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Abstract

Curvilinearity is a perceptual feature that robustly predicts preference ratings for a variety of
visual stimuli. The predictive effect of curved/angular shape overlaps, to a large degree, with
regularities in second-order edge-orientation entropy, which captures how independent edge
orientations are distributed across an image. For some complex line patterns, edge-orientation
entropy is actually a better predictor for what human observers like than curved/angular shape.
The present work was designed to disentangle the role of the two features in artificial patterns
that consisted of either curved or angular line elements. We systematically varied these patterns
across two more dimensions, edge-orientation entropy and the number of lines. Eighty-three
participants rated the stimuli along three aesthetic dimensions (pleasing, harmonious, and complex).
Results showed that curved/angular shape was a stronger predictor for ratings of pleasing and
harmonious if the stimuli consisted of a few lines that were clearly discernible. By contrast, edge-
orientation entropy was a stronger predictor for the ratings if the stimuli showed many lines,
which merged into a texture. No such differences were obtained for complexity ratings.
Our findings are in line with results from neurophysiological studies that the processing of
shape and texture, respectively, is mediated by different cortical mechanisms.
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One of the central questions in experimental aesthetics is how objective image properties
affect the human preference for particular visual stimuli. For example, the founder of exper-
imental aesthetics, Gustav Theodor Fechner (1801-1887), studied whether particular size
proportions and other characteristics make simple objects more pleasing to human observers
(Fechner, 1876). Understanding and predicting human aesthetic preferences is a hot topic
not only in vision research but also in marketing studies and product design (Landwehr
et al., 2012; Wang et al., 2019).

It is generally agreed that aesthetic experience results from an interplay of three funda-
mentals: perception, cognition, and emotion (Chatterjee & Vartanian, 2014; Graf &
Landwehr, 2015; Jacobsen, 2006; Redies, 2015). It has been argued that some of the mech-
anisms that mediate aesthetic experience are universal among human observers (Bell, 1914)
because they relate to common perceptual, cognitive, and/or affective processes (Berlyne,
1974; Eysenck, 1940; Redies, 2015). In support of this notion, cross-cultural studies have
provided evidence that humans share preferences for perceptual features such as complexity,
symmetry, proportion, and contrast (for a comprehensive review, see Che et al., 2018). More
recently, complex global image properties have been associated with visual preference (for a
review, see Brachmann & Redies, 2017). Examples are a scale-invariant Fourier spectrum
(Graham & Field, 2007; Redies et al., 2007), fractality (Taylor et al., 2011), or regularities in
the distribution of luminance and color edges (Brachmann et al., 2017; Braun et al., 2013;
Redies et al., 2017). Presumably, such physical stimulus features are processed in a bottom-
up fashion by neural mechanisms that are fast and automatic.

The contribution of cognition to aesthetic experience involves cultural and individual
aspects, such as the historical context, aesthetic concepts, artistic intentions, and expertise
as well as the observer’s individual preferences (Danto, 1981; Graf & Landwehr, 2015;
Jacobsen, 2006; Leder et al., 2004). Cognitive processing, which relies more strongly on
top-down mechanisms, is slower and highly individual. It has been proposed that processing
in the perceptual and cognitive channels occurs in parallel, but the two channels interact
prior to reaching a conscious aesthetic experience (Redies, 2015).

The role of emotions in aesthetic experience has been less well studied (for reviews, see
Mastandrea, 2015; Silvia, 2014). On one hand, emotions can be elicited during an aesthetic
experience, for example, when viewing an artwork. On the other hand, emotions can mod-
ulate aesthetic experience.

A stimulus property that has a striking and robust impact on our aesthetic experience is
the shape of objects. Confirming earlier observations (Hevner, 1935; Hogarth, 1753;
Poffenberger & Barrows, 1924; Stratton, 1902), Bar and Neta (2006) found that human
observers rated curved contours and figures as more pleasing than angular ones. They pro-
posed that angularity reflects a potential danger; it is thus perceived as less attractive because
it induces fear, for example, by sharp-edged objects, such as knives or thorns. Indeed, angu-
lar stimuli elicit higher amygdala activation in neuroimaging studies (Bar & Neta, 2006).
However, Palumbo et al. (2015) studied approaching and avoiding reactions to curved and
angular polygons and concluded that the preference for curved forms is due to an intrinsic
liking of positive attributes of curvilinearity rather than to a perceived threat associated with
angular shapes. For simple polygons, Bertamini et al. (2019) found that responses of human
observers to curved shapes were faster than to angular ones in different discrimination tasks,
suggesting that the human visual system processes curvature more efficiently.

The preference of curvilinear shapes has been confirmed in several studies (Bertamini
et al., 2016; Blazhenkova & Kumar, 2018; Gomez-Puerto et al., 2016; Silvia & Barona,
2009), including a cross-cultural investigation (Gomez-Puerto et al., 2018). This preference
is even found in great apes, but less pronounced than in humans (Munar et al., 2015).
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Observers prefer curvilinearity also in architecture (Grebenkina et al., 2018; Thommes &
Hiibner, 2018; Vartanian et al., 2013) and commercial products (Westerman et al., 2012).
Wang et al. (2019) showed that the preference of curvature can be subject to a framing
effect. Specifically, they reported that hedonic (but not utilitarian) product type moderates
the effect of typeface curvature on consumer’s product preferences. Last, but not
least, individual differences in the extent of curvature preferences have been described
(Cotter et al., 2017).

