (14)

bs;m ¼ b 0ð Þ
s;m þ

X
G1 ;G2 ;g

g 2 ts½ � NG1 ;G2 ;g;m (15)

cs;m;i;j;k ¼ c 0ð Þ
s;m;i;j;k

þ
X

G1 ;G2 ;g

g 2 ts½ �
X

p

i ¼ gp

� �
j ¼ G1

p

h i
k ¼ G2

p

h i
NG1 ;G2 ;g;m

(16)

where �½ � evaluates to 1 if the statement inside is true, and 0

otherwise.

Gibbs sampling. The conditional posterior of N [Equation (7)]

and f ; h;E [Equation (10)] are products of multinomial and Dirichlet

distributions, respectively, both of which can be efficiently sampled.

This enables Gibbs sampling, where we start with an initial guess

f ; h;Eð Þ s¼0ð Þ. In Step 1, we sample the independent multinomials of

Equation (7) and obtain the sth sample of the hidden components,

N sð Þ. Then, in Step 2, we sample the independent Dirichlet variables

of Equation (10) and obtain the next sample of the model parameters,

f ; h;Eð Þ sþ1ð Þ. We make sure that maxj;k E
g;mð Þ

i;j;k

� �
¼ E

g;mð Þ
i;i;i by first sam-

pling each slice E
g;mð Þ

i;:;: from an unconstrained Dirichlet distribution,

followed by lowering all components that violate this criteria to the

level of E
g;mð Þ

i;i;i , and re-normalizing. Repeating Steps 1 and 2 yields ap-

proximate samples from the joint posterior P N ; f ; h;E jNð Þ. With ap-

propriate ‘burn-in’ (s0) and ‘thinning’ (Ds), this procedure provides

estimates of the hidden components in the form of a list of samples

fN s0þlDsð Þ
: l ¼ 0; 1; 2; . . .g. Details of choosing s0 and Ds are given

in Supplementary Material B.

Benchmarking metrics. From the samples fN sð Þg, the sth esti-

mate of any metric l can be directly calculated, l sð Þ :¼ l N sð Þ
� �

,

enabling accurate estimation of its posterior.

3 Materials and methods

To assess the accuracy of our model, we carried out the validation

experiment shown on Figure 3. First, we selected trios for which not

only the NGS reads but also curated truth-sets of the children are

published, and used two variant caller pipelines to produce variant

calls from the read data. Second, we simultaneously used our model

to estimate benchmarking metrics for both pipelines on all three

members of the trio, and used the correct genotypes from the child’s

truth set to calculate the true values of the same benchmarking met-

rics. Finally, we compared the estimated metrics with the true met-

rics to calculate the accuracy of our model.

3.1 Data
Read data. We used 50x, 148-bp-long, paired-end, Illumina reads from

three trios: the GIAB Ashkenazim trio (ftp://ftp-trace.ncbi.nlm.nih.gov/

giab/ftp/data/AshkenazimTrio/; HG003, HG004, HG002), published

by the GIAB Consortium (Zook et al., 2016) and 101-bp-long,
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paired-end, Illumina reads from the two unrelated trios from

Platinum Genome (ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/

bam/; NA12889, NA12890, NA12877) and (NA12891, NA12892,

NA12878), published by Illumina, Inc. (Eberle et al., 2017). From these

alignment files, we extracted and sorted the reads using samtools

(https://github.com/samtools/samtools) and dropped duplicates and un-

paired reads, using a custom script. Command lines are listed in

Supplementary Material D.

Truth set for child. Curated, high-confidence variants are public-

ly available for all three children, HG002 (ftp://ftp-trace.ncbi.nlm.

nih.gov/giab/ftp/release/AshkenazimTrio/ (v3.3.2)), NA12877 and

NA12878 (ftp://platgene_ro@ussd-ftp.illumina.com/2016-1.0/hg19/).

