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Abstract

Background:Recent studies have examined the effect of computerized cognitive train-

ing on working memory (WM), but the behavioral and neural effects were uncertain.

Also, few studies have explored WM training effects on children using event-related

potentials. The purpose of our study was to investigate the effects of WM training in

children, including the effects on behavioral performance and neurophysiological out-

comes.

Methods: Forty-four healthy children (mean age = 7.76 years, SD = 0.57 years,

18 females) were assigned to the training and control groups. Over 20 training ses-

sions, the traininggroupparticipated in the computation-spanand spatialN-back tasks,

whereas the control group joined in normal class activities. They all completed the pre-

and post-test evaluation ofWM tasks (digit span backwards task andN-back task).

Results: The results showed that WM training led to improved performance in the

digit span backwards task and 2-back task of post-test evaluation, shortened P3a and

P3b latencies in nontarget trials during the spatial 1-back task, shortened P3a latency

in target and nontarget trials, as well as increased P3b amplitude and shortened P3b

latency in target trials during the spatial 2-back task.

Conclusions: These results suggested that WM training might enhance children’s

behavioral performance onWM tasks and brought about neurophysiological changes.

This study gives insights into the potential ofWM training effects on children’s behav-

ioral performance and neurophysiological outcomes.
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1 INTRODUCTION

Working memory (WM) is defined as a cognitive system for the

temporary maintenance and manipulation of information (Baddeley,

2012; Pergher et al., 2018), which has always been considered to play

a significant role in many other cognitive operations, such as learning,
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reasoning, intelligence, and problem-solving (Alloway, 2009; Baddeley,

2003; Conway et al., 2003).

Several recent studies and reviews have examined the effect of

computerized cognitive training on WM but fail to reach any agree-

ment (Backman et al., 2017; Pappa et al., 2020; Sala & Gobet, 2017;

Sala et al., 2019). In these training studies, simple digit span tasks,
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complex span tasks, and N-back tasks have generally been taken as

training tasks (Hayashi, 2019; Pergher et al., 2018; Spencer-Smith &

Klingberg, 2015; Zhao et al., 2013). These tasks were considered to

involve both short-term memory storage component and the central

executive component (Scharinger et al., 2017; Unsworth et al., 2009).

But both themulti-component model ofWMand the attention control

model suggested that the central executive component occupied a

central position in WM (Baddeley, 2003, 2010, 2012; Unsworth et al.,

2009), and shared the brain mechanism with other complex cognitive

operations (Jung & Haier, 2007; Owen et al., 2005). It was the central

executive component rather than storage component closely related

to advanced cognitive functions (Conway et al., 2003). Thus, training

tasks requiring the participation of central executive component,

in our opinions, have the particularly important practical application

value for the development of individuals. The training effects ofN-back

tasks on central executive component have been confirmed by many

studies (Ang et al., 2015; Jaeggi et al., 2011; Pergher et al., 2018). Also,

as N-back tasks could effectively induce electrical components and the

activation of the cerebral cortex (Scharinger et al., 2017), these tasks

have been themost commonly used experimental paradigms to investi-

gate the neuronal connections betweenWMfunction andWMtraining

effects (Chen et al., 2019; Owen et al., 2005; Schneiders et al., 2011).

Although complex span tasks have long been generally regarded as

containingboth twoWMcomponents, recent research found that com-

plex span tasks could induce WM manipulation-load as effectively as

N-back tasks and show similar electroencephalogram (EEG) patterns.

Thus, their important role in the training of central executive compo-

nent should be given attention (Unsworth & Engle, 2005; Unsworth

& Engle, 2008; Unsworth et al., 2009). To the best of our knowledge,

there have been few studies that used both complex span task (i.e.,

computation-span task) and N-back task (i.e., spatial N-back task) as

central executive training tasks to examine the training effects onWM.

In terms of the effects of WM training, the results tended to be

inconsistent (Pappa et al., 2020; Redick et al., 2015; Sala & Gobet,

2020). Somestudies found thatWMtraining could lead toperformance

improvement on untrainedWM tasks (Henry et al., 2014; Redick et al.,

2015; Sala&Gobet, 2020; Soveri et al., 2017). They suggested that per-

sonal WM was plastic and WM training might lead to improved WM

function and better task performance inWMtasks, though the types of

training tasks, modalities of stimulation, and the tasks used to evaluate

training effects were different (Adam & Vogel, 2018; Gathercole et al.,

2019; Hayashi, 2019; Sala & Gobet, 2020; Spencer-Smith & Klingberg,

2015). On the contrary, other studies all found evidence of no perfor-

mance improvement on untrainedWM tasks afterWM training (Back-

man et al., 2017; Linares et al., 2019). Thus, one of the objectives in the

current studywas to explore behavioral effects on untrainedWMtasks

followingWM training.