Grebenkina et al. (2018) studied artificial line patterns that consisted of either curved
(smooth) or straight (angular) lines (their Experiment 6). In addition to line shape, their
patterns differed systematically in edge-orientation entropy, which is a measure of how
uniform edge orientations are distributed across the full spectrum of orientations in an
image (first-order entropy), or how independent edge orientations are distributed across
an image (second-order entropy; Geisler et al., 2001; Redies et al., 2017). In both cases,
Shannon entropy serves as a measure for histogram uniformity. The focus of the present
study is second-order entropy of edge orientations (henceforth abbreviated as Entropy). To
calculate this value, the orientation of each edge clement is related to the orientation of all
other edge elements in the same image by pairwise comparison. For all edge pairs, the
orientation differences are plotted in a histogram. Entropy of the resulting histogram is
high if all orientation differences are equally likely to occur for all edge pairs at any position,
that is, if edge orientations do not show regularities across an image, such as collinearity,
parallelism, or cocircularity (Geisler et al., 2001). Redies et al. (2017) found that traditional
artworks of different cultural backgrounds are characterized by high second-order edge-
orientation entropy. Edge-orientation entropy should not be confused with Shannon entropy
of gray level values, which is a widely used measure of image statistics that refers to the
probability of encountering particular gray level values in an image (Kersten, 1987).

Because straight lines represent exactly one orientation and curved lines comprise many
orientations, Entropy and curved/angular shape relate to each other. Grebenkina et al.
(2018) reported that the two features share a large portion of predicted variance for prefer-
ence ratings. For ratings of how pleasing and harmonious particular stimuli are, edge ori-
entation entropy turned out to be a more powerful predictor than curvilinearity; in other
words, shape was not the decisive feature that determined the aesthetic rating, but it was
partially overridden by edge-orientation entropy. This finding is incongruent with the gen-
erally observed, robust preference for curved over angular shapes. In view of the partially
overlapping predictive power of edge-orientation entropy and shape, the present study was
designed to disentangle the individual contribution of the two measures to visual preference.

To analyze the effect of edge-orientation entropy and shape on visual preference, we
studied artificial abstract patterns that consisted of either curved or angular lines. In addi-
tion, the lines were arranged so that the stimuli exhibited either a low or a high degree of
second-order edge-orientation entropy. As a third variable in the experiment, we systemat-
ically varied the number of lines per image (5, 10, 20, or 40 lines; 2 x 2 x4 design).
We hypothesized that a small number of lines would strengthen the effect of line shape on
the ratings because each individual line in the stimulus stands out more clearly. Conversely, a
large number of lines cause individual lines to merge perceptually into an overall texture.
We expected that, in this case, edge-orientation entropy would have a larger effect on aes-
thetic ratings than line shape, as shown previously (Grebenkina et al., 2018). Moreover, we
hypothesized that a line pattern is preferred if edge-orientation entropy is high. Similar
results have been obtained previously for several types of natural and artificial images that
are aesthetically preferred (Grebenkina et al., 2018), including traditional artworks of dif-
ferent cultural backgrounds (Redies et al., 2017).
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To cover different aspects of aesthetic perception, our participants rated the line patters
along the dimensions of pleasing, harmonious, and complex. These rating terms are the
dependent variables in our experiment; they are italicized throughout the remainder of
the text. Previous studies revealed a difference between the terms pleasing and harmonious
in the evaluation of aesthetic stimuli. Whereas pleasing describes the subjective emotional
arousal that is elicited by an image (Cupchik & Gebotys, 1990), harmonious reflects
more closely the pictorial structure of an image (Redies et al., 2015). Lyssenko et al.
(2016) showed that the usage frequency of such structure-related terms correlates with
statistical image properties.

Furthermore, we used the rating dimension complex, which depends primarily on the
number and/or density of pictorial elements in an image (Van Geert & Wagemans, 2019).
In the present study, we manipulated Line Number as this changes objective complexity. We
asked whether perceived (subjective) complexity as a dependent variable is modulated by
objective complexity and, in addition, by Shape and Entropy, which are the focus of the
present investigation. Paradoxically, although curved lines display more orientations that
angular (straight) lines, they can be perceived as less complex (Bertamini et al., 2019). The
relation between subjective and objective complexity is thus not straightforward and can
depend on other stimulus factors, for example, symmetry (Gartus & Leder, 2017) or other
factors that reflect order (Van Geert & Wagemans, 2019). By contrast, the effect of objective
complexity (as an independent variable) on liking has been studied in more detail, but with
heterogeneous results. People prefer an intermediate degree of physical complexity on aver-
age (Berlyne, 1974), but this general preference is subject to relatively large interindividual
differences (Gicliitiirk et al., 2016).

Last, but not least, we wanted to contribute to the understanding of how interindividual
differences relate to higher preferences of aesthetic images. To this aim, we recorded
personality traits of our participants with the 50 item International Personality Item Pool
(IPIP-50) Big-Five Factor Test (Goldberg, 1992).

In summary, we hypothesize that human observers prefer curved shape in visual stimuli
where line shape is a prominent perceptual feature, and high edge-orientation entropy where
lines merge into a texture. The present work contributes to our understanding of the differ-
ential role of objective stimulus features in the aesthetic evaluation of different types of
stimuli.

Methods

Ethics Statement

The study was approved by the ethics committee of Jena University Hospital. It was carried
out in accordance with the ethical guidelines of the Declaration of Helsinki. All volunteers
gave their written consent before the experiment started.

