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Ampyrone is an amino-functionalized heterocyclic pyrazolone derivative that possesses
therapeutic values such as analgesic, anti-inflammatory, and antipyretics. The chemical
structure of ampyrone exhibits excellent hydrogen bonding sites and is considered as the
potential scaffold of supramolecular self-assembly. Recently, this molecule has been
derived into unnatural amino acids such as aminopyrazolone amino acid and its
peptides. This report describes that one of its amino acids, O-alkylated ampyrone,
containing hybrid (α/β) peptides forms organogel after sonication at 50–55°C with
0.7–0.9% (w/v) in ethyl acetate: hexane (1:3). The formation/morphology of such
organogels is studied by nuclear magnetic resonance Fourier-transform infrared (FT-
IR), circular dichroism (CD), scanning electron microscope (SEM), transmission electron
microscopy (TEM), powder X-ray diffraction (Powder-XRD), and thermogravimetric
analysis (TGA). Energy-minimized conformation of APA-peptides reveals the possibility
of intermolecular hydrogen bonding. Hence, APA-peptides are promising peptidomimetics
for the organogel-peptides.
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INTRODUCTION

Peptides form self-assembly structures through non-covalent interactions, such as hydrogen
bonding, van der Waals interactions, and π–π stacking (Zweep and Van Esch, 2013). The amide
bonds and side chains of amino acid residues play a significant role in stabilizing the non-covalent
interactions in peptides, which impart in the self-assembly of supramolecular structures including
hydrogels and organogels (Hanabusa et al., 1993; Aggeli et al., 1997; Shaikh et al., 2018).
Oligopeptides and small peptides are widely applied for the formation of versatile
supramolecular organogels through these non-covalent interactions (Tomasini and Castellucci,
2013; Biswas et al., 2016). Sono-gels are a class of gels that are formed under ultrasound sonication
and are widely applied for peptide-based gels (Li et al., 2007; Cravotto and Cintas, 2009). The process
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of gelation by ultrasound could involve breaking the larger
aggregates or disordered aggregates to induce the formation of
well-defined larger uniform aggregates which may lead to the
formation of gels (Chatterjee and Maitra, 2017). The peptide-
based organogels are biocompatible materials and considered
promising biomaterials for various applications such as drug
delivery (Couffin-Hoarau et al., 2004; Baral et al., 2014; Rouse
et al., 2017), oil recovery in the petroleum industry (Chetia et al.,
2020), and removal of toxic dyes (Li et al., 2020). Recently, the
sequence-specific small peptides are explored to prepare
thermally stable reversible/irreversible organogel biomaterials
from natural/unnatural/hybrid peptides (Chakraborty et al.,
2002; Banerjee et al., 2008; Maity et al., 2015; Wang and Yan,
2018). The insertion of aromatic structural unit/aromatic amino
acid at the N-terminal of di-tri-peptides leads to the formation of
stable organogel materials (Babu et al., 2014). 4-Aminopyrazole
containing aromatic unnatural amino acids/dipeptides have
abilities to interact with several bio-macromolecules such as

interaction with specific β-sheet-rich targets in Aβ-protein and
serine proteases via non-covalent interactions (Schrader and
Kirsten, 1996; Kirsten and Schrader, 1997; Gilfillan et al.,
2015; Hellmert et al., 2015). Previously, we have explored the
structural and conformational studies of 4-aminopyrazolone
amino acids/di-tri-peptide scaffold for non-covalent
interactions, which is one of the important criteria for gelation
(Bollu and Sharma, 2019b; a). We report the synthesis of 4-
aminopyrazolone acid (APA) containing hybrid peptides with α-/
β-amino acids and preparation of their organogels (Figure 1).
These supramolecular self-assemblies are studied by NMR, FT-
IR, CD, SEM, TEM, Powder-XRD, and TGA.