We used bcftools (http://samtools.github.io/bcftools/) to select bi-

allelic SNPs on chromosomes 1–22 (�4 million). Merging and com-

paring with the variants produced by the variant caller pipelines

allows direct, ‘truth set-based’, benchmarking of the pipelines. (See

Supplementary Material D for command lines.) We restricted the

scope of our validation experiment to SNPs to avoid having to rec-

oncile different representations of identical variants, which often

arise for indels. Supplementary Material C.4 and C.5 contain valid-

ation results where we further excluded SNPs near indels, and

where we included only SNPs outside of high-confidence regions,

respectively.

Pipelines. We used two variant caller pipelines, both of which

use BWA-MEM 0.7.13 (Li and Durbin, 2009) for alignment, GATK

tools (McKenna et al., 2010) for local realignement and base quality

recalibration and take advantage of known SNPs and indels

(HapMap, dbSNP, 1000GP, Omni) according to GATK Best

Practices recommendations (DePristo et al., 2011; Van der Auwera

et al., 2013). In the variant calling step, one pipeline used GATK

HaplotypeCaller v3.5, and the other GATK UnifiedGenotyper

v2.7. Command lines are listed in Supplementary Material D.

(Additionally, Supplementary Material C.6 shows results of compar-

ing pipelines with different aligners).

Aggregating genotype calls. For each trio, we merged the SNPs

called by the two pipelines using bcftools, and filtered out the var-

iants that fell outside the high-confidence regions or become multi-

allelic. We aggregated the remaining SNPs (�4 million) by counting

the occurrences of each G1;G2
� �

combinations, where the trio geno-

type G1 is called by Haplotype Caller and G2 by Unified Genotyper.

During aggregation, we recorded missing variants as genotype 00

and disregarded phasing information, i.e. regarded both heterozy-

gous genotypes, 0j1 and 1j0, as 01. This yielded the observed counts

of joint trio calls N ¼ fNG1 ;G2g.
Sub-sampling. To test the robustness of our model, we repeated

the validation experiments for subsets of SNPs of different sizes. We

sub-sampled a pre-defined number of variants from N by choosing a

random subset of SNPs with uniform probability.

3.2 Running the estimator
Imputing ‘uncalled variants’. Neither Haplotype Caller nor Unified

Genotyper reports homozygous reference genotypes (i.e. 00) when

run on a single sample. Due to this limitation, the number of poten-

tial variants that do not get called 01 or 11 by either pipeline in any

family member, i.e. N 00;00;00ð Þ; 00;00;00ð Þ, is technically zero. With this

‘bulk’ of the 00 genotypes missing, we would not find the correct 00

! 01 and 00! 11 error rates. To fix this, we used an estimate of

the total number of polymorphic loci: the total number of variants

reported in dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/)

5:2� 107
� �

.

Details of Gibbs sampling. For each set of input data N, we per-

form Gibbs sampling as described in Section 2.4. We set the parame-

ters of the Dirichlet priors to a 0ð Þ
g ¼ 18g, b 0ð Þ

s;m ¼ 18s;m and

c 0ð Þ
s;m;i;j;k ¼ 1000, if i¼ j¼k and 1 otherwise 8s;m; i. The skewed

choice for c 0ð Þ represents our expectation that the error rates are

small �10�3
� �

. We draw the initial values of f ; h;E from their prior,

and let the Gibbs sampler run for s0 ¼ 50 000 iterations, allowing it

to reach equilibrium. We proceeded by running 100 000 iterations,

while recording samples with Ds ¼ 1000 period, to decrease the cor-

relation between consecutive samples. This procedure resulted in

100 samples, fN sð Þg, drawn from its posterior P N jNð Þ. With our

scipy-based Python implementation, this procedure takes 4.5 h,

using 1 CPU on the AWS instance m1.small.

3.3 Metrics
For each trio, we run the trio-based benchmarking, which produces

samples fN sð Þg. From this, we directly calculate the samples of

the confusion matrix for the child fn childð Þ sð Þg [from Equation (1)].

Using the formulas for precision and recall, we obtain their samples

fprec sð Þg and frec sð Þg, for both pipelines. We estimate each metric

with the average of its samples.

To investigate how sensitive our model is to the total number of

variants, we repeatedly sub-sample the observed counts N, and run

the trio-based benchmarking all over again. We do this for 8 differ-

ent number of variants (103—3� 106), repeating each sub-sampling

and estimation 10 times for every trio.