Participants

Participants were recruited by online advertisements and postings in public areas and
received 8 EUR as a reward for taking part in the study. A total of 83 students (male:
N=23, female: N=60) from diverse fields of studies participated in this experiment.
All participants were between 18 and 43 years of age (M =23.45 years, SD=4.57).
The majority came from Jena, Germany, and surrounding areas. The participants stated
that they had normal or corrected-to-normal vision. In addition, we gathered the handedness
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of our participants via The Edinburgh Handedness Inventory (Oldfield, 1971; 8 left-handed, 75
right-handed).

Edge-Orientation Entropy

Second-order entropy of edge orientations is a measure of how independent the orientations
of pairs of edges are across an image (see the Introduction section). To calculate
second-order entropy in the present study, we carried out a pairwise comparison of edge
orientations, as originally described by Geisler et al. (2001) and modified by Redies et al.
(2017). In brief, luminance edges were extracted by using 24 oriented Gabor filters, which
were equally spaced and represented a full circle of orientations. The orientation of each edge
element was then related to the orientation of all other edge elements in the same image by
pairwise comparison. Next, we obtained histograms that indicated the weighted probability
of observing an edge element at given distance d and direction o with an orientation differ-
ence 0 for any given (reference) edge element.

As a measure for the uniformity of the obtained 6 histograms, we calculated the Shannon
entropy H, as follows

HX) =~ p() - Togp(x) W

i=1

where X is the 6 histogram at distance ¢ and angle o. The theoretical entropy maximum is
about 4.585 for the 24 orientation bins of the 0 histogram.

A high entropy value indicates a high degree of uniformity in a 0 histogram, that is, all
orientations encountered relative to the orientation of the reference edges are about equally
likely to occur, and orientations are thus independent of each other. A low entropy value
indicates a less uniform histogram, that is, particular orientations are more prominent than
others so that the orientation of one edge predicts the orientation of other edges in the image
with some nonrandom probability. To simplify the quantification of the results, we averaged
entropy across direction «. Finally, we averaged all nonzero entropy values for distance
ranges from 20 pixels to the maximal distance encountered between edge elements in the
image. Edge pairs that were less than 20 pixels apart were neglected to exclude regions of
local collinearity (for more details of the calculations, see Redies et al., 2017).

Stimuli

The stimuli were constructed by systematically modifying three independent variables, which
are henceforth capitalized: Shape (angular and curved), Edge-Orientation Entropy (or
simply Entropy; high or low), and Line Number (5, 10, 20, and 40 line elements), resulting
in 16 possible combinations of the three variables (2 x 2 x 4 design). For each combination,
10 images were generated (160 images in total).

To create line elements of angular or curved Shape, we followed the procedure described
by Grebenkina et al. (2018), with minor modifications (for exemplary patterns, see Figure 1).
In brief, we first defined sets of fixed line elements, with each consisting of three points in a
plane. The three points can be connected either directly by drawing a straight line from the
first point to the second point and from the second point to the third point, respectively. This
procedure results in a triangular line element with one open side because there is no con-
nection from the first point to the last point. We refer to the Shape of this type of line element
as angular. Alternatively, the three points of each line element can be used to define a
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Figure |. Examples of the stimuli with 5 lines (A), 10 lines (B), 20 lines (C), and 40 lines (D). In each case,
examples for low and high Edge-Orientation Entropy, as well as for angular and curved Shape are shown.

quadratic Bézier curve, which has no sharp corner. We refer to this type of line Shape as
curved. Each set of lines contained shorter and longer lines (Figure 1). Moreover, the inter-
vening (second) points differed in their positions relative to the first and third points.

To create images with either high or low Edge-Orientation Entropy, we chose an evolu-
tionary approach. In a first step, we positioned each element of a line set at a
random position within a defined drawing area and measured Entropy of the resulting
image. A mutation of this seed image was obtained by altering the position of each of its
elements with a possibility of 0.1 by translation or rotation, either of which was selected
randomly. In case of a translation, an element was shifted by a random distance in each
direction which was in between zero and the size of the drawing area, times a strength
parameter. In case of a rotation, we rotated an element around its own center by an angle
in between —7/2 and =/2, times a strength parameter. We started with a strength parameter of
0.5 and decreased it linearly until it reached 0.01 so that large changes occurred at the begin-
ning of the process and later mutations changed the image less and less. If a mutation caused
the line element to be positioned partially outside of the canvas, it was shifted back onto the
drawing area. After each mutation, we measured the Entropy of the resulting image.
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Table I. Mean Edge-Orientation Entropy for Each Category of Pattern

(2 X 2 x 4 design, N=10).

Angular Curved
M£SD M+SD
5 Lines
Low Entropy 3.66 £0.07 3.70£0.10
High Entropy 3.85+0.04 3.95+£0.04
10 Lines
Low Entropy 3.97+£0.06 3.96 £0.08
High Entropy 4.14+0.06 4.194+0.05
20 Lines
Low Entropy 3.75£0.12 3.86£0.10
High Entropy 4.20+£0.02 4.27 +£0.02
40 Lines
Low Entropy 3.96 +0.01 3.90+0.08
High Entropy 4.17£0.08 4.234+0.08

To generate images of high Entropy, the mutated image was discarded if Entropy had decreased.
If Entropy had increased, the mutated image was kept and used as the seed image for the next
generation of line pattern. The evolutionary procedure was stopped when changes in Entropy
became exceedingly small, as Entropy converged to a maximal value. The same procedure, but
with opposite signs, was used to generate images of low Entropy.

