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Abstract

Motivation: Proteogenomics has proven its utility by integrating genomics and proteomics. Typical approaches use
data from next-generation sequencing to infer proteins expressed. A sample-specific protein sequence database is
often adopted to identify novel peptides from matched mass spectrometry-based proteomics; nevertheless, there is
no software that can practically identify all possible forms of mutated peptides suggested by various genomic infor-
mation sources.

Results: We propose MutCombinator, which enables us to practically identify mutated peptides from tandem mass
spectra allowing combinatorial mutations during the database search. It uses an upgraded version of a variant
graph, keeping track of frame information. The variant graph is indexed by nine nucleotides for fast access. Using
MutCombinator, we could identify more mutated peptides than previous methods, because combinations of point
mutations are considered and also because it can be practically applied together with a large mutation database
such as COSMIC. Furthermore, MutCombinator supports in-frame search for coding regions and three-frame search
for non-coding regions.

Availability and implementation: https://prix.hanyang.ac.kr/download/mutcombinator.jsp.

Contact: eunokpaek@hanyang.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advances in genomics and proteomics technologies such as
next-generation sequencing and tandem mass spectrometry, we can
better identify sample-specific and/or novel peptides. Construction
of protein sequence database plays an important role in identifying
novel peptides because reliable peptide identification depends heav-
ily on the database being searched. In terms of mutated peptide iden-
tification, many methods have been proposed to construct a
proteogenomic database, such as CustomizedDB (Park et al., 2014),
CustomProDB (Wang and Zhang, 2013), CanProVar (Zhang et al.,
2017) and a variant graph (Woo et al., 2014a). CustomizedDB and
CustomProDB assumed that all mutations occur simultaneously in a
gene. On the other hand, CanProVar assumed that all digested pep-
tides can have no more than a single mutation. These approaches re-
duce the search time by avoiding the exhaustive search for all
possibilities, but naturally preclude covering all possible mutated
peptides at the same time.

Woo and colleagues proposed a ‘variant graph’, which represents
a given transcriptome model as a direct acyclic graph, where each
node is a nucleotide sequence representing a part of an exon or a
variant call and edges connect neighboring exons indicating splice
sites or point mutation occurrences. They also provided a ‘variant
graph to FASTA’ enumeration package because most database
search engines only take a FASTA formatted database as an input.

The enumerated variant graph can represent almost all possible
combinations of mutated peptides depending on a user specific par-
ameter. However, the parameter is not intuitive because it is an in-
ternal parameter that controls the algorithm behavior and does not
directly describe the desired output. The parameter value has to do
with the density of mutation calls, which may vary widely depend-
ing on genes, making it very difficult to set the value properly.
Furthermore, the variant graph method does not allow a user to set
the translation frame: a user may want only in-frame translation, or
all three-frame translations.

To overcome such limitations, we developed MutCombinator,
which enables us to identify combinatorially mutated peptides by
searching a variant graph directly (Fig. 1) without enumerating
them into amino acid sequences off-line. A variant graph is built by
taking reference genome sequences in FASTA, transcriptome model
in GTF and variant calls in VCF format as input. MutCombinator
can identify peptides with combinations of maximum n mutations
(n is a user-specified parameter) in a peptide. The possible combina-
tions of mutations grow exponentially as n increases; therefore, the
search time can grow exponentially. To keep the search time under
control, we adopted the two existing techniques: (i) extract short
amino acids sequence tags (of length 3) from a spectrum, and search
paths containing at least one tag to avoid traversing the whole vari-
ant graph [this approach was suggested elsewhere (Mann and Wilm,
1994), but they used FASTA database instead of a variant graph]
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and (ii) indexing variant graph using three amino acids long sequen-
ces to directly access nucleotide sequences in the graph. For conveni-
ence of a user, MutCombinator supports (i) multi-threading, which
enables parallel processing of spectra and (ii) both in-frame coding
region search as well as three-frame search that encompasses non-
coding regions as well.