4 Results

The simplest method of analyzing trio results from the two pipelines

is counting Mendelian violations. This, alongside with the true geno-

typing errors in the child, is shown in Table 1. Comparing the two

columns shows that the difference in the number of Mendelian vio-

lations correctly indicates the difference in the actual number of gen-

otyping error between the two pipelines.

To see how accurately our trio-based benchmarking method can

compare the two pipelines, we compare estimates of precision and

recall with their true values for the children in Table 2. Although the

estimated values of the metrics significantly differ from the truth,

both the signs and magnitudes of differential metrics are accurately

Fig. 3. Validation experiment. We create two sets of trio variants called by a

pipeline using GATK Haplotype Caller and another using GATK Unified

Genotyper. Running our trio-based benchmarking model on this data produ-

ces estimates of various benchmarking metrics for both pipelines on all three

datasets. At the same time, we use the correct genotypes for the child’s truth

set to calculate the true values of the same benchmarking metrics. Gray shad-

ing marks the components that would be present even in a regular usage of

our model, when the truth set is not available
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estimated. This is also visible from the smaller estimation uncer-

tainty rtrio, reported by the model.

In Figure 4, we plot the deviation of the trio-based estimate from

the true value as a function of number of variants. While the estima-

tion error of the metrics themselves hovers around 0.1–0.01 even

when large number of variants are considered, the model’s error on

the differential metrics is around 10�3 for large number of variants,

and stay below 5� 10�3 even for a mere 1000 variants. Recall val-

ues (both absolute and differential) are estimated more accurately

then precision.

To understand the reason why our model is much better at esti-

mating differential metrics than the metrics themselves, we plot the

entries of the genotype confusion matrix (n) for NA12878 in

Figure 5. Our model accurately estimates the number of loci where

either one of the pipelines makes an incorrect call, but not both.

Since these entries of the confusion matrix contribute the most to

differential performance, it is no surprise that the difference in preci-

sion and recall are accurately estimated, even if their actual values

are not. We can intuitively understand this disparity in the following

way: We expect the two pipelines to have similar performance. Only

the 27 diagonal elements G1 ¼ G2
� �

of N convey information about

this common performance. On the other hand, all off-diagonal ele-

ments G1 6¼ G2
� �

tell us something valuable about the differential

performance. Since there are more of the latter, they paint a more

detailed picture and allow us to estimate the differences more

accurately.

5 Discussion

Aggregating observed Mendelian violations across many loci in

related individuals provides an approximate notion of the accuracy

of variant calling pipelines. When comparing two pipelines, we ex-

pect the better one to produce fewer Mendelian inconsistencies, and

indeed, as shown in Table 1, this is the case: Haplotype Caller pro-

duces fewer Mendelian violations in all three trios, and makes fewer

genotyping errors for all three children.

In the light of our results in Table 2, two caveats of this naive

method are immediately visible: First, the numbers of Mendelian

violations do not accurately reflect how much better is the better

pipeline. Second, the bare counts of Mendelian violations do not

even hint that Unified Genotyper actually has a higher recall on the

samples NA12877 and NA12878, something our trio-based bench-

marking method estimates correctly (Table 2). This exemplifies that

estimating precise quantitative differences between variant caller

pipelines, in the absence of a reliable truth set, is a non-trivial task.

As we demonstrated, our method can do this with high accuracy.

Previous trio-based benchmarking approaches range from fitting a

calibration curve between observed number of Mendelian violations

and true number of errors (Hao et al., 2004), to modeling haplotypes

and recombination events during meiosis (Kojima et al., 2013;

Table 1. Number of genotyping errors in the children’s genomes,

calculated from comparisons with the truth sets and the number of

Mendelian violations in their respective trios

Genotyping errors in child Mendelian violations in trio

HC UG HC UG

HG002a 7496 20 142 3946 7601

NA12877b 36 759 39 780 57 179 59 038

NA12878b 34 436 37 224 11 875 14 286

Note: Counts are shown for Haplotype Caller and Unified Genotyper.

With aGIAB (HG002), and bPlatinum Genomes truth VCF and BED files.