As mentioned in the Introduction section, Shape and Entropy cannot be manipulated inde-
pendently because curved lines represent more edge orientations by definition. To optimally
match the automatically generated stimuli to our preconceived experimental conditions, we
manually split the resulting images of both Shape groups in a low or a high Entropy condition,
respectively. Average Entropy values for all conditions are given in Table 1 (see Supplementary
Table 1 for statistical indices). To control for remaining Entropy differences between conditions,
we entered continuously measured Entropy as a covariate into an analysis of covariance.
All factors of this analysis were the same as in the design described in the Results section.
This modification did not change the result pattern relevantly (Supplementary Table 2).

To vary Line Number, we generated patterns that were composed of 5, 10, 20, or 40
line elements.

Stimuli and data of this study are available at the Open Science Framework (https://osf.
10/zx6ph).

Procedure

At first, participants had to fill out a questionnaire with their biographical data (age, gender,
profession, and academic level). They then completed The Edinburgh Handedness Inventory
(Oldfield, 1971). To familiarize the participants with the rating scale, they completed an
introductory practice trial with five images that looked similar to those from the experimen-
tal set of stimuli but were not included in the set. The test program itself was created with
PsychoPy (Peirce, 2009).

During the main experiment, a randomized stimulus set of 160 pictures was shown to the
participants in three blocks, in which participants had to rate one of the dimensions pleasing,
complex, or harmonious, respectively. We randomized the sequence of the blocks using a
3 x 3 Latin square to avoid effects of block order.
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For rating, we used a numeric scale that ranged from 1 (not pleasing/harmonious/complex)
to 6 (very pleasing/harmonious/complex). Participants entered their ratings by pressing keys
on a standard keyboard. Every 25 pictures, participants had the possibility to take a break.
The stimuli were displayed on a gray screen at a viewing distance of 70 cm that was assured
by a chin rest (viewing angle, 11.06°). The pictures had a size of 500 x 500 pixels (on screen
13.5 x 13.5 cm). For each run, a fixation cross was presented first with a duration of 0.5 ms,
followed by the stimulus image displayed for 2 s. The exposure time was sufficiently long to
reach a stable aesthetic rating (Schwabe, 2018).

After the testing procedure, all participants had to fill out the IPIP-50 Big-Five Factor
Test (Goldberg, 1992; Gow et al., 2005). Finally, participants were asked to give a feedback
on the experimental procedure. About a third (N=27) of the participants reported being
influenced by their pareidolic impressions.

Statistical Analysis

First, we analyzed the rating data by repeated-measures analyses of variance (ANOVAs) and
pairwise comparisons. We tested sphericity by Mauchly’s tests. Where assumptions of sphe-
ricity were violated, we corrected degrees of freedom via the Greenhouse—Geisser procedure.
The epsilon (egg) is reported where appropriate.

For pairwise comparisons, Cohen’s d,,, was calculated using the averaged standard devi-
ation of the compared measurements (Lakens, 2013). In case of unplanned comparisons,
corrections for multiple tests were performed following the Bonferroni-Holm approach.
A 2x2x4 ANOVA was calculated with the factors Shape (angular, curved), Entropy
(low, high), and Line Number (5, 10, 20, 40). In addition, we assessed whether the ratings
increased linearly with increasing Line Number by polynomal contrast modeling.

As an alternative approach, we used linear mixed-effects models (Ime4 library and
ImerTest library in R version 4.0.0; Bates et al., 2015; Kuznetsova et al., 2017) in order to
assess the effects of Line Number, Shape, and Entropy on ratings of pleasing, harmonious,
and complex while taking into account the random variations that existed at both the par-
ticipant and stimulus levels. For each rating category, separate linear mixed models were
constructed using maximum likelihood estimation with incremental model complexity, and
the best models were selected based on the Akaike information criterion. Following the
recommendation by Barr et al. (2013), the random-effects structure was maximal, such
that the random intercepts and slopes for the stimulus features within participants were
included in the models unless nonconvergence was encountered. Subsequently, Shape (angu-
lar vs. smooth), Line Number (modeled as a continuous variable), and Entropy (high, low)
were included as fixed effects. Based on Satterthwaite’s method to approximate degrees of
freedom, we calculated p values for the ¢ tests.

Results

Figure 2 shows box plots of the rating results. For the linear mixed-effects models, a com-
prehensive list of statistical parameters is provided in Supplementary Table 3.

Rating Dimension Pleasing

The analysis revealed a main effect of Shape for pleasing. Participants preferred curved over
angular shapes—M yveq=2.77£0.38 SD, M peuiar=2.50+0.47 SD, F(1, 82)=12.56,
p=.001, 11]2) =0.13, d=0.37, confidence interval [CI] [0.20, 0.51]. There was also a main
effect of Entropy, F(1, 82)=66.35, p <.001, 11,2, =0.45, d=-0.60, CI [0.44, 0.74]. On average,
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Figure 2. Box plots for ratings of pleasing (A), harmonious (B), and complex (C) for each level of Line Number
and Entropy, respectively (for color coding, see top of the figure).

participants liked images with high Entropy better than those with lower Entropy
(M yjqn=2.84£0.48 SD, M, =2.43+£0.29 SD). Furthermore, Line Number had an
impact on participants’ pleasing ratings, F(3, 246)=24.20, p <.001, 11127 =0.23, with numer-
ically increasing ratings for images with more lines—Mspes=2.20£0.24 SD,
MlOlines =2.404+0.29 SD, M201ines =2.874+0.39 SD, M401ines =3.054+0.24 SD; 5 versus 10:
1(82)=-3.35, p =.01, d=-0.23, CI [-0.43, —0.08]; 10 versus 20 lines: #(82)=-6.37, p < .01,
d=-0.64, CI [-0.79, —0.47]. Only the rating difference between 20 and 40 lines did not reach
significance (p >.05). Polynomial contrast modeling revealed that ratings of pleasing
increased linearly with Line Number increasing from 5 to 40 lines, F(1, 82)=25.01,
p <.001, ng =.234.