RESULTS AND DISCUSSION

We began the synthesis of the unnatural amino acid (1),
aminopyrazolonyl acid (APA) by following the previously
reported procedure (Scheme 1) (Bollu and Sharma, 2019b).
In the literature, bipolar organic molecules have a higher
propensity for organogelation (Bardelang et al., 2008; Loic,
2017). Thus, we planned to prepare bipolar molecules by
introducing an APA unit at N-terminal of di-peptides
containing hydrophobic side chain residues. We therefore
synthesized APA tri-peptides (2a-2e) from α-β-hybrid
peptide derivatives (NH2-AA-OMe) and APA (1). The
hybrid peptides (NH2-AA-OMe) were prepared from β-
alanine and α-amino acid (Gly/Ala/Ile/Phe). APA-β-Ala-Gly-
OMe (2a) was prepared from dipeptide β-Ala-α-Gly-OMe, 2b
from β-Ala-α-Ala-OMe, 2c from β-Ala-α-Ile, 2d from β-Ala-α-
Phe-OMe, and 2e from β-Ala-β-Ala-OMe. These APA-peptides
are well characterized by 1H-/13C-NMR/ESI-HRMS. Their
respective spectra are provided in the Supplementary Material.

In the literature, the sequence-specific aromatic tri-peptides
reportedly form organogel in the co-solvent systems (hexane:
ethylacetate) after sonication (Maity et al., 2011; Maity et al.,
2015). We also attempted the organogelation of unnatural

FIGURE 1 | APA-appended peptides.
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aromatic amino acid, aminopyrazolonyl amino acid (APA),
containing peptides (2a-2e) in the same co-solvent systems
(hexane: ethylacetate) by sonication. The synthesized APA-
peptides (2a-2e) 0.7–0.9% (wt/vol) were dissolved in solvent
systems EtOAc:Hexane (1:3, v/v) and sonicated for 2 minutes
above the room temperature (~50°C) and then allowed to cool at
room temperature. We noticed that the homogenous solutions of
peptides (2b-2e) were transformed into colorless organogel
within 10 min. However, the organogel formation was not
noticed with hybrid APA-peptide 2a. In the case of APA-
peptide (2d), precipitation occurred at room temperature,
however, upon heating converted into a homogenous solution.
The hot homogenous solution was sonicated to form organogel
within 2 minutes by allowing to cool at room temperature. In the
literature, precipitates can also help in the formation of larger
aggregates which can transform into gels (Li et al., 2007; Cravotto
and Cintas, 2009). Importantly, the physical appearances of
organogels of APA-peptides are different, such as transparent
or opaque. We repeated a similar experiment with other solvents
such as hexane, ethylacetate, benzene, chloroform, acetonitrile,
and methanol but could not observe the gel formation. Mostly
these peptides are sparingly soluble/or appeared as precipitates in
those solvents. Moreover, for NMR studies, we attempted the
organogelation of peptide 2e in the deuterated solvent toluene-d8,
and the formation of organogel was noticed after 2–3 days. The
APA-peptide organogels are stable up to 50–55°C. At higher

temperatures (above ~55 °C), these gels are melted and eventually
result in clear solutions. The formation of organogels was
validated by the widely accepted inverted test tube method
(Wang et al., 2003; Nagahama et al., 2008; Yoshida et al.,
2014). Importantly, gelation is not observed when the β-Ala
residue in APA-peptide is replaced with α-amino acid residues
such as Gly, Ilu, and Ala (Bollu and Sharma, 2019b), indicating
that the presence of β-Ala at that position is crucial for the
formation of gels. Possibly, the presence of the β-Ala (extra
methylene) group increases the chain length (extra–CH2-),
which affects the intramolecular H-bonding interactions and
flexibility in sol-state that can reorganize easily during the
formation of the rigid gel networking aggregates, appearing as
physical gels (Dado and Gellman, 1994; Roy et al., 2004;
Chatterjee et al., 2007). However under similar conditions,
compound 2a (Gly residue at the C-terminal) did not form a gel.

Morphology
We studied the surface morphology of APA-peptide organogels
by TEM (Transmission Electron Microscope) and SEM
(Scanning Electron Microscope) imaging techniques. Their
TEM images are depicted in Figure 2, while SEM images are
provided in the SM (Supplementary Figure S20). We also
inverted the sample vials containing APA-peptide organogel to
confirm the formation of organogels (Figure 2). The TEM image
of organogel of APA-peptide (2b) shows the formation of

SCHEME 1 | Synthesis of α-/β-hybrid APA-peptides.
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supramolecular self-assembly structure as a group of thick long
linear fiber-forming complex structure (Figure 2A). The
organogel of APA-peptide (2c) forms a supramolecular self-
assembly structure as a thin short linear fiber structure
(Figure 2B). The organogel of APA-peptide (2d) forms a
supramolecular self-assembly structure as a small strip-type
structure (Figure 2C). The organogel of APA-peptide (2e)
forms a supramolecular self-assembly structure as a long rod-
type structure (Figure 2D).