In recent years, the development and application of cognitive neu-

roscience technology has provided new ideas for evaluating the effects

of WM training (Buschkuehl et al., 2012). Neuroimaging technology

has been used to explore neuronal effects of WM training, provid-

ing convincing evidence for the plasticity of WM (Constantinidis &

Klingberg, 2016; Schneiders et al., 2011). The event-related potentials

(ERPs) technique has a high time resolution of microseconds and could

accurately record ERPs on the time series of EEG signals. Thus, ERP

has been considered as an important tool for examining the neuronal

effects ofWM (Scharinger et al., 2017; Zhao et al., 2013).

Among many components of ERP, P3 has long been considered to

be closely related to WM (Dong et al., 2015; Lubitz et al., 2017). In

accordance with the context updating model and resource allocation

theory (Gajewski & Falkenstein, 2018; Zhao et al., 2013), P3 reflects

processes of detection of stimuli changes, and establishes represen-

tations updating and cognitive resources allocation in mind (Polich,

2007; Scharinger et al., 2017). P3 amplitude is thought to repre-

sent the recruitment of neural resources for WM cognitive processes,

while P3 latency is proved to be related to stimulus evaluation time,

which reflects the speed of information processing (Kutas et al., 1977;

Thompson et al., 2016). P3 component includes the activity of two

ERP subcomponents, P3a andP3b (Polich, 2007). Specifically, P3a orig-

inates from frontal activity, and it is considered to be closely related

to stimulus-driven attention mechanisms and the processing of novel

stimuli (Friedman et al., 2001; Gajewski & Falkenstein, 2018). P3b

originates from temporal–parietal activity, and it is considered to be

closely related to subsequent memory processing and operation. It

reflects attention and cognitive resources allocation in mind (Gajew-

ski & Falkenstein, 2018; Polich, 2007). The amplitudes and latencies

of P3a and P3b actually to some extent represent the performance of

the WM function (Covey et al., 2018; Pergher et al., 2018; Zhao et al.,

2013).Well-performing individuals are allowed to invest less cognitive

processing resources and complete faster than underperforming indi-

viduals faced with the same task, and they have higher amplitudes and

shorter latencies of P3a and P3b correspondingly (Dong et al., 2015;

Fjell et al., 2007; Lubitz et al., 2017). Therefore, from a theoretical

point of view, the neural effects of WM training would be manifested

as significantly increased amplitudes and shortened latencies of P3a

and P3b.

This viewhas been supportedby someempirical studies (Emchet al.,

2019; Heinzel et al., 2016; Pergher et al., 2018; Zhao et al., 2013).

From the previous WM training research, the brain regions where

P3 amplitude enhanced or P3 latency reduced after training mainly

involved frontal lobe as well as parietal lobe (Chen et al., 2019; Covey

et al., 2018; Gajewski & Falkenstein, 2018), that is, WM training led to

increased amplitudes and shortened latencies of P3a and P3b. How-

ever, there are a few studies which obtained inconsistent results (Liu

et al., 2016; Woltering et al., 2021). Two studies found that there was

no convincing evidence that the WM training per se changes neural

activation patterns of behavioral tasks in Attention Deficit and Hyper-

activity Disorder (ADHD) adults (Liu et al., 2016; Woltering et al.,

2021). Thus, it remains an open question whether WM training could

lead to increased amplitudes and shortened latencies of P3a and P3b.

At the same time, previous researchers usually recruited adults and

the elderly as the research objects to explore the WM training effects

on brain activity (Chen et al., 2019; Nussbaumer et al., 2015; Pergher

et al., 2018; Zhao et al., 2013), whereas few studies have been con-

ducted on children. However, children represent a particularly impor-

tant population onwhich to performWMtraining (Sala&Gobet, 2017).
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They are just at the beginning of cognitive ability and academic skills

development inwhichWM,especially the central executive component

of WM, plays a fundamental role. Moreover, compare with the speed

and stability of brain development in adults, children are in the stage

of rapid development of cognitive function (Johnson, 2001; Spitzer,

2017). Thus, WM training on children seems to be efficient and far-

reaching. As training studies in childrenusingERPwere few, the second

objective of the current study was to investigate whetherWM training

could have an impact on the amplitudes and latencies of P3a and P3b in

children with the purpose of supplementing previous studies.

In summary, the purpose of our study was to investigate the effects

of WM training based on both the computation-span task and spatial

N-back task in children, including the effects on both behavioral per-

formance and neurophysiological outcomes. To investigate this, tak-

ing second- and third-grade children as the participants, we tended

to examine whether WM training could lead to behavioral improve-

ment and changes in the amplitudes and latencies of P3a and P3b. It

was hypothesized thatwewould observe the increased amplitudes and

shorter latencies of P3a and P3b during the training process as well as

the behavioral improvements in post-test of the training group, which

would suggest thepotential ofWMtrainingeffects on children’s behav-

ioral performance and neurophysiological outcomes.