Table 2. Precision and recall of the two pipeline (HC: Haplotype Caller, UG: Unified Genotyper) on the children’s samples calculated by truth

set-based benchmarking and estimated with trio-based benchmarking, using all four million SNPs

Precision Recall

HC UG D ð10�3Þ HC UG D ð10�3Þ

HG002 Trutha 0.9980 0.9942 3.81 0.9994 0.9988 0.56

trio 0.9554 0.9529 2.50 0.9988 0.9985 0.33

rtrio 6 0.0076 6 0.0076 6 0.05 6 0.0006 6 0.0006 6 0.05

NA12877 Truthb 0.9986 0.9963 2.23 0.9902 0.9912 –1.02

trio 0.9525 0.9499 2.63 0.9834 0.9839 –0.47

rtrio 6 0.0006 6 0.0006 6 0.02 6 0.0001 6 0.0001 6 0.02

NA12878 Truthb 0.9986 0.9965 2.15 0.9910 0.9920 –1.04

trio 0.9945 0.9917 2.79 0.9964 0.9969 –0.46

rtrio 6 0.0008 6 0.0008 6 0.02 6 0.0003 6 0.0003 6 0.02

Note: D denotes the difference between HC and UG values. rtrio is self-reported uncertainty of the model, i.e. SD of the Gibbs samples.

With aGIAB (HG002), and bPlatinum Genomes truth VCF and BED files.

Fig. 4. Estimation errors. Top: Difference between estimated (from trio) and

true values (from truth set) of precision and recall. Bottom: Difference of the

estimated and true differential precision and recall. Markers show the results

obtained from the validation experiments run on sub-sampled variants.

Dashed lines highlight the 90th percentile of each group
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Markus et al., 2011; Peng et al., 2013). All previous approaches focus

on a set of variants produced by a single pipeline, disregarding all in-

formation about the correlation between pipelines. We showed that

by analyzing the joint counts (N) of the called genotype trios from

two pipelines one can estimate differential performance with high ac-

curacy (with uncertainty of 10�3). In fact, exactly because of the in-

formation contained in the correlations, the differential metrics can be

estimated with more than an order of magnitude lower uncertainty

than the metrics themselves. As a consequence, our uncertainty is an

order of magnitude lower than it was previously achieved with dyads

(Haaland and Skaug, 2013), and comparable to the uncertainties

obtained from pure simulations for trios (Hao et al., 2004).

Although our current method is limited to using bi-allelic var-

iants from trios, the mathematical framework enables straightfor-

ward generalization. Data from multi-allelic variants and larger

pedigrees can be incorporated by expanding the sets I and T. The de-

mand of computational resources, which increases exponentially

with the sizes of I and T, can be curbed by truncating the model to

limit the number of genotyping errors per locus, which enables im-

plementation with sparse arrays.

One limitation of our method is the need for harmonized variant

representation in the input. While this problem is solved for trios by

Toptaş et al. (2018), there is no easily-deployable method to faith-

fully match six samples with different variant representation.

Another limitation, stemming from the limitation of the input data,

is that some of the Mendelian-consistent trios are in fact results of

double (or triple) errors. Our method relies on explicit assumptions

about error profiles, its result is accurate only if these assumptions

hold.

Our method estimates aggregate metrics. The estimated com-

plete distribution N and the person-specific confusion matrices n pð Þ

contain a wealth of additional information that can be directly used

to improve the performance of variant calling. Bayesian model aver-

aging [e.g. Fragoso and Neto (2015)] can be used to reconcile geno-

types at loci where the pipelines do not agree. By counting how

often one pipeline is right when the other is wrong for each called

trio combination G1;G2
� �

, one can estimate the posterior probabil-

ity of the correct genotype, P g jG1;G2
� �

. E.g. from the confusion

matrix n shown on Figure 5, we can calculate the probability of HC

being correct when HC and UG call 01 and 00, respectively:

P 01 j 01; 00ð Þ ¼ n01;01;00=
P

i2I ni;01;00 � 0:72ð Þ. One can imagine

extending this scheme to a council of pipelines where, instead of giv-

ing equal say to each pipeline, a weighted voting is carried out to de-

termine the genotype of each variant.
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