Thermogravimetric Analysis
TGA of APA-peptides 2b-2e in xerogel (dried organogel) and
powder forms is measured with increasing temperature (with
5°C/min). (Haines, 1995). From TGA plots, we also extracted
differential thermogravimetric (DTG) (Thürmer et al., 2014)
plots (first order derivative plots), and all these plots are
provided in the SM (Supplementary Figure S25). In xerogel
and powder forms, weight loss from trapped solvent
evaporation is observed below 100°C. In xerogel and powder
form of peptides 2b-2d, significant weight loss transitions are
observed with two peaks between 200 and 300°C, whereas in
APA-peptides 2e, these weight loss transition peaks are
observed at 170–225°C. Importantly, all APA-peptides in the
xerogel form exhibit higher weight loss temperatures than the
respective powder forms. Presumably, these weight loss peaks
are either due to the loss of the sensitive Boc-protecting group or
decompositions. These TGA and DTG plots demonstrate
slightly enhanced stability of xerogels than their respective
powder forms.

UV Studies
We attempted to record the UV-vis spectra of APA-peptides (2a-
2e) in polar/non-polar solvents. The UV-vis spectra of peptides
2a/2e in MeOH exhibit an absorption peak at λ245nm owing to the
pyrazolone ring (Supplementary Material, Supplementary
Figure S26). However, we were unable to record the UV
spectra of peptides in ethylacetate and hexane owing to the
poor solubility/precipitation.

Circular Dichroism Studies
Circular Dichroism (CD) studies reveal the configuration and
chirality of molecules including the nature of regular secondary
structure (α-helix and β-strand) in protein, peptides, hydro-/
organo-gels, and other chiral self-assembly materials (López
Deber et al., 2014). However, the structure and conformation of
peptides are sensitive to the nature of the solvent environment,
which plays a significant role in peptides’ secondary structure
formation (Cerpa et al., 1996; Awasthi et al., 2001). Previously,
we have reported that the APA residue is involved in
conformational changes of APA-peptides. We recorded the
CD spectra of APA-peptides (2a–2e) of 0.1 mM
concentrations in different solvent systems such as AcCN,
MeOH, CHCl3, and TFE. Their CD spectra in polar solvent
MeOH are provided in Figure 3, while their CD spectra in other
solvents are provided in the SM (Supplementary Figures
S12–S14). For control studies, we also recorded the CD
spectra of control peptides, without containing the APA-
residue (Figure 3B, Supplementary Figures S15–S18). In
MeOH solvent (polar protic), the CD spectra of APA-

FIGURE 2 | TEM image of APA-peptide organogels. Peptide APA-β-Ala-α-Ala-OMe, 2b (A); peptide APA-β-Ala-α-Ile-OMe, 2c (B); peptide APA-β-Ala-α-Phe-
OMe, 2d (C); and peptide APA-β-Ala-β-Ala-OMe, 2e (D).
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peptides (2a–2e) exhibit maxima at wavelength (λ) 220 nm
(λ220nm) and minima at λ260nm. In contrast, the CD spectra
of control peptides (in MeOH) exhibit only maxima at ~λ220nm.
The CD spectra of APA-peptides (2a-2e) exhibit almost similar
CD signal maxima (λ220nm) and minima (λ250nm) in aprotic
polar solvent acetonitrile (AcCN). However, the CD signals of
APA-peptides (2a–2e) exhibit poorly resolved maxima and
minima in solvent chloroform (CHCl3), and only maxima
(λ200nm and λ220nm) are observed in solvent trifluoroethanol
(TFE). In the literature, TFE is well known to induce
intramolecular hydrogen bonding which stabilizes possible
helical structures, and such kind of CD structure is not
observed with APA-peptides (2a-2e) (Sonnichsen et al.,
1992). The CD signals of these peptides are possibly due to