2 METHODS

2.1 Participants

The participants were recruited on a voluntary basis from four classes

in a public primary school in Shanghai, China. The participants were

right-handed and native Mandarin speakers, with normal or corrected

vision, no color blindness or weakness, no history of mental illness

or neurological diseases, no medical treatment before the measure-

ments, and never participated in similar cognitive training. Sample size

was determined by a power analysis prior to data collection using

G*Power. Based on a conservative effect size in the small-medium

range (ŋp2 = 0.05), estimated from previous research on behavioral

and neural effects of WM training (Pergher et al., 2018), we deter-

mined a target sample size of 40 participants. We collected as much

data as we could, a total of 44 second- and third-grade healthy chil-

dren constituted the final experimental sample. All participants were

randomly divided into two groups, the training group (n = 21, mean

age = 7.73 years, SD = 0.59 years, 9 females) and the control group

(n = 23, mean age = 7.79 years, SD = 0.56 years, 9 females). For an

overview of the sample characteristics, see Table 1. They all completed

the pre- and post-test behavioral evaluation during the training pro-

cess. A sensitivity power analysis for behavioral results conducted in

G*Power (Faul et al., 2007; alpha = 0.05, power = 0.80, groups = 2)

indicated that, given this sample size, the study was powerful enough

to detect a medium effect size, ŋp2 = 0.07, f = 0.26 (Cohen, 2013).

Unfortunately, as using ERP in children was difficult and extremely

time-consuming, EEGdataof only31children couldbe collectedbefore

school holidays. Thus, all 21 children in the training group (mean age=

TABLE 1 Demographic characteristics of the samples

Training group Control group

Age 7.73 (0.59) 7.79 (0.56)

Gender

Female 9 (42.85%) 9 (39.17%)

Male 12 (57.14%) 14 (60.83%)

Grade

Grade 2 11 (52.38%) 10 (43.47%)

Grade 3 10 (47.62%) 13 (56.53%)

Father’s education

High school and below 4 (19.05%) 2 (8.70%)

Junior college or college degree 12 (57.14%) 15 (65.22%)

Master’s degree and above 5 (23.81%) 6 (26.07%)

Mother’s education

High school and below 2 (9.52%) 2 (8.70%)

Junior college or college degree 14 (66.67%) 18 (78.26%)

Master’s degree and above 5 (23.81%) 3 (13.04%)

7.73 years, SD= 0.59 years, 9 females) and only 10 children in the con-

trol group (n = 10, mean age = 7.65 years, SD = 0.62 years, 4 females)

with available EEGdatawere included in EEGdata analyses. A sensitiv-

ity power analysis for ERP results conducted in G*Power (Faul et al.,

2007; alpha = 0.05, power = 0.80, groups = 2) indicated that, given

this sample size, the study was powerful enough to detect a medium

effect size, ŋp2 = 0.06, f= 0.25 (Cohen, 2013). The study was approved

by the Academic Ethics Committee of Shanghai Normal University.

The legal guardians of all participants gave informed written consent

before testingbegan.All theparticipantsweregivenapresent (i.e., pen-

cil, ruler, notebook, etc.) as a compensation for their time and participa-

tion after the experiment.

2.2 Measures

2.2.1 Tests and materials for pre- and post-test
evaluation

Digit span backwards task and N-back task were used as the measure-

ment materials for WM of children (Rosen et al., 2020; Vuontela et al.,

2003).

Digit span backwards task. This task adopted from the Wechsler

Intelligence Scale for Children (WISC-IV; Wechsler, 2003). Children

were presented with sequences of digits and required to repeat the

sequences backward. The strings of numbers were read aloud by

the experimenter at a rate of one digit per second. The task started

with two digits. If the participants recalled correctly, the length of

the sequence increased by one digit, the maximum length was nine

digits. Each length consisted of four trials. The task ends when the

participant fails in all four attempts of the given number length. The

longest correct sequences of digits the participants achieved was used

as the participant’s score in this task.



4 of 14 XU ET AL.