These main effects, however, were qualified by the interactions of Shape x Line Number,
F(3, 246)=23.42, p <.001, nf, =.22, ¢66=0.74. In line with our hypotheses, paired ¢ tests
revealed a significantly smaller preference for curved stimuli for 40 lines compared with
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images with fewer lines—35 lines: #(82) =—-6.50, p < .001, d=-0.47, CI [-0.65, —0.23]; 10 lines:
t(82) =—4.95, p <.001, d=-0.50, CI [-0.64, —0.30]; 20 lines: #(82)=-2.52, p =.013, d=-0.26,
CI [-0.44, -0.07]; 40 lines: #(82) =.04, p >.05, d=0.00, CI [-0.28, 0.25]. Generally, this Shape
effect decreases with increasing Line Number and is not significant for 40 lines. In other
words, people prefer curved over angular shapes only for images with few lines (20 lines and
less). Paired ¢ tests revealed a significantly reduced effect of Shape for 20 versus 10 lines, ¢
(82)=-2.94, p =.004, d=-0.22, CI [-0.37, —0.05], and for 40 versus 20 lines, #(82)=-4.15,
p<.01, d=-0.26, CI [-0.44, —0.08].

Furthermore, the interaction of Entropy x Line Number was significant in this analysis,
F(3, 246) =30.51, p <.001, 172:0.27, €g6=0.73. Contrary to the Shape effect, the benefit
for high versus low Entropy is only significant for images with more than 5 lines—>5 lines:
1(82)=-1.75, p =.84, d=-0.06, CI [-0.26, 0.15]; 10 lines: #(82)=-7.19, p <.01, d=-0.51,
CI [-0.66, —0.34]; 20 lines: #(82)=-7.53, p< .01, d=-0.83, CI [-1.01, —0.63]; 40 lines:
t(82)=-7.13, p< .01, d=-0.39, CI [-0.65, —0.14]). Paired ¢ tests revealed a significantly
smaller effect of Entropy for 5 compared with all Line Numbers—all #(82) <-5.47, all
p<.001, all d<-0.80.

There was also an interaction of Shape x Entropy, F(1, 82)=9.12, p =.003, 112:0.10,
ecg = 1.0. The Entropy effect in the direction described earlier is generally larger for curved
stimuli compared with angular images, #(82)=-3.02, p <.003, d=-0.47, CI [-0.62, —0.31].
However, this difference further depends on Line Number, as indicated by a three-way
interaction of Shape x Entropy x Line Number, F(3, 246)=5.33, p=.001, n,z, =0.06,
€66 =0.934. We analyzed this interaction by performing separate ANOVAs for all levels
of Line Number with the factors Entropy and Shape, and comparing their result patterns.
For 5 lines, there was a significant effect of Shape only, F(1, 82) =42.25, p <.001, 1712) =0.34,
ece= 1.0, and none for Entropy or any interaction (p >.05). For 10 lines, both main effects,
Shape, F(1, 82) =24.48, p <.001, 17]27 =0.23, egg= 1.0, and Entropy, F(1, 82)=51.73, p <.001,
1712, =0.39, e=1.0, were present as well as their interaction, F(1, 82)=18.86,
p <.001, n2=0.18, e5o=1.0. For 20 lines, significant effects for Shape, F(1, 82)=6.38,
p=.013, 112:0.07, egg=1.0, and Entropy, F(1, 82)=56.73, p <.001, nﬁ:0.4l, egg=1.0,
were observed, but not for their interaction. For 40 lines, there was a strong effect for
Entropy, F(1, 82)=50.88, p <.001, 1712, =0.38, €gg=1.0, no effect of Shape, and only a
modest interaction that did not survive Bonferroni correction (critical alpha =.013).

Taken together, the influence of Shape was only seen for images with few lines, while the
influence of Entropy was stronger for images with many lines. These effects remain stable
even when continuous Entropy is taken into account (see the Methods section and
Supplementary Table 2 for details). Figure 3 shows a simplified hypothetical model of the
differential effect of Shape and Entropy on pleasing ratings.

The linear mixed-effects model analysis (Supplementary Table 3) revealed significant main
effects for Shape, Line Number, and Entropy, as well as for all two-way interactions. Main
effects were strongest and positive for Line Number, §=0.035, SE=0.0013, #(13030) =27.0,
p <.0001, and Entropy, f=0.163, SE=0.0610, #(179.6)=2.67, p <.01. Moreover, curved
Shape was liked more than angular Shape, f=0.597, SE=0.083, #(121.4)=7.20, p <.0001,
but this effect decreased with increasing Line Number (interaction for Shape x Line
Number); f=0.0134, SE=0.0015, #(13030) =8.94, p <.0001. There was also an interaction
for Shape x Entropy, f=0.154, SE=0.0402, #(13030) =3.83, p <.001. Curved Shape was a
stronger predictor when Entropy was high. Also, the predictive influence of Entropy was
stronger when Line Number was higher (interaction for Entropy x Line Number);
£=0.0092, SE=0.0015, #(13030)=6.12, p <.0001.
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Pleasing

Line Number

Figure 3. Hypothesis of how the rating of pleasing depends on Line Number. With increasing Line Number,
the influence of Shape effects, such as the preference for curvature, decreases, whereas the influence of
Entropy effects, such as the preference for higher Entropy, increases.