electronic transitions of the amide carbonyl group (π–π*/n–π*)
at ~λ220nm and pyrazolonyl/phenyl aromatic rings (π–π*) at
λ250nm. From the CD spectra of APA-peptides, overlapping of
aromatic chromophoric (pyrazolonyl/phenyl) absorption
(220–280 nm) with the finger print region of peptide
secondary structure (190–240 nm) is observed. This made the
interpretation of the secondary structures difficult. However,
the maxima at ~λ220nm in APA-peptides (2a-2e) are presumed
from the characteristics β-type of secondary structures (Maity
et al., 2015).

We also studied the CD spectra of organogels of
representative APA-peptides (2b/2c) in the co-solvent
system EtOAc:Hexane (1:3, v/v) and other different polarity
solvents such as AcCN, CHCl3, MeOH, and TFE (Figure 4).

FIGURE 3 | CD spectra of hybrid peptides in MeOH. APA-peptides (A) and control peptides (B).

FIGURE 4 | CD spectra of organogels 2b (A) and 2c (B) in different solvents (0.1 mM concentration). The CD spectra in ethylacetate and hexane mixture (blue) are
significantly shifted.
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The CD spectra of APA-peptide organogels (2b/2c) in the co-
solvent system EtOAc:Hexane (1:3, v/v) exhibit only minima at
~λ290nm, and remarkable red-shift from λ260nm strongly
supports the existence of strong π–π interactions, possibly
between two aromatic moieties (phenylpyrazolonyl unit) in
organogel (Figures 4A,B). However the CD spectra of APA-
peptides (2b/2c) in MeOH/TFE exhibit maxima (λ260nm) and
minima (λ260nm). The CD spectra of that peptide organogel in
other solvents are relatively non-characteristic. The solvent
polarity and interaction of these solvents with APA-peptides
resulted in diverse CD structures. The CD structures of APA-
peptides in other solvents are presumed due to intermolecular
H-bonding; this is further supported by our NMR and X-ray
studies.

NMR-Studies
In the literature, the formation of peptide organogels is also
studied by 1H-NMR in the deuterated solvent (toluene-d8) which
exhibits a significant downfield chemical shift of amide N-H
(Maity et al., 2015). We performed similar NMR studies with
representative organogel-forming APA-peptide 2c in the NMR
solvent, toluene-d8 (Figure 5). The NMR spectra of amide N-H
proton of peptide 2c before/after organogelation are depicted in
Figure 5 that exhibit the notable chemical shift in those amide
N-H protons after sonication. This indicates that amide N-H is
involved in hydrogen bonding after sonication that provides a
relatively stronger hydrogen bonding environment. Similar NMR
experiments were attempted with other organogel-forming
peptides (2b/2d/2e) but were unable to record 1H-NMR in the
same solvent, toluene-d8, because of instant solubility/
precipitation.

APA-peptides (2a-2e) have three amide bonds which can
involve in the hydrogen bonding network. We recorded 2D-
NMR (1H-COSY) spectra for representative APA-peptide (2c) in
CDCl3 and assigned their NH protons chemical shifts (δ) as Boc-
NH (δ6.24), Ile-NH (δ6.41), and β-Ala-NH (δ7.31)
(Supplementary Figure S22A). Notably, the β-Ala-NH is
overlapped with aromatic protons; the cross-peaks in the

1H-COSY experiment are used to assign its chemical shift
value. To study the amide bonds of APA-peptide (2c) involved
in the hydrogen bonding network, we performed the 1H-NMR
DMSO-d6 titration experiment in CDCl3 (Supplementary Figure
S23).(Malik et al., 2002; Balachandra and Sharma, 2014; Bollu
and Sharma, 2019b) Since the amide bond (β-Ala-NH) appeared
in the aromatic region, after DMSO-d6 titration, we again
recorded 1H-COSY to confirm the respective amide NH
(Supplementary Figure S22B). From these titration 1H-NMR
spectra, with increasing concentration of DMSO-d6 (up to 19 μL),
Boc-NH and Ile-NH exhibit a significant downfield shift;
however, β-Ala-NH (appended at APA moiety) shows a
marginal shift (Supplementary Figure S24). It appears that
Boc-NH and Ile-NH are involved in intermolecular hydrogen
bonding, and β-Ala-NH is involved in intramolecular hydrogen
bonding for the formation of the secondary structure.