F IGURE 1 Graphical rendition of computation-span task

N-back task. In this task, E-Prime 1.1 was used to present stimuli

and collect data. This study used N-back task (1-back and 2-back) with

different memory load level, and asked the participants to match the

current digit with the digit in front of the N positions, accurately and

quickly judge whether they were the same. In the 1-back task, partici-

pantswere asked to determinewhether the current displayeddigitwas

the sameas the digit in front of the1position; in the2-back task, partic-

ipants were asked to compare whether the current digit was the same

as the digit in front of the two positions. The 1-back and 2-back tasks

each consistedof24 trials, half ofwhichwere target trials and theother

half were nontarget trials. A target appeared when the current digit

was identical to the digit shown before. Similarly, a nontarget appeared

when the current digit was different to the digit shown before. Par-

ticipants were instructed to press the key “A” on the keyboard within

a 3500 ms time limit for the targets, otherwise they needed to press

the key “L.” The accuracy (i.e., correct responses as a percentage of the

total trials) was used as the participant’s score in the 1-back and2-back

tasks, respectively.

2.2.2 Training tasks

Training tasks included computation-span task and spatial N-back task

(Minear et al., 2016).

Computation-span task. The training program was compiled with E-

prime 1.1. The stimuli were presented in the center of the screen and

the materials appeared in random order. The participants were asked

to memorize the digits presented in order and perform mathematical

equations between the digit presentations (Figure 1). The participants

saw a digit in the center of the screen at first, a mathematical equa-

tion would be presented when the digit disappeared. Then, the partici-

pants required to solve themathematical equation and input the result

using the keyboard in the following screen. After that, the participants

would see another digit. After a certain number of combinations of dig-

its andmathematical equations appearance, a screenwill be presented

to remind participants of recalling, and participants need to input dig-

its in the order presented previously. The participants had to complete

eight sets of computation span trials in every session associated with a

different difficulty level. There were four levels of difficulty in the task

which was determined by the number of digits requiring to be recalled

in a trial. Training score was the percentage of correct recalled trials.

The participants started training from a low span level (n = 3), and

when their completion accuracy reached 85%, they would be allowed

to enter the next difficulty level.

Spatial N-back task. The participants were asked to memorize and

recognize the constantly refreshing visual spatial stimuli, comparing

the stimuli information currently presented with the stimuli in front of

theNpositions andmaking responseswith thekeyboard (Figure2). The

stimulation of the training task used randomly presented pictures with

spatial information. In order to make it easier for elementary school

students to understand, we chose pictures of houses and windows. A

house with nine windows was presented on the screen. Each time the

house appeared, one of the windows will be lit. The participants were

asked to remember which window was lit, and compare whether the

current displayed lit window on the screen is in the same position as

theN lit windows before (N= 1 in 1-back;N= 2 in 2-back; andN= 3 in

3-back).When spatial information currently presentedwas completely

consistent with the information in the N positions ahead, the partici-

pants were asked to press the “A” on the keyboard (33% of the pic-

tures are the same target), otherwise press the “L” on the keyboard.

The participants had to complete 60 trials in each session which was

associated with a level of difficulty. There were three levels of diffi-

culty in the task, which is determined by theN position, they are 1-back

task, 2-back task, and 3-back task. The training task score was the per-

centage of the trials that participants answered correctly. Participants

started training at a lowdifficulty level (1-back), andwhen the accuracy

rate reached 85%, they could enter the next difficulty level (2-back and

3-back).

2.3 Procedure

Subject flow is presented inFigure 3based on theCONSORT reporting

instructions (Schulz et al., 2010). Participants in the training groupcom-

pleted 20 training sessions in school that were preceded by a pre-test

evaluation and followed by a post-test evaluation, while the control

groupwas involved in normal class activities and conducted no training

between the pre-test and post-test evaluation in order to examine the

training effects on children’s behavioral performance (pre- to post-test

days elapsed:M= 11.72months, SD= 0.35months).

Only if the accuracy rate reached 85%, participants could enter the

next difficulty level (2-back and 3-back). Few participants could use

the spatial 3-back task for training at the beginning. As a result, EEG

data were collected twice to analyze the training effects during WM
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F IGURE 2 Graphical rendition of special N-back task

training process, respectively, at the first and last training session, using

the spatial 1-back and 2-back tasks. For the control group, EEG data

collection was conducted with the same training task and at the same

time point as the training group. Forty-four children all completed the

pre- and post-test behavioral evaluation as well as EEG data collection

during the training process. Unfortunately, all 21 children in the train-

ing group and only 10 children in the control group with available EEG

data were included in EEG data analyses as using ERP in children was

difficult and extremely time-consuming.

Within the training group, participants were instructed to perform

the spatial N-back task and the computation-span task in order in each

training session. Participants completed 20 sessions of training, for 2–

3 times a week (about 30 min each). The interval between each train-

ing session was 2–3 days, which was determined based on the partic-

ipants’ daily class schedule. There were three difficulty levels in the

spatial N-back task (i.e., 1-, 2-, and 3-back) and four difficulty levels in

the computation-span task (i.e., span= 3, 4, 5, and 6). The training pro-

cess startedwith taskswith low cognitive load or small span.When the

correct rate of student task completion reached more than 85%, they

entered a higher difficulty level of training tasks. Twenty sessions of

training for 21 children in the training group were completed within

5.5 months. All the evaluation and training tasks were conducted by

professionally trained graduate students. For the specific situation of

20 training sessions, see Figures 4 and 5.