We designed a multistage search (Madar et al., 2018) with
MutCombinator to effectively identify mutated peptides using pro-
teogenomics data from a previous study (Mun et al., 2019). First,
we used unidentified tandem mass (MS/MS) spectra from the previ-
ous study as an input for the second stage search using
MutCombinator under the conditions: (i) use of 12 688 mutations
from sample-specific variant calls and 83 873 mutations from
COSMIC database (a total of 96 287 mutations), (ii) 28 843
expressed protein coding transcripts (supported by FPKM > 1) and
(iii) allowing up to three mutations per a peptide. As a result, we
additionally identified 80 mutated peptides than the previous report.
From this result, we could find 10 additional KEGG-pathways and
70 combinations of mutations. Furthermore, we also identified four
mutated peptides harboring exclusively expressed mutations.

At the third stage, we further searched unidentified MS/MS spec-
tra from the first and second stage search against the same database
with the same search conditions as the second stage except for one
thing: use of 12 516 expressed non-coding transcripts (also sup-
ported by FPKM > 1). We identified 14 aberrantly translated pepti-
des—five pseudogenes, four frameshifts, two exon extensions, two
50 UTRs, and one 30 UTR peptides.

2 Materials and methods

Peptide identification in MutCombinator consists of four parts: (i)
construction of a variant graph with frame information, (ii) indexing
the variant graph to directly access nucleotide sequences in the
graph, (iii) candidate peptides generation by traversing the variant
graph from indexed positions and (iv) scoring peptide spectrum
matches (PSMs).

2.1 Construction of variant graph with frame-awareness
Originally, a variant graph was not designed to limit the search only
to in-frame translation because it assumed that the graph would be
built directly from RNA-Seq results. This assumption was made for

discovery of potential novel coding regions; however, it is not suit-
able for identifying mutations in known protein coding regions, be-
cause it triples the search space, resulting in increased false positives
and execution time. Recent proteogenomic research have focused
more on identifying mutated peptides in the coding region because
their relation with the disease can be significant (Mertins et al.,
2016; Mun et al., 2019; Zhang et al., 2014). To facilitate compre-
hensive mutation identification in a proteogenomic search, we aug-
mented variant graphs with frame information in each node
whenever it is available.

When constructing a variant graph with frame-awareness, each
transcript model is initially represented as a linear graph structure
(list) where nodes represent nucleotide sequences of exons and edges
represent junction sites between two exons (Fig. 2a). When multiple
transcripts share a common region (the same genome positions and
the same nucleotide sequences, shown in gray in Fig. 2a), it is repre-
sented as a single node in the merged transcript as shown in
Figure 2b while the remaining parts of the original transcript, i.e.
distinct parts, are split from the original node and the split sites are
connected by an edge. When splitting nodes, each node inherits its
frame information from the original transcript. The frame informa-
tion is recorded as binary vectors where each row represents each of
the three frames and each column represents a transcript of a given
gene. For example, if a gene has two transcripts, then the first tran-
script is represented with a bit value 0b00000001 and second one
0b00000010. Thus, only one of the three rows in the binary vectors
has non-zero value in the original transcript, if the transcript model
represents a coding sequence (Fig. 2a). We used only seven bits be-
cause the sign-bit (the most significant bit) is not suitable for index
value. When a gene has more than 7 transcripts, PABPC1 has 18
protein coding transcripts for example and the column size of the
binary vectors is determined as f1þquotient of dividing the number
of transcripts by 7g bytes.

To compact the transcripts into a single merged transcript, nodes
in the transcripts are split into common and distinct parts based on
both genomic positions and nucleotide sequences. When nodes are
split into two or three nodes, each frame information of the split
nodes is recalculated in order to keep track of the transcript struc-
tures. In the example shown in Figure 2b (focusing on how the
frame information of the second transcript changes) frames of the
first node do not change. Frames of the remaining nodes are calcu-
lated based on their predecessor nodes in a topological order. If the
nucleotide sequence length of a predecessor node is a multiple of

Fig. 1. Overview of MutCombinator. A variant graph is built from the reference genome sequences, a transcriptome model and variant calls. Positions of each nine nucleotide

sequence in the variant graph are indexed by corresponding three amino acids and stored in a pre-compiled index table. Positions of sequence tags (e.g. PRE and TTY) deduced

from a spectrum are directly recognized by looking up the index table. PSM is processed by traversing the flanking paths of tag positions. The black box represents an exon

model in the given transcriptome model. The gray box represents a variant model annotated in the given variant calls
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three, then the current node is assigned the same frame of the prede-
cessor node. Otherwise, the frames of the current node are set as the
union of up-rotating each predecessor’s frame by the remainder of
dividing its nucleotide sequence length by 3. Union operation is ac-
tually performed by bit-OR operation. This way, all the transcript
models of a gene can be merged into a single variant graph.

