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Abstract: Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted
by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is
currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe,
and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have
intensified the search for selective inhibitors. In this review, we highlight key molecular determinants
within the alphavirus replication complex that have been identified as viral targets, focusing on their
structure and functionality in viral dissemination. We also summarize recent structural data of these
viral targets and discuss how these could serve as templates to facilitate structure-based drug design
and development of small molecule inhibitors.
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1. Introduction

Alphaviruses belong to the Togaviridae family [1]. They are arboviruses that are transmitted to
humans through the mosquito species Aedes aegypti and Aedes albopictus, where they cause various
diseases and can be broadly divided into arthritogenic [2] and encephalitogenic [3]. Old World
alphaviruses such as chikungunya virus (CHIKV), o’nyong’nyong virus (ONNV), and sindbis virus
(SINV) are arthritogenic and commonly cause febrile illness accompanied by rash, polyarthralgia and
chronic arthritis [4–8]. Infection with New World alphaviruses such as Eastern equine encephalitis
(EEEV) and Venezuelan equine encephalitis virus (VEEV), which are less prevalent in humans,
are mostly associated with neurological disease [9,10]. In 2005, the re-emergence of CHIKV in several
Indian Ocean islands led to massive outbreaks, affecting one-third of the inhabitants in La-Réunion
alone [11]. To date, millions of people have been infected in more than 40 countries in Asia, Europe and
the Americas [12]. Despite the medical threat posed by CHIKV, there is currently no approved
antiviral treatment or vaccine for CHIKV infection, as well as for the other less prevalent alphaviruses.
Treatments are usually symptomatic, with administration of non-steroidal anti-inflammatory drugs
and analgesic agents to control fever and severe joint pains.

Molecular Virology and Genome Organization

Alphaviruses are small, enveloped RNA viruses with a single-stranded, positive-sense RNA
genome. The alphavirus genome is approximately 12 kb long and it consists of two open reading
frames (ORFs): a 7 kb frame encoding the non-structural polyprotein and a 4 kb frame encoding the
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structural polyprotein (Figure 1A) [1,13]. The non-structural polyprotein is cleaved into four different
proteins (nsP1, nsP2, nsP3, and nsP4) which are necessary for the transcription and translation of
viral mRNA inside the cytoplasm of host cells. Figure 1B describes the stages of nonstructural
polyprotein processing. Translation of the viral RNA by host cell translational machinery produces
two non-structural protein (nsP) precursors (P123 or P1234). P1234 is expressed as a read-through of an
opal termination codon at the end of nsP3 (Figure 1A) [14]. These precursor polyproteins are cleaved
by a carboxyl-terminal protease domain of nsP2 [15]. Following translation of P1234, cleavage at
the P3/4 junction occurs either in cis or trans, followed by the P1/2 junction which occurs in cis
only [16]. Both P123+nsP4 and nsP1+P23+nsP4, together with some cellular proteins, form the early
replication complex (RC), which preferentially synthesize negative strand viral RNA [17,18]. The final
cleavage event at the P2/3 junction produces fully mature nsPs, which along with host cell proteins,
forms the positive strand RC, switching RNA template for synthesis of positive-sense genomic (49S)
and subgenomic (26S) RNAs. However, the correlation between P23 cleavage and the switch from
negative- to positive-sense RNA production remains poorly understood.
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The translation of 26S subgenomic positive sense RNA generates a single structural polyprotein, 
which is cleaved into five structural proteins: the Capsid (C), two major envelope glycoproteins E1 
and E2, and two small cleavage products (E3, 6K) (Figure 1A). While the C protein is being 
autocatalytically cleaved off to encapsidate new positive sense RNA molecules, the envelope 
polyprotein precursor E3-E2-6k-E1 is translocated to the endoplasmic reticulum (ER). Host signalases 
process the polyprotein at the N- and C-terminal end of the 6k peptide, resulting in E3E2, 6k, and E1, 
where all anchored to the ER membrane. During export to the plasma membrane, the E3E2 precursor 
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Figure 1. (A) Schematic representation of the alphavirus genome showing the RNA sequence open
reading frames (ORFs). The (*) indicates the position of opal termination codon; (B) schematic
representation of non-structural polyprotein (nsP2) processing by nsP2 protease. Early processing
of P1234 produces P123 and nsP4 which associate to form the early replication complex (RC),
which performs negative-sense RNA synthesis. P123 is further processed to produce the
individual nsPs, which associate to form mature RC that regulates positive-sense RNA synthesis
and transcription of subgenomic 26S RNA.