The linear mixed-effects model accounted for 8.4% of the variance without the random-
effect structure (R*m) and for 35.6% when it was included (R’c). These findings largely
confirm the results from the ANOVA analysis with respect to the influence of Shape, Line
Number, and Entropy on pleasing ratings, as well as their two-way interactions. The three-
way interaction of Shape x Line Number x Entropy did not reach significance in the mixed-
effects analysis.

Rating Dimension Harmonious

The pattern of ANOVA results for the rating of harmonious was similar to pleasing ratings in
general. There was a prominent main effect of Shape, F(1, 82) =29.06, p <.001, n; =0.26,
d=-0.60. Curved stimuli were rated as more harmonious than angular ones (M .= 3.00 +
0.66 SD, M 4g10r =2.594+0.70 SD). There was also a main effect of Entropy, F(1, 82)=
68.55, p <.001, r]f, =0.46, d=0.79, with high-Entropy images being rated as more harmonious
(Mg, =3.01£0.36 SD, M,,,=2.54+0.24 SD). No main effect of Line Number was
observed in the ANOVA. Also, we found no evidence from polynomial contrast modeling
that participants’ rating of harmonious increased linearly with Line Number increasing from
5 to 40 lines, F(1, 82)=0.12, p <.733, 1712) =.001.

These main effects were qualified by the interaction of Shape x Line Number, F(3, 246)=
43.18, p <.001, r]f, =0.35, eg=0.72. The Shape effect decreases with increasing Line Number,
with a significant decline between 10 and 20 lines, #(82) =-7.99, p <.001, d=-.058, and between
20 and 40 lines, #82)=-2.91, p=.005, d=0.55.

Also similar to the pleasing rating, we found an interaction of Entropy x Line Number,
F(3, 246) =48.00, p <.001, 1112, =0.37, eg6=0.73. The effect of Entropy increased between 5
and 10 lines, #(82)=-7.5, p <.001, d=-0.87, as well as between 10 and 20 lines, #82) =-6.3,
p <.001, d=-0.59, before decreasing again between 20 and 40 lines, #(82)=-6.7, p <.001,
d=0.57. Participants’ judgment of harmonious depended more strongly on Entropy for
images with more than five lines.

We also found a significant interaction of Shape x Entropy, F(1, 82)=12.00, p =.001,
1112, =0.13, nﬁ =1.00. This indicated a generally larger benefit of high Entropy in ratings of
curved compared with angular stimuli, #82)=-3.5, p=.001, d=-0.32, CI [-0.41, —0.16].
Post hoc inspection of a significant three-way interaction, F(3, 246)=11.00, p <.001,
112 =0.12, of this effect with Line Number showed, however, that the effect was significant
only for stimuli with 10 lines, #(82) =-6.32, p <.001, d=-0.83, CI [-0.93, —0.64].

Like in the ANOVA analysis, we obtained a generally similar result pattern for the ratings
of pleasing and harmonious in the mixed-effects model analysis (Supplementary Table 3).
Again, there were main effects for Shape, Line Number, and Entropy. The main effects were



12 i-Perception 11(5)

strongly positive for Entropy, f=0.189, SE=0.0770, #(198.8) =2.46, p =.015, and curved
Shape was preferred over angular Shape, f=0.908, SE=0.0879, #(156.3) =10.33, p <.0001.
The mixed-effects analysis revealed an effect of Line Number that was not seen with
the ANOVA. Harmonious ratings were higher with increasing Line Number, f=0.013,
SE=0.0015, #13030)=8.28, p <.0001. Like in the ANOVA analysis, all two-way
interactions were significant (Supplementary Table 3). There was also a significant
three-way interaction of Shape x Line Number x Entropy. The mixed-effects model
accounted for 6.3% of the variance without the random-effect structure (R*m) and for
31.1% when it was included (R?c).

Rating Dimension Complex

For ratings of complex, there was a main effect of Line Number—M s ;,.s = 1.67 +0.68 SD,
M0 lines =2.45+0.52 SD, Mogjines =3.61 £0.08 SD, and Mygines =4.68 £0.12 SD, F(3,
246)=299.42, p <.001, n§:0.79—with higher ratings of complex for images with more
lines—5 vs. 10 lines: #(82)=-13.59, p <.001, d=-1.29, CI [-1.44, —1.18]; 10 vs. 20 lines:
1(82)=-17.57, p <.001, d=-1.81, CI [-1.93, —1.65]; and 20 vs. 40 lines: #(82)=-15.35,
p <.001, d=-1.14, CI [-1.30, —0.09]. Polynomial contrast modeling showed that partici-
pants’ rating of complex increased linearly with Line Number increasing from 5 to 40
lines, F(1, 82)=321.74, p <.001, 112 =.797.

Moreover, the ANOVA indicated a two-way interaction of Shape x Entropy, F(1, 82) =
82.00, p =.045, 17]27 =0.05. Participants rated curved stimuli with high Entropy as less
complex. This interaction, however, was not stable in post hoc comparisons (all p >.144,
all d <0.14). In contrast to ratings of pleasing and harmonious, there were no significant
differences for the effect of Entropy and Shape (all p >.05).