2.4 EEG data recording and offline processing

EEG data collection was conducted in a closed roomwith soft light and

quietness. After the participants were seated in comfortable chairs,

the electrode caps were tightly and properly worn on the participants’

heads. The participantswere guided to adjust their postures, with their

eyes about 1 m away from the computer screen. In order to minimize

the interference of artifacts, the participants were required to keep

their bodies immobile and reduce the number of blinks throughout the

experiment.

EEG activity was recorded continuously with SynAmps amplifiers

from 32 Ag/AgCl electrodes using a 32-channel cap (10−20 system) of

a NeuroScan system (Neuro Scan Inc. El Paso, TX, USA). The reference

electrodes were positioned at the left and right mastoids and the

ground electrode was located at FPz. The horizontal electrooculogram

(EOG) was recorded throughout two electrodes positioned at the

external canthi of both eyes, and the vertical EOG was recorded

throughout two electrodes positioned above and below the left eye.

All signals were digitized at a sampling rate of 500 Hz. During the EEG

recording, electrode impedances weremaintained below 5 kΩ.
EEG data offline analysis was conducted by custom scripts com-

bined with functions in EEGLAB (Delorme & Makeig, 2004) and

ERPLAB (Lopez-Calderon&Luck, 2014) underMATLAB (R2017b) soft-

ware. To remove high- and low-frequency noise, the EEG data were

cleaned using a bandpass filter (0.1-40 Hz, IIR Butterworth, second

order) by pop_basicfilter function in ERPLAB. Next, in order to identify

and remove flatline channels, low-frequency drifts, and noisy channels,

clean_artifacts function in EEGLABwas employed;meanwhile, transient

or large-amplitude artifacts were corrected using artifact subspace

reconstruction method implemented in clean_artifacts function (Chang

et al., 2020). Then, independent component analysis was performed,

and the artifact components, including eye, muscle, heart, line noise,

and channel noise, were identified by ICLabel in EEGLAB and rejected

from the EEG data. After that, the rejected bad channels were interpo-

lated by spherical method. EEG data were then segmented into epochs

of 1000 ms, which included the 200-ms prestimulus baseline period.

The epochs with the maximum peak-to-peak voltage above 100 μV at

channels Fz and Pz were rejected using moving window peak-to-peak

threshold method in ERPLAB. The two groups did not have significant

difference in artifacts-free trial counts in 1-back (the control group:

M=25.63, SE=0.98; the training group:M=25.22, SE=0.68, p= .741)

and 2-back (the control group: M = 24, SE = 1.26; the training group:

M= 23.93, SE= 0.87, p= .963).

ERPmeasurement function pop_geterpvalues in ERPLABwas utilized

to extract ERP features, where local peak option was utilized as this

method can prevent the rising edge of an adjacent component at the

edge of the measure window from being chosen as the peak (Lopez-

Calderon & Luck, 2014). Based on the previous research (Covey et al.,

2018; Gajewski & Falkenstein, 2018), P3a amplitude was quantified as

local peak amplitude and its latency in the 300–600 ms time window

at Fz. Similarly, the amplitude and latency of P3b were quantified as

local peak amplitude and its latency in the 300–600ms timewindow at

Pz. Therefore, we mainly analyzed the peak amplitudes and latencies

of P3a and P3b in the 300-600 ms time window in the spatial 1-back

and 2-back tasks, focusing on the midline electrodes in the frontal and

parietal regions (i.e., Fz and Pz).
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Accessed for eligibility (n=155)

Excluded (n=105) 

• Not meet inclusion criteria (n=5) 

• Declined to participate (n=86) 

• Unable to attend all sessions(n=11) 

• Others (n=3) 

Randomized (n=50)

The training group (MT) 

(n=26)

The control group (CT) 

(n=24)

Completed pre-test 

evolution of 

behavioral tasks (n=25) 

Completed pre-test 

evolution of 

behavioral tasks (n=24) 

Discontinued (n=1)

Completed EEG data 

recording at the first 

training session (n=25)  

Completed EEG data 

recording at the first 

training session (n=23)  

Completed training 

sessions 2-19 (n=23)  

Completed EEG data 

recording at the last 

training session (n=22)  

Refused to accept EEG 

data recording (n=10) 

Excluded from 

analysis: inadequate 

EEG data (n=13)

Completed post-test 

evolution of 

behavioral tasks (n=21) 

Completed post-test 

evolution of 

behavioral tasks (n=23) 