The translation of 26S subgenomic positive sense RNA generates a single structural polyprotein,
which is cleaved into five structural proteins: the Capsid (C), two major envelope glycoproteins
E1 and E2, and two small cleavage products (E3, 6K) (Figure 1A). While the C protein is being
autocatalytically cleaved off to encapsidate new positive sense RNA molecules, the envelope
polyprotein precursor E3-E2-6k-E1 is translocated to the endoplasmic reticulum (ER). Host signalases
process the polyprotein at the N- and C-terminal end of the 6k peptide, resulting in E3E2, 6k, and E1,
where all anchored to the ER membrane. During export to the plasma membrane, the E3E2 precursor is
cleaved by furin-like protease activity in the trans-Golgi system into E2 and E3 [19]. The nucleocapsid
forms with the assembly of 120 dimers of the C protein, which buds at the cell membrane as spherical
particles, acquiring a lipid envelope with embedded E1 and E2 glycoproteins [20,21]. Viral particles
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exhibit 80 trimeric spikes composed of heterodimers of E1 and E2, with E2 glycoprotein facilitating
binding of the virus to cell surface receptors [22–25]. Upon receptor binding, the virus particle enters
the host cell via clathrin-dependent endocytosis [26]. The acidic environment of the endosome results
in the E1-mediated fusion of the viral envelope and endosomal membrane, followed by the release of
nucleocapsid and uncoating of the viral genome in the cytosol [27,28].

In this review, the organization of alphavirus RC focusing on the function and structure of nsP2
protease will be illustrated. These proteins play important roles in the various replication stages
of the viral genome. Notably, the conserved architecture of the nsP2 protease across the New and
Old World alphaviruses, as determined by the recently solved structures of VEEV, SINV and CHIKV
nsP2 proteases, also makes it an ideal target for designing specific and pan-alphavirus protease
inhibitors [29–32].

2. Roles and Function of Non-Structural Proteins

2.1. Non-Structural Proteins (nsPs)

Key advances have been made to understand the biological aspects and pathogenesis of
alphaviruses, using mainly Semliki Forest virus (SFV) and SINV as prototypes [33,34]. Many of the
functions of the nsPs have been characterized on the basis of sequence comparisons and biochemical
assays (Table 1), and evidence suggests their intrinsic interactions are essential for the formation of
functional RCs [18,35–37].

2.1.1. Non-Structural Protein 1 (nsP1)

The nsP1 protein is an mRNA capping enzyme that possesses both guanine-7-methyltransferase
(MTase) and guanylyltransferase (GTase) activities, where they direct the methylation and capping of
newly synthesized viral genomic and subgenomic RNAs [38–41]. The MTase motif in the N-terminal
domain of nsP1 catalyzes the transfer of the methyl group from S-adenosylmethionine (AdoMet) to
the N7 position of a GTP molecule (m7Gppp). GTase then binds the m7Gppp, forming a covalent
link with a catalytic histidine (m7Gp–GTase) and releasing PPi. The GTase then transfers the m7Gp
molecule to the 5′-diphosphate RNA to create m7GpppNp-RNA [42]. The resulting cap structure
is essential for viral mRNA translation and prevents the mRNA from being degraded by cellular 5′

exonucleases. Following the N-terminal domain are features that allow the association of the nsP1
protein to cellular membranes. The presence of α-helical amphipathic loop and palmitoylation sites
allow the nsP1 protein and nsP1-containing RC to anchor onto the plasma membrane, possibly through
nsP1 interaction with the membrane’s anionic phospholipids [43–47].