The linear mixed-effects analysis revealed a main effect of Line Number only. As expected
and already seen in the ANOVA, images with higher Line Number were rated as
more complex, f=0.0836, SE=0.0011, #13030)="73.4, p <.0001. There was a significant
two-way interaction for Line Number x Entropy, =0.0031, SE=0.0013, #(13030)=2.35,
p=.019. Images of high Entropy were rated as less complex when Line Number was low.
We also observed a trend for an interaction of Shape x Entropy, f=0.0657, SE=0.0353,
1(13030) = 1.86, p=.063, but the three-way interaction was not significant (Supplementary
Table 3). The mixed-effects model accounted for 47.8% of the variance without the random-
effect structure (R>m) and for 60.3% when it was included (R*c).

IPIP-50 Big-Five-Factor Test

The analysis of personality trait effects was carried out with a sample of 78 participants.
Five people had to be excluded because they did not complete the questionnaire.
Upon inspection of the trait distributions of all Big-Five dimensions, we noticed that the
variance in our sample was comparatively low across all personality dimensions (see
Supplementary Figure 1). In addition, the distribution of the traits for Agreeableness,
Conscientiousness, and Openness/Intellect was shifted toward high values. For example,
only two participants scored lower in Openness/Intellect than the scale midpoint of
30 points. We thus concluded that our sample of participants was not well suited to analyze
the influence of personality traits on the ratings. Nevertheless, we share the original data for
inclusion in possible future studies (Open Science Framework: https://osf.i0/zx6ph).
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Discussion

In the present study, we investigated the relation between subjective aesthetic ratings and the
shape and spatial distribution of oriented line elements in visual stimuli. In designing the
experiment, we took up an observation by Grebenkina et al. (2018) who showed that par-
ticipants prefer complex abstract line patterns, in which the edge orientations are distributed
independently across the stimulus. As a measure of how independent the distribution of edge
orientations is, the authors calculated second-order Shannon entropy of edge orientations
(Geisler et al., 2001) for each image. In their study, edge-orientation entropy turned out to be
a more powerful predictor for aesthetics ratings of pleasing and interesting than shape
(curved or angular). This finding is at odds with the general preference for curved over
angular shapes that was found robustly in many other studies (see the Introduction section).
Speculating about the origin of this discrepancy, Grebenkina et al. (2018) pointed out that
their stimuli consisted of many lines, thus forming a texture, in which the shape of individual
lines was no longer a perceptually prominent feature. The aim of the present study was to test
this notion by systematically reducing the number of lines in the stimuli until the shape of
individual lines became perceptually more conspicuous.

Stimulus-Dependent Effects of Curvilinear Shape and Edge-Orientation Entropy

The present results support the idea that people prefer curved stimuli over angular ones
overall. Specifically, participants rated curved stimuli as more pleasing and harmonious than
the angular stimuli (Figure 2A and B). At the same time, participants also rated stimuli more
highly if they showed higher Edge-Orientation Entropy. Shape of the lines was a stronger
predictor for ratings of pleasing and harmonious when participants viewed a few lines only
(e.g., five lines). Vice versa, Edge-Orientation Entropy was a stronger predictor of the ratings
when many lines merged into a texture (e.g., with 40 lines; Figure 2A and B; for a schematic
summary diagram, see Figure 3). These results imply that the two determinants of visual
preference play a different role in shapes and textures, respectively. Our findings thus resolve
the apparent incongruity between the results by Grebenkina et al. (2018) and the widely
reported preference for curved over angular shapes.

Differences in the perception between shapes and textures have been subject of many
investigations before. A classic example is the effect by Galli and Zama (1931) who explored
a triangle with and without a surrounding grating, which consisted of parallel lines. If the
triangle was presented in isolation, all three sides were perceived as equally salient. If a line
grating surrounded the triangle, the side of the triangle that ran in parallel to the grating was
no longer perceived as a part of the triangle. Instead, the line was perceived as one of the
many parallel lines that formed the grating texture. This and other observations indicate that
the human visual system processes the shape of isolated contours differently from the shape
of elements in textures (for a review, see Gheorghiu et al., 2014).

Aesthetic Preferences and the Processing of Shape and Texture

Effects of surrounding texture on shape perception may be explained by neurophysiological
principles of receptive fields. The classical receptive field (CRF) of a visual cortical (V1)
neuron is defined as the region that responds directly to retinal stimulation. Stimulating
the area beyond the CRF does not usually elicit a response. However, such a surrounding
stimulation can modulate the responses elicited by CRF stimulation (Maffei & Fiorentini,
1976). The modulatory surrounding region has been called the extraclassical receptive field
(ERF) or association field (Field et al., 1993; for a review, see Spillmann et al., 2015).
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Typically, if iso-oriented stimuli are used, ERF stimulation suppresses CRF responses. With
stimuli of different orientations, ERF stimulation enhances CRF responses. It has been
proposed that, in general, the presence of structural regularities in an image decreases activ-
ity in VI neurons (Rao & Ballard, 1999). Physiological substrates of such ERF modulations
may be feedback connections from higher cortical regions (Rao & Ballard, 1999) or long-
range horizontal connections in visual cortex (Hunt et al., 2011). Considering our stimuli,
which consist of oriented lines or edges, participants prefer images with high Entropy, that is,
with low regularities in edge orientations. As Entropy decreases, regularities in edge
orientations, such as collinearity and parallelism, become more prominent (see examples
in Figure 1). In view of these findings, we speculate that ERF effects on V1 neuronal
responses may mediate the aesthetic ratings for images of low and high Edge-Orientation
Entropy, respectively.

Neural correlates of shape and texture perception have been allocated to different brain
regions, which interact with each other (Gheorghiu et al., 2014). While texture processing is
thought to take place predominantly in V1 (see earlier), shape processing takes place mostly
in extrastriate cortical regions (Dumoulin et al., 2008; Vinberg & Grill-Spector, 2008).