In case there are SNVs and insertions given as input (in VCF for-
mat), a node containing mutation site is split based on its mutation
position. A new node representing the mutation is created and added
to the graph, and their frames must be recalculated. The recalcu-
lation method is the same as above. In the example shown in
Figure 2c, there are two mutations: insertion ‘G > GTT’ and SNV
‘G>T’. While there is a single predecessor node for the last node
SNV ‘G>T’ (the split node and new node), the last node ‘GCA’,
which is caused by the insertion, has two predecessors such as node
‘G’ and node ‘GTT’. In this case, we coalesce both up-rotated frame
information by bit-OR operation, and apply the coalesced frame in-
formation as that of the last node ‘GCA’. In the case of deletion, we
simply make a new transcript model in the gene before the merge
step.

As an concrete example, the first node in Figure 2b, representing
a nucleotide sequence ‘ATGGCA’, is split into three nodes such as
‘AT’, ‘G’ and ‘GCA’ shown in Figure 2c. Node ‘AT’ inherited the
same frame as the original node ‘ATGGCA’ because it is the first
node among the three. The successor of node ‘AT’ is node ‘G’; there-
fore, the frames of node ‘G’ is set as up-rotating that of node ‘AT’
twice. Similarly, the frame information of the last node ‘GCA’ is set
as bit-OR operation of both up-rotating that of node ‘G’ once and
up-rotating that of node ‘GTT’ three times (thus no rotation oper-
ation). Notice that node ‘GTT’ as the insertion ‘G > GTT’ just

copies the same frame information with node ‘G’ because they have
the same predecessor node ‘AT’.

2.2 Indexing variant graph
In a typical database search approach to peptide identification, each
spectrum is compared with candidate peptide sequences in a se-
quence database. There have been three major methods to avoid
searching the whole database: (i) limit candidate peptides only to
those that match the precursor mass of a given spectrum, (ii) select
candidate peptides using fragment ion matches (Kong et al., 2017)
and (iii) select candidate peptides that contain sequence tags derived
by applying de novo sequencing to a given spectrum (Mann and
Wilm, 1994; Na et al., 2012; Tabb et al., 2003). The first and se-
cond approaches enumerate all possible enzymatic peptides and find
the best match for each spectrum. Enumerating all possible peptides
of a given variant graph is not practical once we start to consider
combinatorial mutation. MutCombinator adopted the third ap-
proach: extracting three amino acids sequence tag from an input
spectrum and directly accessing the tag positions in variant graph by
pre-compiled index.

Each index is generated by traversing the whole variant graph
and recording the following information: (i) a start node, (ii) an end
node, (it must be noted that a sequence tag may span over multiple
nodes), (iii) a tag start position within the start node, (iv) a tag end
position within the end node, (v) a gene id, (vi) the number of muta-
tion sites included in the nine nucleotide sequence of a tag and (vii)
the frame information of a tag obtained by bit-AND operation of all
the nodes in a path spanning the nine nucleotide sequence. During
index generation, there are two cases when an index of tag should

Fig. 2. Construction of a variant graph augmented with frame information. Nodes represent nucleotide sequences and edges connect neighboring nodes. Edges generated by

splitting nodes in each step are represented as dotted lines. The letter boxes indicate coding sequences. (a) Each transcript is represented as a linear graph structure. Frame in-

formation is recorded in each node as binary vectors. Gray nodes represent common regions among multiple transcripts of the same gene. (b) The common regions are merged

into a single node, and their original frame information is coalesced by bit-OR operation. Each gene is represented as a single directed acyclic graph after this step. (c) SNVs

and insertions are added, and frames are re-calculated
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be discarded: (i) the number of mutation occurrences exceeds the
maximum allowable mutations n, specified as a user parameter, or
(ii) all three frame information is 0b00000000, meaning that there is
no proper path denoted by the tag.