MT available for behavioral 

data analysis (n=21) 

MT available for EEG data 

analysis (n=21) 

CT available for behavioral 

data analysis (n=23) 

CT available for EEG data 

analysis (n=10) 

Discontinued (n=2)

Discontinued (n=1)

Discontinued (n=1)

Completed EEG data 

recording at the last 

training session (n=13)  

Discontinued (n=1)

F IGURE 3 CONSORT flow chart of participants through the study
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F IGURE 4 Spatial N-back performance across every session

F IGURE 5 Computation-span task performance across every session

2.5 Statistical analyses

For the analysis of behavioral data, we conducted several repeated-

measures ANOVAs with session (pre-test and post-test) as the within-

subjects factor, group (the training group and the control group) as the

between-subjects factor, and the scores onWMtasks as thedependent

variables.

For the analyses of ERPdata, based on the previous research (Covey

et al., 2018; Gajewski & Falkenstein, 2018), in which they conducted

group × session × trial type repeated measures ANOVAs for the com-

puterized tests that had multiple trial types (i.e., target and nontar-

get), we analyzed target-locked and nontarget-locked ERPs separately

to reduce complexity of the data. The amplitudes and latencies of

P3a and P3b were analyzed using a three-way ANOVA (group × ses-

sion × trial type), with session (the first training session and the last

training session) and trial type (target trials and nontarget trials) as

the within-subjects factors, group (the training group and the control

group) as the between-subjects factor. Following the previous research
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TABLE 2 Descriptive statistics for eachWM task performanceM
(SD)

Training group (n= 21) Control group (n= 23)

Pre-test Post-test Pre-test Post-test

Digit span

backwards

4.76 (1.61) 6.19 (1.08) 4.65 (1.43) 5.13 (1.46)

1-back 0.82 (0.16) 0.96 (0.04) 0.75 (0.18) 0.85 (0.15)

2-back 0.55 (0.16) 0.83 (0.14) 0.52 (0.19) 0.58 (0.17)

(Zhang et al., 2019), we calculated effect sizes in all ANOVAs to mini-

mize the effect of unbalanced sample size.

The statistical analysis was conducted by IBM SPSS 25.0.

3 RESULTS

3.1 Effects of WM training: Behavioral results

Descriptive statistics (means and standard deviation) of eachWM task

performance are presented in Table 2 for the training group and con-

trol group, for pre-and post-tests. We found no significant differences

between the training group and control group in pre-test performance

(t= 0.24−1.32, ps> .05).

Results of repeated-measuresANOVAsbetweengroup (the training

group and the control group) and session (pre-test and post-test) are

presented in Table 3.

For the digit span backwards task, results revealed a main effect

of session, F(1, 42) = 13.42, p < .001, ŋp2= 0.24. The effect of group

was marginally significant, F(1, 42) = 3.02, p < .10, ŋp2= 0.07. The

interaction between group and session was also marginally significant,

F(1, 42) = 3.33, p < .10, ŋp2= 0.07. Further simple-effects analysis

showed that the score in the task significantly improved in the train-

ing group after training, F(1, 42)= 14.41, p< .001, ŋp2= 0.26, but there

was no significant change in the control group, F(1, 42)= 1.77, p= .19.

For the 1-back task, results revealed a main effect of session, F(1,

42) = 20.73, p < .001, ŋp2= 0.33. The effect of group was significant,

F(1, 42)= 6.30, p< .05, ŋp2= 0.13. The interaction between group and

session was not significant, F(1, 42)= 0.61, p= .44.

For the 2-back task, both the effect of session, F(1, 42) = 27.96,

p < .001, ŋp2= 0.40, and group, F(1, 42) = 12.66, p < .001, ŋp2= 0.23,

reached significance.Moreover, an interaction between group and ses-

sion was found, F(1, 42) = 12.24, p < .01, ŋp2= 0.23. Further simple-

effects analysis showed that the accuracy in the 2-back task signifi-

cantly improved in the training group after training, F(1, 42) = 36.92,

p < .001, ŋp2= 0.47, but there was no significant change in the control

group, F(1, 42)= 1.68, p= .20.

3.2 Effects of WM training: ERP results

Figure 6 shows grand average of P3a in target and nontarget trials

of the spatial 1-back task for the training and control groups. For

P3a amplitude, results from ANOVA showed that there were no sig-

nificant main effects and interactions. For P3a latency, there was a

significant group × session × trial type interaction, which meant sig-

nificant differences between target and nontarget trials for the inter-

action between group × session, F(1, 29) = 8.83, p < .01, ŋp2= 0.23.

Further analysis showed that the group × session interaction in target

trials was nonsignificant, F(1, 29) = 0.19, p = .66, while the interaction

in nontarget trials was significant, F(1, 29)= 12.73, p < .01, ŋp2= 0.31.