2.1.2. Non-Structural Protein 2 (nsP2)

The nsP2 protein possesses numerous enzymatic activities and functional roles. The N-terminal
region contains a helicase domain that has seven signature motif of Superfamily 1 (SF1) helicases [48].
It functions as an RNA triphosphatase that performs the first of the viral RNA capping reactions [49,50].
It also functions as a nucleotide triphosphatase (NTPase), fueling the RNA helicase activity [50,51].
The C-terminal region of nsP2 contains a papain-like cysteine protease, which is responsible for
processing the viral non-structural polyprotein (Figure 2A) [52–54]. The protease recognizes conserved
motifs within the polyprotein (Figure 2B) [55]. This proteolytic function is highly regulated and is
modulated by other domains of nsP2 [16]. The crystal structure has revealed two distinct domains.
The N-terminal subdomain has a α/β-fold that is novel, unlike the structure of other known
cysteine proteases. The C-terminal subdomain is an S-adenosyl-L-methionine-dependent (SAM)
RNA methyltrasferase domain with a classical MTase fold, but enzymatically non-functional [29,30].
Recent crystal structure of VEEV’s enzyme surface has revealed that the predicted active site
is in a major surface groove, which is likely to accommodate the substrate polyprotein to be
cleaved [29,30]. The major enzyme groove may act as an enzyme mouth holding the protein to
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be processed. The alphavirus nsP2 protein has also been described as a virulence factor responsible
for the transcriptional and translational shutoff in infected host cells and the inhibition of interferon
(IFN) mediated antiviral responses contributing to the controlling of translational machinery by viral
factors [56–59].Viruses 2017, 9, x FOR PEER REVIEW  4 of 15 
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Figure 2. (A) Illustration of superposed structures of papain and chikungunya virus (CHIKV)
nsP2 proteases (Protein Data Bank (PDB) 9PAD and 3TRK respectively). The structure of papain
protease is presented as a solid, blue ribbon. The structure of CHIKV nsP2 protease is presented
as solid, green ribbon. The domain common for both proteases is highlighted in dark colors and is
enlarged subsequently to show the conserved catalytic dyad; (B) alignment of nsP2 cleavage sites.
The nomenclature of Berger and Schechter is used to identify residues on the amino (P1, P2, etc.) or
carboxy (P1′, P2′, etc.) termini of the scissile bond. The arrow indicates the location of the cleavage site.
Cleavage sites between the non-structural proteins contain a common motif, AG(A/C)↓(G/Y/A) [55].
Abbreviations: Chikungunya virus (CHIKV), o’nyong’nyong virus (ONNV), semliki forest virus (SFV),
ross river virus (RRV), sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV).

2.1.3. Non-Structural Protein 3 (nsP3)

The precise role(s) of alphavirus nsP3 protein in the RC is less clear. The nsP3 protein has
three recognized domains: the N-terminal macrodomain with phosphatase activity and nucleic acid
binding ability, the alphavirus unique domain (AUD) and the C-terminal hypervariable domain [60].
The crystal structures of the macrodomain from CHIKV and VEEV were found to closely resemble
the homologous Escherichia coli domain [60]. To date, the most well-defined structural information
available are the protease region of nsP2 and the folded N-terminal region of nsP3 (Table 1). It has been
solved to 2.85 Å resolution and has a zinc coordination site within the AUD [32]. The hypervariable
domain has sequence features of natively unfolded proteins. It has been demonstrated that the deletion
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of this domain in SFV nsP3 resulted in low viral pathogenicity, suggesting its importance in viral RNA
transcription regulation [61].

Table 1. Non-structural protein (nsP) domain functions and available crystal structures.