FT-IR Studies of Organogels
FT-IR spectral analyses also support the formation of organogel
in the sequence-specific peptides (Malik et al., 2002; Maity et al.,
2015). It is reported that the IR frequency of free N-H stretching
(Amide-A band) appears at ~3400 cm−1, while hydrogen-
bonded N-H appears at a lower frequency of ~3300 cm−1s
(Vass et al., 2003; Adochitei and Drochioiu, 2011). Also, the
frequency of free amide-1 band (C=O stretching vibration)
appears at 1680 cm−1, while hydrogen-bonded C=O vibration
appears at lower frequency ~1650 cm−1 in organogels/xerogels
(Bardelang et al., 2008; Maity et al., 2015). Importantly, IR peaks
in organogel/xerogel are more structured than those in
synthesized peptides. To prevent the self-aggregations
through intermolecular hydrogen bonding, we planned to
record the IR spectra of APA-peptides (2a-2e) organogel in
hexafluoroisopropanol (HFIP) solvent. Thus, we recorded the
FT-IR spectra of clear xerogels of APA-peptides (2a-2e) and
compared with IR spectra of organogel in HFIP solvent. Their
carbonyl and amide region spectra are depicted in Figure 6,
while their whole spectra are provided in the SM
(Supplementary Figure S19). The FT-IR spectra of clear

FIGURE 5 | Expanded NMR of the peptide 2c amide N-H region of organogel in toluene-d8 before (red) and after sonication (turquoise).
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xerogels of APA-peptides (2a-2e) exhibit resolved peaks at
~1,645–1,657 cm−1, ~1,684–1,693 cm−1, and ~1736–1763 cm−1

which belong to the stretching frequency of the amide carbonyl,

carbamate carbonyl, and ester carbonyl, respectively. However,
the FT-IR spectra of those organogels in HFIP solvent exhibit a
non-resolved broad peak at 1674 cm−1. We also found that the
N-H (Amide-A) stretching vibrations appear at
~3,276–3,312 cm−1, which is lower than free N-H stretching
frequency (~3400 cm−1). In the literature, the β-sheet-forming
peptides show amide-1 (amide carbonyl) stretching frequency at
~1625–1650 cm−1, while α-helix-forming peptides at
~1,650–1,660 cm−1 that is lower than free amide carbonyl
stretching frequency (~1680 cm−1 (Vass et al., 2003; Yuran
et al., 2012). The FT-IR spectra of other xerogel peptides/
organogel in HFIP are almost same. Thus, our FT-IR spectral
analyses support the formation of secondary structure as α-
helix/β-sheet types in xerogel (2a-2e).

X-Ray Diffraction Analysis
The powder X-ray diffraction studies are used to confirm the
supramolecular self-assembly structure in xerogels including
peptide-based xerogels (dry organogels) (Marchesan et al.,
2012; Marchesan et al., 2014). A typical peptide xerogel exhibit
sharp reflection peaks at 5–35° 2θ (reflection angle) range, while

FIGURE 6 | FT-IR of APA-peptide 2a-2e xerogels and gels dissolved in HFIP. Carbonyl region (top) and amide NH region (bottom).

FIGURE 7 | Powdered XRD reflection pattern of APA-peptide 2b.
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non-xerogel peptides (synthetic) exhibit broad reflection peaks at
20° 2θ range. We also performed a powder X-ray diffraction
experiment with organogel-forming APA-peptides (2b-2c). We
recorded the X-ray diffraction (XRD) spectra of peptides 2b-2e in
powder form (before organogelation) and their respective
xerogel. The XRD spectra of the APA-peptide (2b) solid
powder (before/after gelation) are depicted in Figure 7, while
for other APA-peptides (2c-2e) are provided in the SM
(Supplementary Figure S21). The XRD spectra of peptide
(2b) show that its xerogel powders are structurally organized
than the powder before gelation. We calculated d-spacing values
in angstroms (Å) from their experimental 2θ reflection peaks by
applying Bragg’s equation (nλ = 2dSinθ) (Bardelang et al., 2008;
Marchesan et al., 2012). Their d-spacing values are provided
above the reflection peaks. In xerogel spectra, the reflection peaks
at 4.5–5.1Å are characteristics for hydrogen bonding between β-
strands, while peaks at 9.7–10.8Å are associated with the distance
between anti-parallel strands (i.e. every other strand) or to inter-
sheet distances. The peaks at 3.8–4.2Å are attributed to π-π
stacking possible from aromatic N-phenyl pyrazole rings
(Marchesan et al., 2012; Marchesan et al., 2014). Thus, APA-
peptide xerogels have the β-sheet type of structure in their
supramolecular self-assembly structure.