Simple-effects analysis showed that P3a latency in nontarget trials

was shortened in the training group after training, F(1, 29) = 24.24,

p < .001, ŋp2= 0.46, but there was no change in the control group,

F(1, 29)= 0.88, p= .36.

Figure7presents grandaverageofP3b in target andnontarget trials

of the spatial 1-back task for the training and control groups. For P3b

amplitude, results from ANOVA showed that there were no significant

main effects and interactions. For P3b latency, there was a significant

group× session× trial type interaction, whichmeant significant differ-

ences between target and nontarget trials for the interaction between

group × session, F(1, 29) = 5.19, p < .05, ŋp2= 0.15. Further analysis

showed that the group × session interaction in target trials was non-

significant, F(1, 29) = 0.17, p = .69, while the interaction in nontarget

trials was significant, F(1, 29)= 5.97, p< .05, ŋp2= 0.17. Simple-effects

analysis showed that P3b latency in nontarget trials was shortened in

the training group after training, F(1, 29)= 6.15, p<.05, ŋp2= 0.18, but

there was no change in the control group, F(1, 29)= 1.58, p= .22.

Figure 8 depicts grand average of P3a in target and nontarget trials

of the spatial 2-back task for the training and control groups. For P3a

amplitude, results from ANOVA showed that there were no significant

main effects and interactions. For P3a latency, an interaction between

group and session was found, F(1, 29) = 8.84, p < .01, ŋp2= 0.23. Fur-

ther simple-effects analysis showed that P3a latency was shortened in

the training group after training, F(1, 29) = 18.00, p < .001, ŋp2= 0.38,

but there was no change in the control group, F(1, 29)= 0.47, p= .50.

TABLE 3 Results of repeated-measures ANOVAs between group (the training group and the control group) and session (pre-test and
post-test)

Session (S) Group (G) G× S

F p ηp2 F p ηp2 F p ηp2

Digit span backwards 13.42 .00 0.24 3.02 .09 0.07 3.33 .08 0.07

1-back 20.73 .00 0.33 6.30 .02 0.13 0.61 .44 0.01

2-back 27.96 .00 0.40 12.66 .00 0.23 12.24 .00 0.23
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F IGURE 6 P3a in target and nontarget trials of the spatial 1-back task for the training and control groups

F IGURE 7 P3b in target and nontarget trials of the spatial 1-back task for the training and control groups

Figure 9 shows grand average of P3b in target and nontarget tri-

als of the spatial 2-back task for the training and control groups. For

P3b amplitude, there was a trend toward group × session × trial type

interaction, which meant marginally significant differences between

target and nontarget trials for the interaction between group × ses-

sion, F(1, 29) = 3.79, p < .10, ŋp2= 0.12. Further analysis showed that

the group × session interaction in target trials was significant, F(1,

29) = 5.53, p < .05, ŋp2= 0.16, while the interaction in nontarget tri-

als was nonsignificant, F(1, 29) = 0.01, p = .93. Simple-effects analysis

showed that P3b amplitude in target trials was marginally improved in

the training group after training, F(1, 29)= 3.15, p< .10, ŋp2= 0.10, but

there was no change in the control group, F(1, 29) = 2.67, p = .11. For

P3b latency, an interaction between group and session was found, F(1,

29) = 6.70, p < .05, ŋp2= 0.19. Further simple-effects analysis showed
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F IGURE 8 P3a in target and nontarget trials of the spatial 2-back task for the training and control groups

F IGURE 9 P3b in target and nontarget trials of the spatial 2-back task for the training and control groups

that P3b latency was marginally shortened in the training group after

training, F(1, 29) = 3.95, p < .10, ŋp2= 0.12, while P3b latency of the

control group was marginally lengthened, F(1, 29) = 3.14, p < .10.

ŋp2= 0.10.

4 DISCUSSION

As behavioral and neural effects of WM training studies were contro-

versial, we aimed to examine whether WM training could lead to the
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increased amplitudes and shortened latencies of P3a and P3b during

the training process and a significant behavioral improvement in WM

tasks of post-test. To investigate this, we conducted a study where 21

children in the training group and 23 children in the control groupwere

assessed their behavioral performance improvement on a battery of

WM tasks (digit span backwards and N-back tasks) before and after

20 training sessions, and they completed their EEG recordings, respec-

tively, at the first and last spatial N-back task (1- and 2-back) training

sessions to analyze effects on ERP components (31 childrenwith avail-

able EEG data were included in EEG data analyses).