2.3 Generating candidate peptides
Sequence tags are inferred from a spectrum by de novo sequencing.
The positions of these tag occurrences in a variant graph can be
retrieved by looking up the pre-compiled index table. Candidate
peptides, the masses of which match to a precursor mass of the spec-
trum, are generated by traversing the flanking nodes neighboring the
tag positions. When traversing the flanking nodes, nucleotide
sequences in a node is virtually translated to amino acids for all the
valid frames and the peptide mass is calculated while extending the
tag sequence into the neighboring nodes until the peptide mass just
exceeds the precursor mass given the tolerance. The frame informa-
tion in the tag is updated during the traversal by bit-AND operation
among the visited nodes to confirm the validity of a path, i.e. a vari-
ant graph merged all the transcript models of a gene into a single
graph, thus an integrity check is necessary to confirm that a path ac-
tually corresponds to some transcript model (Supplementary Fig.
S1). The traversal stops extending into the neighboring nodes when-
ever the frame information becomes 0b00000000 (i.e. there is no
valid transcript that matches the nucleotide sequence of the current
path), or when a path contains more mutations than the number of
maximum allowable mutation n.

2.4 Evaluating PSM quality
MODa (Na et al., 2012) evaluated PSMs using a logistic regression
of four component scores such as: (i) prefix residue mass (PRM)
score, (ii) mass error of matched fragment ions, (iii) the fractions of
b and y ions found and (iv) the propensity to a particular ion type.
We used the same scoring method to evaluate PSMs. Briefly, an ex-
perimental spectrum is first converted into a PRM spectrum, and the
PRM spectrum is used to match against the candidate peptides using
an alignment based on dynamic programming.

3 Results

3.1 Multistage search to further identify mutated

peptides
A huge number of disease-related mutations could be obtained by
several resources such as ClinVar (Landrum et al., 2018) and
COSMIC databases (Tate et al., 2019). To use these resources for
proteogenomic study, we usually make a mutated peptide sequence
database by considering all possible combinations of mutations be-
cause we cannot be sure which mutations might be observed in our
samples.

Under the assumption that some of these mutated peptides,
derived from the public mutation resources, could also be observed
by MS/MS spectra for the sample of our interest, we designed multi-
stage search (Madar et al., 2018) using MutCombinator (Fig. 3). We
chose N33T34 dataset, obtained from a tissue sample of a microsat-
ellite instability (MSI) high cancer patient from a previous proteoge-
nomics study on EOGC (early onset gastric cancer) (Mun et al.,
2019). N33T34 dataset included three types of data—4 215 882
MS/MS spectra [the spectra were processed by PE-MMR (Shin
et al., 2008)] labeled with 4-plex iTRAQ, mRNA-seq and whole
exome-seq. We used a preprocessed dataset provided by Mun and
colleagues. There were a total of 41 359 expressed transcripts anno-
tated in Ensembl transcriptome model v71. Among them, 28 843
and 12 516 transcripts were protein coding and non-coding, respect-
ively. As for mutations, there were a total of 12 688 mutations
matched to the expressed transcripts.

Among 12 688 sample-specific mutations, only 254 mutations
(247 SNVs and 7 insertions) were found among 83 873 stomach
cancer-related mutations of COSMIC database (version 87) with the
following conditions: (i) available genomic positions and mutated
nucleotide sequences, (ii) categorized as SNV, insertion, or deletion
and (iii) matched to the expressed transcripts. Assuming that the
two mutation sources can be complementary to each other, we con-
structed CnSSVG (Cosmic and sample-specific variant graph) using
96 307 unified mutations (83 873 stomach cancer-related mutations
as well as 12 688 sample-specific mutations).

Fig. 3. Multistage search using MutCombinator. Unidentified MS/MS spectra from the previous result (EOGC second-stage dataset) are subjected to MutCombinator as an in-

put. MutCombinator identifies mutated peptides considering combinations of mutations of both sample-specific and COSMIC mutations in the expressed coding transcripts.