Conformational Studies
Global-MMX (GMMX) is a steric energy minimization program
that uses the supported force field (MMX, MM3, or MMFF94)

and operates in batch mode to search conformational space and
to list the lowest energy unique conformers. The generalized
born/surface area (GB/SA) solvation model gives free energies of
aqueous solvation (Cheng et al., 2000). GMMX and GBSA
solvation calculation models are being frequently applied to
find the energy-minimized conformation of peptides in the gas
phase and water medium (Lee et al., 2001; Biswas et al., 2013). We
performed the theoretical calculation to find the energy-
minimized conformation into the gas phase and solution with
GMMX and GBSA solvation methods with the MMFF94 force
field. The details are proved in the Supplementary Material. The
structurally minimized conformers of APA-peptides (2a-2e)
without hydrogen atoms are provided in Figure 8 while with
hydrogen atoms in Supplementary Figure S27. The stabilization
energy of APA-peptide (2a-2e) solution phase (dielectric
constant, equivalent to water) is lower than that of the gas
phase by 12~kcal/mol without affecting the significant changes
in structural conformation. Importantly, we could not find
intramolecular hydrogen bonding in the energy-minimized
conformers of APA-peptides. Their phenyl-aminopyrazolone
residues are planar, and the polar groups are exposed in
solvents which could participate in the intermolecular
hydrogen bonding with other molecules. Generally,
intramolecular hydrogen bonding prevents the formation of
organogels. Presumably, these APA-peptides form
intermolecular hydrogen bonding in the organic solvent
system (EtOAc:Hexane) after sonication and produce

FIGURE 8 | Energy-minimized conformer without hydrogen atoms. 2a (E = 31.2 kcal/mol; GBSA steric energy = 18.6 kca/mol; dielectric constant: 1; dipole
moment: 4.2); 2b (E = 34.7 kcal/mol; GBSA steric energy = 22.3 kca/mol; dielectric constant: 1; dipole moment: 4.2); 2c (E = 38.8 kcal/mol; GBSA steric energy =
25.8 kcal/mol; dielectric constant: 1; dipole moment: 5.0); and 2d (E = 56.0 kcal/mol; GBSA steric energy = 41.4 kcal/mol; dielectric constant: 1; dipole moment: 6.0); 2e
(E = −3.0 kca/mol; GBSA steric energy = −15.6 kca/mol; dielectric constant: 1; dipole moment: 3.1).
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organogels. Hence, APA-peptides have the ability to form
organogel.

CONCLUSION

Aminopyrazolonyl amino acid (APA) containing α-/β-hybrid
peptides are explored further for supramolecular self-assembly
structure by the formation of organogel in the organic solvent
system. Most of them form organogels, but their physical
appearances are different such as opaque and translucent. These
organogels are characterized as β-sheet types of the structure by
NMR, IR, CD, powder-XRD, TGA, SEM, and TEM techniques.
Theoretically, the energy-minimized structure suggests that there is
no intramolecular hydrogen bonding in the polar solvent. There could
be possibility of the formation of intermolecular hydrogen bonding
after sonication in the organic solvent which leads to the formation of
organogel in the EtOAc:Hexane solvent system. Hence, the APA acid
could be employed at the N-terminal of target di-/tri-peptides for
organogelation in the organic co-solvent (EtOAc:Hexane) system.