Non-Structural Protein Domain Function Virus PDB ID Reference

nsP1 mRNA capping SFV 1FW5 [45]

nsP2 NTPase/HelicaseProtease

-
VEEV

CHIKV
SINV

-
2HWK, 5EZQ

3TRK
4GUA

-
[29,30]

[31]
[32]

nsP3 Macrodomain
VEEV

CHIKV
SINV

3GQE
3GPG
4GUA

[60]
[60]
[32]

nsP4 RNA-dependent
RNA Polymerase - - [32]

PDB: Protein data bank; SFV: Semliki Forest virus; VEEV: Venezuelan equine encephalitis virus;
CHIKV: chikungunya virus ; SINV: sindbis virus.

2.1.4. Non-Structural Protein 4 (nsP4)

The nsP4 polymerase is the most highly conserved protein in alphaviruses, with the most
divergent being >50% identical in amino acid sequence when compared with other alphaviral
nsP4s [62,63]. The nsP4 contains the core RNA-dependent RNA polymerase (RdRp) domain
at the C-terminal end, determined to be solely responsible for the RNA synthetic properties of
the viral RC [64]. The RdRp participates in replicating the genomic RNA via a negative strand
RNA and transcribing the 26S subgenomic RNA. The N-terminal domain is alphavirus-specific
and may be partially disordered structurally. It appears to be important for the interaction with
polyprotein P123 to form RCs that are capable of synthesizing minus strands from plus-strand
templates [64–66]. Deletion and mutation studies of the RdRp domain of SINV nsP4 demonstrated
terminal adenylyltransferase (TATase) activity, suggesting it has a potential role in maintenance of the 3′

poly-A tail at the 3′-end of positive-sense RNAs [66]. Comparison of the secondary structure of CHIKV
RdRp with the structures of picornaviral polymerases showed a classical, basic RdRp architecture with
well-defined fingers, palm containing the GDD active site and thumb domains [67]. A comprehensive
review of the nsP4 was recently published that illustrated the fundamental functions of nsP4. It detailed
the importance of P123 interaction with nsP4, the importance of RCs’ association with the cellular
membrane and the possible interactions of RCs with host factors during viral replication [68].

2.2. Viral Target Proteins for Drug Development

Alphavirus replication is a delicate process, requiring specific protein-protein interactions among
the nsPs and host factors to effectively form the highly organized RCs at early and late stages
of infection. During infection, the formation of cytoplasmic vacuoles is induced in host cells.
These vacuoles contain small cell membrane invaginations called spherules where the RC proteins
nsP1 to nsP4, host factors as well as newly synthesized viral RNA localize [69–73]. These structures
serve as compartments to facilitate virus propagation, by allowing spatial separation and regulation of
RNA translation, replication and packaging of the viral genome. They protect viral RCs and genomic
RNA from degradation by cellular proteases and prevent recognition by antiviral double-stranded
RNA sensors, such as RIG-I and MDA-5 [74–77]. Although no 3-D reconstruction of alphavirus
replication compartments has been published yet, there are multiple reports revealing the morphologies
through electron tomography of other positive sense RNA viruses known to form similar replication
sites [78–81]. Alphavirus RCs are widely accepted to reside on the invaginated cell membrane,
with RNA replication taking place in the spherule lumen [70,82,83]. In recent years, attempts have
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been made to shed light into the late RC’s organization, with a number of studies adopting systems
such as yeast two-hybrid [84,85], immunoprecipitation [86–89] and ELISA [85] to map the interactions
among the nsPs. Six novel interactions are identified in CHIKV (nsP1-nsP1, nsP1-nsP2, nsP1-nsP3,
nsP1-nsP4, nsP2-nsP4 and nsP4-nsP4) [84], some of which are similarly shown in SINV [88–90] and
SFV [86,87]. It has also been demonstrated that nsP1 is involved in the recruitment of other nsPs into
the spherules [87] and it’s membrane association is crucial for SFV replication [46]. These data suggest
that nsP1′s interaction with all other nsPs is absolutely essential to keep the RC intact and functional.
Therefore, nsP1 is an attractive target for drug development. Firstly, perturbing its affinity for the cell
membrane could potentially inhibit it from anchoring in the spherules. This will eventually stop the
recruitment of the other nsPs, thus preventing the initiation of RC formation. Secondly, disrupting
the intrinsic interactions among the nsPs could prevent proper conformational arrangements of the
RCs and this could ultimately impede viral replication. However, there is an information deficit in the
understanding of nsP interactions and without this knowledge, targeted inhibition on RCs remains
difficult. Future work will still need to address the relative importance of the arrangements between
the nsPs in the RCs.