Unidentified MS/MS spectra from the expressed coding transcripts are subjected to identification of aberrantly translated peptides in the expressed non-coding transcripts. The

identified PSMs are filtered out if there is the same sequence in UniProt proteome or contaminants. Note that the result of conventional search was provided by Mun and

colleagues
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EOGC group identified 588 483 PSMs by searching N33T34
spectra against CustomizedDB (Park et al., 2014) using MS-GFþ
search (Kim and Pevzner, 2014) and we denoted this search strategy
as a conventional search in Figure 3. To further identify mutated
peptides considering combinations of mutations of both sample-
specific and COSMIC mutations, we used 2 792 596 unidentified
MS/MS spectra. Note that PE-MMR generates multiple spectra per
scan by correcting precursor m/z and charge state; therefore, we fil-
tered out 1 423 286 MS/MS spectra corresponding to 588 483 iden-
tified MS/MS scans in the previous result.

We searched 2 792 596 MS/MS spectra using MutCombinator
against CnSSVG. The search parameters were set as follows:
10 ppm for precursor tolerance, 0.025 Da for fragment tolerance,
three fixed modifications (carbamidomethylation at cysteine and
iTRAQ label at peptide N-terminal and lysine), semi-tryptic for en-
zyme specificity allowing up to two miscleavages and eight for
minimum peptide length. We also set n to three, allowing up to
three mutations per peptide. After the search, the same scans could
appear more than one time in the PSM list because the spectra
were processed by PE-MMR; therefore, we selected a PSM having
the highest score among PSMs with the same scan number. And
then, we applied separate false discovery rate (FDR) strategy (Woo
et al., 2014b) so that mutated peptides and wild-type peptides
could fairly compete with each other. We divided the search results
into two: (i) PSMs with wild-type peptide match including both
target or decoy and (ii) PSMs with mutated peptide match includ-
ing both target or decoy. If a sequence of mutated peptide is
equivalent to a sequence of wild-type peptide, we assigned the PSM
as a wild-type PSM. The result was estimated at 1% local-FDR at
PSM level. We identified 8778 wild-type PSMs and 231 mutated
PSMs. From 231 mutated PSMs, we filtered out those sequences of
which were found in UniProt proteome (release 2019-11) or con-
taminants. Repeating a similar workflow, we further identified ab-
errantly translated peptides from 12 516 non-coding transcripts
using non-coding search mode in MutCombinator as the last stage.
We also compared MutCombinator with a conventional search
(MS-GFþ applied against CustomizedDB including mutation)
when executed in a single stage search mode (Supplementary Fig.

S2). It must be noted that the search space of the two can be tre-
mendously different.

3.2 Mutated peptides in coding regions
With a multistage search using MutCombinator, we further identi-
fied 211 mutated PSMs in the coding regions (Fig. 4a). This result
amounts to additional identification of 80 mutated peptides, 52
genes and 70 combinations of mutations. We compared two KEGG-
pathways (P-value<0.05) from (i) genes from the conventional
search and (ii) genes from the conventional search together with
MutCombinator, using DAVID (Huang da et al., 2009) to see
whether the additional gain in peptide identification could lead to
different interpretation in terms of pathways (Fig. 4b). In the origin-
al conventional search results, two pathways were strongly enriched
in ECM-receptor interaction and focal adhesion, showing signifi-
cantly negative mRNA-survival correlation (Mun et al., 2019). Our
approach resulted in 10 additional significantly enriched pathways.
To make sure that such additional enriched pathways are not ran-
dom, possibly due to high proportions of such genes in CnSSVG, we
further calculated P-values using Fisher exact test. We used all genes
harboring mutations in CnSSVG, as a background population and
then calculated P-value of each pathway using the genes found by
MutCombinator only. All of the pathways showed P-value below
0.05, showing that the pathways are significantly enriched in the
search results (details in Supplementary Table S1). Proteoglycans in
cancer, one of the additional pathways, also showed significant
negative mRNA-survival correlation in the previous report.
Intriguingly, inflammation related pathways such as phagosome,
leukocyte transendothelial migration, bacterial invasion of epithelial
cells and viral myocarditis were enriched and this result is consistent
with the already known relationship between inflammation and can-
cers (Coussens and Werb, 2002).

Owing to MutCombinator, we can further identify 70 combina-
tions of mutations including 60 SNVs, 6 INDELs, 3 double SNVs
and 1 double INDEL (Fig. 4c). Nine SNVs were derived from the

Fig. 4. The identification of mutated peptides in coding regions. (a) Peptides, genes and combinations of mutations corresponding to a total of 211 mutated PSMs are described.