EXPERIMENTAL DETAILS

Materials
All required materials were obtained from commercial suppliers
and used without any further purification. Dimethylformamide
was distilled with calcium hydride. Reactions were monitored by
TLC (thin layer chromatography) and visualized by UV and
ninhydrin. Column chromatography was performed in a 230–400
mesh silica gel. Mass spectra and HRMS were obtained using the
Bruker micrOTOF-Q II spectrometer. 1H NMR and 13C NMR
were recorded on Bruker AV-400 or 700 MHz at 298 K. 1H and
13C NMR chemical shifts were recorded in ppm downfield from
tetramethylsilane or residual solvent peak. Splitting patterns are
abbreviated as follows: s, singlet; d, doublet; dd, doublet of
doublet; t, triplet; q, quartet; dq, doublet of the quartet; and m,
multiplet. Powder X-ray diffraction data were collected on a
Bruker D8 Advance with DA VINCI design fitted with an
HTK 16 temperature chamber X-ray powder diffractometer
using CuKα radiation (λ = 1.5418 Å). Transmission electron
microscopy (TEM) data were recorded using JEOL 2100F.

General Experimental Procedure for
Compounds (2a-2e)
The experimental procedures for the synthesis of control
dipeptides and APA-peptides (2a-2e) were followed from the
literature. (Bollu and Sharma, 2019b).

APA-β-Ala-Gly-OMe (2a). Rf 0.18 (0.4:9.6 MeOH/CH2Cl2);
yield 68%; 1H NMR (400 MHz, DMSO) δ 8.37 (s, 1H), 8.17 (s,
1H), 8.05 (s, 1H), 7.71 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H),
7.30 (t, J = 7.1 Hz, 1H), 4.60 (s, 2H), 3.83 (d, J = 5.5 Hz, 2H), 3.61
(s, 3H), 3.32 (s, 2H), 2.36 (t, J = 6.9 Hz, 2H), 2.03 (s, 3H), and 1.44
(s, 9H); 13C NMR (176 MHz, DMSO) δ 171.56, 170.95, 167.16,
162.16, 155.30, 147.65, 146.78, 138.90, 129.55, 126.76, 122.28,
103.74, 79.39, 70.54, 52.22, 45.65, 41.05, 35.63, 35.22, 28.61, and

12.40. HRMS (ESI-TOF) m/z [M + H]+ Calcd for C23H31N5O7

490.2296; found 490.2295.
APA-β-Ala-Ala-OMe (2b). Rf 0.33 (0.4:9.6 MeOH/CH2Cl2);

yield 70%; 1H NMR (400 MHz, DMSO) δ 8.35 (d, J = 6.9 Hz, 1H),
8.17 (s, 1H), 8.04 (s, 1H), 7.70 (d, J = 7.8 Hz, 2H), 7.46 (t, J =
7.9 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 4.60 (s, 2H), 4.26 (p, J =
7.2 Hz, 1H), 3.61 (d, J = 5.4 Hz, 3H), 3.40–3.21 (m, 3H), 2.39–2.27
(m, 2H), 2.02 (s, 3H), 1.43 (s, 9H), 1.25 (d, J = 7.3 Hz, 4H). 13C
NMR (176 MHz, DMSO) δ 173.75, 170.98, 167.17, 155.32,
147.66, 146.80, 138.93, 129.58, 126.79, 122.30, 103.77, 79.41,
70.55, 52.40, 48.06, 35.63, 35.20, 28.64, 17.49, and 12.43.
HRMS (ESI-TOF) m/z [M + Na]+ Calcd for C24H33N5O7Na
526.2272; found 526.2272.

APA-β-Ala-Ile-OMe (2c). Rf 0.35 (0.3:9.7 MeOH/CH2Cl2);
yield 73%; 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 7.9 Hz,
2H), 7.43 (t, J = 7.7 Hz, 2H), 7.37–7.24 (m, 1H), 6.34 (d, J = 72.2
Hz, 1H), 4.57 (m, J = 41.5, 26.2 Hz, 3H), 3.67 (d, J = 27.7 Hz, 4H),
3.51 (s, 1H), 2.48 (d, J = 4.8 Hz, 2H), 2.17 (s, 3H), 1.81 (s, 1H), 1.48
(s, 9H), 0.89 (d, J = 6.0 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ
172.81, 172.04, 167.72, 155.29, 147.54, 146.92, 138.24, 129.04,
126.72, 122.38, 102.45, 80.59, 70.89, 56.91, 52.08, 37.06, 35.57,
28.25, 25.25, 15.50, 11.87, and 11.40. HRMS (ESI-TOF) m/z [M +
H]+ Calcd for C27H40N5O7 546.2933; found 546.2812.