nsP2 protein is another excellent viral target for inhibition due to its role in viral replication and
host evasion strategies [91]. nsP2 is multifunctional: it has RNA helicase, RNA triphosphatase,
nucleoside triphosphatase and auto-protease activities. It is often described as an important
co-factor for the maturation of viral RC [16,37,92]. The nsP2 protease function is especially of
interest, as proteases of other viruses (such as Human Immunodeficiency Virus (HIV) and Hepatitis
C Virus (HCV)) have been successfully targeted, leading to the development of FDA-approved
inhibitors [93–95]. Although the sequence identity of the different alphavirus nsP2 proteases is very low,
their active site residues are conserved [29]. Cys478 and His548 of CHIKV nsP2 protease (referred as
Cys1013 and His1083 in [31]) are two residues that form the catalytic dyad (Figure 2A), where substrates
with defined recognition sequences are cleaved (Figure 2B) [1,31,96–98]. It has been demonstrated that
a Cys478 to Ala mutation produces inactive protease and completely abolishes CHIKV replication [98].
Recently, the first structure of a peptide-like E64d inhibitor-bound VEEV nsP2 protease (PDB entry
5EZS) was reported (Table 2) [30]. Although E64d is not a viable therapeutic candidate as it could only
inhibit protease function and was ineffective in inhibiting viral replication, the structure provided
invaluable insights into the roles of the catalytic residues and possible orientation of the substrates
during catalysis. The inhibitor was shown to bind beneath a β-hairpin in the interface of the protease
and SAM MTase domains. This further demonstrated that the SAM MTase domain is required
for proteolysis, with at least three of its residues (Arg662, Lys705 and Lys706) being used by the
cysteine protease for substrate binding and recognition. His546 (referred as His548 in CHIKV nsP2)
in the protease domain is the only residue adopting a different conformation, with minimal overall
structural changes observed when compared to the free enzyme. It was also suggested that the
interaction of the carbonyl oxygen of the ester on E64d with the NH of Cys477 (referred as His478 in
CHIKV nsP2) stabilized the transition state of the proteolytic reaction. These observations are crucial
information as they emphasize the importance of residues within and around the active site cleft.
Therefore, targeting these residues would be an applicable strategy to inhibit the enzyme function,
which could consequentially inhibit viral replication. Moreover, nsP2 is also identified as a virulence
factor. nsP2 plays a role in shutting off host cell mRNA transcription and/or translation [56,59].
A portion of the nsP2 is localized to the nucleus [99,100] and it inhibits host antiviral response by
suppressing type I/II interferon-stimulated JAK/STAT signaling [101,102]. A recent study showed that
mutations in the nuclear localization signal (NLS) of SFV nsP2 (649DDR651 and 649RDD651) completely
blocked nsP2 from entering the nucleus and reduced SFV-induced cell death [103]. This was likely due
to retention of nsP2 in the cytoplasm that prevented its association with host factors in the nucleus to
shut off host antiviral functions. The NLS of nsP2 could be a good inhibitory target for preventing
nsP2 translocation into the nucleus. However, this will only be effective against specific alphaviruses
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that use nsP2 to inhibit cellular mRNA transcription as it has been demonstrated otherwise for VEEV
nsP2 [59].