(b) KEGG-pathways of two gene groups––results of conventional search with/without MutCombinator analysis—show different patterns. Pathways with P-value < 0.05 are

used. (c) Combinations of mutations observed in MS/MS are categorized into three groups––conventional search, MutCombinator and commonly observed by both. The com-

binations of mutations in MutCombinator group are further classified into sample-specific and COSMIC mutations. (d) Mutated peptides harboring exclusively expressed

mutations in LSP1 protein. Identified peptides and corresponding gene model are shown, and amino acid changes are indicated by red underline
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sample-specific mutations, and the rest were derived from the
COSMIC mutations.

On the other hand, MutCombinator enables considering combi-
nations of mutations allowing up to three mutations per peptide.
We could identify four mutated peptides harboring exclusively
expressed mutations in RHOA, RRBP1, HIST1H3H and LSP1. For
example, we identified two mutated peptides resided in a genomic
region from 1 902 744 to 1 902 800 in chromosome 11 (Fig. 4d).
One of them had Alanine changed into Threonine at position 9 be-
cause of SNV (G>A) at locus chr11:1 902 768. The other peptide
had Glutamine changed into Leucine at position 17 because of SNV
(A>T) at locus chr11:1 902 793. Although these mutations origi-
nated from the same sample-specific mutations, they were expressed
exclusively at the protein level. Next-generation sequencing analyses
bulk of cells simultaneously, thus the actual combinations of muta-
tions are not distinguishable at the genomic level. Certain conven-
tional proteogenomic analyses could have missed identifying these
two exclusively mutated peptides, but our approach could success-
fully resolve mutational ambiguities at the protein level by consider-
ing mutations combinatorially during the second stage search.

3.3 Aberrantly translated peptides in non-coding

regions
Proteogenomic approach can be useful in identifying peptides
deduced not only from mutations but also from aberrant expression
of non-coding RNAs and pseudogenes (Kim et al., 2014;
Nesvizhskii, 2014). Protein sequence database built from three
frame translation of genes of interest such as non-coding RNAs and/
or pseudogenes is used to identify aberrantly expressed peptides
from MS/MS spectra. Such an approach could be useful to correct
gene annotation or, perhaps, analyze disease-specific patterns
(Stewart et al., 2019). We added three frame translation mode for
non-coding RNAs and pseudogenes to MutCombinator so that a
user can easily identify aberrantly expressed peptides with/without
combinatorial mutations.

We applied third stage search to identify aberrantly expressed
peptides, after the two-stage search in the coding regions. We
searched 2 773 632 unidentified spectra against 12 516 expressed
non-coding/pseudogene transcripts, considering sample-specific and
COSMIC mutations. We estimated at 1% local FDR and identified
122 PSMs. We removed 86 PSMs, peptide sequences of which exact-
ly match UniProt (release 2019-11) or common contaminant
sequences. We obtained genomic loci of 27 peptides corresponding
to the remaining 36 PSMs by applying ACTG tool (Choi et al.,
2017). Thirteen mutated peptides could be matched to coding
regions in Ensembl v71 so we further discarded the mutated PSMs
in the identifications of aberrantly translated peptides. The summary
of non-coding search result is described in Figure 5.

4 Discussion

Proteogenomics has improved understandings of biology, via inte-
gration of genomics and proteomics. The baseline results of the inte-
gration depend on identifications of expressed and mutated

peptides; however, there is no practically available software tool to
identify mutated peptides considering all possible combinations of
mutations in coding regions. We designed MutCombinator so that it
can be applied to identify mutated peptides allowing combinatorial
mutations using a reasonable amount of computational resources. A
total of 2 792 596 spectra were processed using 75 GB of memory
and 16 threads, taking 42 h on workstation computers.

We demonstrated the usefulness of MutCombinator in two
aspects: (i) identifications of mutated peptides with combinatorial
mutations and (ii) incorporation of large-scale mutation database
such as COSMIC. By considering combinations of mutations,
MutCombinator facilitates identifying mutated peptides regardless
of where the mutations really come from. In other words, we now
can decode the combinations of mutations even when mutations
from different sources are aggregated in a single database.
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