Image Properties and Aesthetic Preference of Different Types of Visual Stimuli

The present study reveals differences in the image features that predict aesthetic ratings of
pleasing and harmonious in two types of stimuli, lines and textures (Figure 3). Other types of
visual stimuli also differ in the image features that carry information about visual preference.
A particularly striking example is portrait paintings (Redies et al., 2015). On the one hand,
viewers can rate the attractiveness of the face depicted in the portrait. On the other hand,
viewers can evaluate the artistic beauty of the painting composition. Based on an adaptation
study, Schulz and Hayn-Leichsenring (2017) suggested that the two types of ratings are
mediated by different neural mechanisms. Mather (2020) measured image statistics
(Fourier spectral slope, fractal dimension, and luminance entropy) in different painting
genres; he found that the values for the three measures varied across genres (for a similar
study, see Hayn-Leichsenring et al., 2017). Differences in statistical image properties can also
be used to identify artistic styles automatically (Hughes et al., 2011; Wallraven et al., 2009).
However, there is also some evidence that specific stimulus features can be shared between
aesthetic stimuli, such as artworks of different cultural provenance (see the Introduction
section). For example, artworks of Western, Islamic, and Chinese provenance display a
similar degree of edge-orientation entropy (Redies et al., 2017) and share regularities in
the variances of features that were derived from a model of low-level visual processing
(Brachmann et al., 2017). To determine to what extent particular perceptual features play
a role in universal and/or domain-specific aspects of aesthetic evaluations will require more
detailed studies in the future.

Ratings of Complex

As expected, the ratings of complex increased with increasing Line Number (Figure 2C).
Interestingly, participants tended to rate curved stimuli with high Entropy as subjectively less
complex. This trend seems paradoxical because, objectively, curved lines display more ori-
entations than angular (straight) lines and should therefore be perceived as more complex, as
discussed in Bertamini et al. (2019). The authors showed that, in addition, curved shapes are
processed faster than angular ones. To explain this apparent paradox, Bertamini et al.
argued that curved shapes are more prevalent in the natural environment, to which the
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human visual system is adapted. As a result of this adaptation, curved shapes may be
processed more efficiently. In turn, more efficient processing may cause stimuli to be per-
ceived as more pleasing (Redies, 2007; Renoult et al., 2016). To find out whether our present
findings can be generalized to other stimuli, more experiments with carefully controlled
stimuli are needed.

Interindividual Differences

Despite the general similarities in aesthetic judgments across participants, individual behold-
ers can respond differently to image properties. Examples for such interindividual differences
in aesthetic judgments have been described for the perception of color and self-similarity
(Mallon et al., 2014) as well as complexity (Bies et al., 2016; Spehar et al., 2015). Cotter et al.
(2017) showed that Openness/Intellect is a personality factor that correlates with greater
liking for curvature. In the present study, we wanted to confirm this previous finding.
However, our sample of participants was too small and not well suited to inspect such
differences. Unfortunately, participants scored relatively high in Openness/Intellect in abso-
lute terms and did not strongly differ in this trait (Supplementary Figure 1). Moreover, the
variance in our sample of participants was comparatively low across all personality domains
(Supplementary Figure 1). As a result, the differences between high and low scoring groups
were generally moderate in size at best. Further research with greater power may well result
in better insight into the inner workings of this preference.

Limitations and Comparison with Other Studies

To better control the experimental parameters, the present study was carried out in a lab-
oratory setting with artificial abstract stimuli. This approach has the advantage that it
minimizes the influence of possible confounding factors, such as color, stimulus contrast,
viewing distance, or image content on the ratings; it thus guarantees high reproducibility and
internal validity. Although our approach minimizes confounding factors in general, we
cannot exclude that we introduced secondary effects that may have contributed to the aes-
thetic ratings. For example, the experimental modulation of Entropy has an obvious effect
on the arrangement of the line elements, which overlapped and crossed each other more
frequently when Entropy was minimized (Figure 1). Moreover, with maximized Entropy,
lines crossed each other more often at right angles and the spacing between lines was more
regular. The effect of such secondary structural differences on the ratings should be studied
in more detail in the future. Moreover, about one third of the participants reported parei-
dolic impressions, that is, they saw imaginated objects when viewing the abstract patterns.
The role of such phenomena in aesthetic perception remains to be studied in more detail.
The disadvantage of our well-controlled approach is that results cannot necessarily be
extrapolated to complex natural stimuli in everyday life, or to artworks in a museum envi-
ronment (Tschacher et al., 2012). Also, in more complex natural stimuli, the observed effects
may be modulated or even abolished by other stimulus properties that affect visual prefer-
ence (Makin, 2017). However, despite this low external validity, there are hints in the liter-
ature that the present results do relate to less artificial situations. First, preferences for curved
objects have been demonstrated also for real objects (e.g., Bar & Neta, 2006). Second, a
preference for curvature has been demonstrated across different cultures (Gémez-Puerto
et al., 2018) and even in great apes (Munar et al., 2015). Third, it has been reported that a
large subset of traditional artworks of diverse cultural backgrounds share high edge-
orientation entropy (Brachmann et al., 2017). Fourth, high edge-orientation entropy also
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mediates preference of everyday displays, such as CD album covers and architecture
(Grebenkina et al., 2018; Thommes & Hiibner, 2018). Thus, although our results from
simple line elements cannot be generalized readily to more complex stimuli, they are in
line with previous findings.
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