In terms of behavioral performance, we found that WM train-

ing based on both the complex span tasks and spatial N-back tasks

improved some post-testWM tasks performance of participants in the

training group compared to the control group. More specifically, the

training effects appeared as the improvements of the digit span back-

wards task and 2-back task in the training group, which was consis-

tentwith previous research results (Banales et al., 2015; Ethertonet al.,

2019; Peng et al., 2017). There was no significant difference, however,

in the 1-back task between pre-test and post-test of the training and

control groups. One possible reason might be that 1-back task had a

ceiling effect. It has been confirmed by many studies that 2-back task

waseffective to induceagreaterWMload for central executive compo-

nent ofWMto explain theWMtraining effectsmore intuitively (David-

son et al., 2018; Peng et al., 2013). Thus, it was naturally not surprising

that WM training brought a significant performance improvement in

the digit span backwards task and 2-back task.

As for ERP, P3a and P3b components of the training group showed

some changes from the first to the last training sessions: shortened

P3a andP3b latencies in nontarget trials during the spatial 1-back task;

shortenedP3a latency in target andnontarget trials; and increasedP3b

amplitude and shortened P3b latency in target trials during the spatial

2-back task. This result supported the behavioral improvement ofWM

tasks to a certain extent, suggesting WM training effects on children’s

neurophysiological outcomes.

In the spatial 1-back task, the training effects were only reflected

in shortened P3a and P3b latencies in nontarget trials, which meant

that training to a certain extent speed up the information processing

speed for stored items. However, we did not find the change of P3a

and P3b latencies in target trials as well as P3a and P3b amplitudes,

which implied that the neural effects of WM training on the spatial 1-

back task were relatively limited. This result supported the finding of

the 1-back task behavioral performance to a certain extent. Also, this

result was consistent with some previous studies (Pergher et al., 2018;

Tusch et al., 2016).

Compared with the spatial 1-back task, the neural training effects

on the spatial 2-back were more obvious. Shortened P3a in target

and nontarget trials, increased P3b amplitude, and shortened P3b

latency in target trials during the spatial 2-back task supported the

finding of previous studies that P3 components seemed to play a more

important role in 2-back paradigm (Pergher et al., 2018; Tusch et al.,

2016). The decreasing trend of P3a latency not only appeared in target

trials, but also in nontarget trials, suggesting increase in the attention

maintenance and processing speed of novel stimuli. In contrast to the

control group, increased P3b amplitude and shortened P3b latency in

target trials suggested reduced occupation and efficient distribution

of cognitive resources as well as faster cognitive processing speed

when faced with the same cognitive load task. These results supported

the finding of behavioral performance in the 2-back task to a certain

extent.

Several limitations of the current study should be considered. First,

the sample size of the training group (n = 21) and the control group

(n = 10) of EEG data was unbalanced as using ERP in children was

difficult and extremely time-consuming. The consequence of imbal-

ance was the reduced design power, therefore, it was particularly pos-

sible to overlook an effect (i.e., judge it as not significant) when the

effects truly existed (Hector et al., 2010; Shaw &Mitchell-Olds, 1993).

However, the observed training effects in EEG were significant in this

study. Considering the reduced design power caused by unbalanced

sample size, EEG results which showed significant changes with 20

training sessions were convincing to a certain extent, providing poten-

tial neurophysiological evidence for behavioral performance improve-

ment. Nevertheless, the results should be interpreted with caution,

and the findings should be replicated in a larger and balanced sam-

ple in future research. In addition, no placebo group was used in this

study, thus, positive experimental results generated by the psycholog-

ical effect of self-suggestion of the participants could not be avoided.

Moreover, another important indicator of the effectiveness of WM

training is the transfer effects, which meant that training-related ben-

efits in different cognitive functions will be obtained in addition to

WM, and the future research should focus on the transfer effects on

other cognitive operations of WM training and attempt to explain it

in terms of brain mechanism. Last but not least, although the ERP

technique has high time resolution, its spatial resolution is relatively

low. It is an irreversible trend to combine ERP and other neuroimag-

ing techniques, such as fMRI or fNIRS, to accurately record the time

course and precisely locate the brain activity in certain areas in future

studies.

In general, the research results are basically consistent with our

assumptions, the better behavioral performance of children in the digit

span backwards task and 2-back task of post-test evaluation, higher

P3b amplitude, and shorter P3a andP3b latencies prove the behavioral

and neural effects of WM training, suggesting that WM training might

not only improve children’s behavioral performance onWM tasks, but

also brought about neurophysiological changes.

5 CONCLUSIONS

This study aimed to investigate the effects of WM training in children,

including the effects on both behavior performance and neurophysio-

logical outcomes. The results showed thatWMtraining led to improved

performance in the digit span backwards task and 2-back task of post-

test evaluation, as well as change of ERP components in the spatial N-

back task. These results give insights into both the potential of WM

training effects on children’s behavioral performance and neurophys-

iological outcomes.
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