APA-β-Ala-Phe-OMe (2d). Rf 0.36 (0.4:9.6 MeOH/CH2Cl2);
yield 79%; 1H NMR (400 MHz, DMSO) δ 8.42 (d, J = 7.7 Hz, 1H),
8.16 (s, 1H), 7.98 (s, 1H), 7.69 (d, J = 7.7 Hz, 2H), 7.45 (t, J =
7.7 Hz, 2H), 7.33–7.16 (m, 7H), 4.58 (s, 2H), 4.47 (dd, J = 13.9,
8.2 Hz, 1H), 3.60 (s, 3 Hz), 3.22 (dd, J = 20.2, 10.2 Hz, 2H), 3.01
(dd, J = 13.6, 5.3 Hz, 1H), 2.88 (dd, J = 13.4, 9.5 Hz, 1H), 2.30 (m,
J = 14.6, 7.4 Hz, 2H), 2.02 (s, 3H), 1.43 (s, 9H). 13C NMR
(176 MHz, DMSO) δ 172.66, 172.57, 171.15, 170.40, 167.16,
155.33, 147.67, 146.81, 138.90, 137.77, 129.59, 128.80, 127.13,
126.81, 122.32, 103.72, 79.43, 70.53, 54.12, 52.41, 45.69, 37.24,
36.33, 35.58, 35.21, 34.29, and 28.63, 12.42. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C30H38N5O7 580.2766; found 580.2760.

APA-β-Ala-β-Ala-OMe (2e). Rf 0.28 (0.3:9.7 MeOH/CH2Cl2);
yield 60%; 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 7.6 Hz, 2H),
7.41 (t, J = 7.7 Hz, 2H), 7.36–7.14 (m, 2H), 6.45 (s, 1H), 6.35 (s,
1H), 4.58 (s, 2H), 3.66 (s, 3H), 3.60–3.43 (m, 2H), 2.44 (d, J = 40.0
Hz, 2H), 2.18 (s, 3H), 1.47 (s, 9H). HRMS (ESI-TOF) m/z [M +
H]+ Calcd for C24H34N5O7 504.2453; found 504.2453.

Organogelation
Ameasure of 10 mg of APA-peptides (2a-2e)was dissolved in 1 ml
of hexane–ethylacetate (3:1) solvent mixture and sonicated at 50°C
for 2 min and then allowed to cool at room temperature. Under
these conditions, APA-peptides (2b-2e) formed organogels.

Field Emission Scanning Electron Microscopy
A measure of 10 mg of APA-peptides (2b-2e) was dissolved in
1 ml of hexane–ethylacetate (3:1) mixture and sonicated at 50°C
for 2 min. Then, the gel was casted on the silicon wafer and dried
under high vacuum, and SEM images were obtained at 3.00 kV.

Field Emission Transmission Electron Microscopy
A measure of 10 mg of APA-peptides (2b-2e) was dissolved in
1 ml of hexane–ethylacetate (3:1) mixture and sonicated at 50°C
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for 2 min. Then, the gel was diluted 3–4 times and casted on a
copper grid and dried under high vacuum; TEM images were
obtained.

Circular Dichroism Spectroscopy
CD spectra were recorded in degassed CH3OH, AcCN, CHCl3,
CF3CH2OH, and hexane–ethylacetate (3:1) at 20°C from
300–200 nm with peptide concentrations of 0.1 mM. CD data
are collected with following parameters: data pitch at 2 nm, DIT
for 2 s, bandwidth at 2 nm, and scanning speed at 100 nm/min.

Fourier-Transform Infrared Spectroscopy
Peptide gels were drop-casted on the KBr window and dried
under high vacuum. For HFIP, xerogels were dissolved in HFIP
and drop-casted on the KBr window and then dried under high
vacuum. The spectra are the average of 250 scans.
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