3. Chemotherapeutics Targeting Viral Non-Structural Proteins

3.1. Antivirals against nsP2 Protease

The reemergence of CHIKV and its subsequent epidemics exemplify the threat alphaviruses
currently have on human health. A comprehensive review of the antiviral efforts towards alphaviruses
was recently published, where the various types of inhibitors discovered and developed as potential
therapeutics were described [104]. It is of prime importance that resolved structures are employed in
facilitating the discovery of novel drug compounds. The nsP2 protease’s function as a nonstructural
polyprotein processor is absolutely essential for virus replication. Thus, inhibiting this function could
potentially mitigate CHIKV infection. This strategy has successfully been used against several viruses
like HCV and HIV and has led to the development of remarkably potent drugs [95,105–107]. With the
recent availability of various alphavirus nsP2 protease crystal structures, they have become the most
targeted viral domain for in silico drug design to date. Furthermore, crystal structures of the VEEV,
CHIKV and SINV nsP2 protease domain Protein Data Bank (PDB) entries 2HWK [29], 5EZQ [30],
3TRK [31] and 4GUA [32] respectively] displayed highly conserved folds despite having low sequence
identity, rendering it a potential target both for specific and pan-alphavirus protease inhibition.
Bassetto et al. have effectively employed homology modeling and computer-aided drug design
strategies to discover the first few potential compounds against CHIKV nsP2 protease, with the support
of a combination of cell-based virus inhibition and cell-free protease assays [108]. Through the virtual
screening of about five million commercially available compounds on the VEEV nsP2 protease structure,
several were shown to selectively inhibit CHIKV-induced cell death. Compound 25, in particular,
displayed the best antiviral activity (EC50 = 3.2 µM) and is predicted to target the central portion of
the nsP2 protease active site (Table 2) [108]. Continuing from one of the other lead compounds by
Bassetto et al., Das et al. described a set of related compounds, with a few capable of inhibiting CHIKV
nsP2 protease as well as virus replication [109]. These results further prove that these compounds
derived from in silico drug design are indeed nsP2 protease inhibitors. Many more potential inhibitors
originating from the structure-activity relationship and molecular dynamics simulation strategies
have been reported and illustrated to dock in the protease’s active site with good affinity [110–112].
However, the biological validation of their antiviral activity and/or target specificity is lacking.
Aside from screening commercially available compound libraries, repurposing of FDA-approved
protease inhibitors is another strategy that could accelerate the identification and development of
specific and potent CHIKV protease inhibitors. Lopinavir and Nelfinavir, both potent HIV protease
inhibitors, were validated to have modest antiviral activity on CHIKV (Table 2) (EC50 = 32 µM and
14 µM respectively). However, they are clearly toxic on the host cell as they display poor selectivity
index values (CC50 = 44 µM and 22 µM respectively) [113]. Nonetheless, these inhibitors could serve
as a stepping stone for the development of novel alphavirus protease inhibitors.
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Table 2. List of compounds shown to inhibit nsP2 protease activity.

Molecule Structure Virus EC50 Reference

Compound 25
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3.2. Inhibitors of Other nsPs

Inhibitors targeting other nsPs have also been reported, where their mechanisms of action on
alphavirus replication were evaluated through reverse genetic mutation of drug-resistant mutants.
A number of highly selective CHIKV and VEEV nsP1 capping enzyme inhibitors postulated to disrupt
the GTase activity of nsP1 were reported recently [114–116]. MADTP-372 was demonstrated to
be potent and selective in inhibiting the induction of cytopathic effect by CHIKV and VEEV [116].
Due to the close proximity of Pro34 residue (mutated in MADTP-372-resistant variant) to His37
residue (a putative acceptor for the guanylylation), it was postulated that MADTP-372 inhibited the
GTase reaction by either blocking the binding of m7Gppp to nsP1 or the guanylylation process itself.
However, due to the absence of structural information of alphavirus nsP1, other possible scenarios
that involve indirect effects cannot be ruled out. Nucleoside analogs have also been proven to be
effective against several alphaviruses. Notably, Ribavirin (a guanosine analog widely used against
a number of other RNA viruses) demonstrated effective inhibition of CHIKV and SFV genome
replication by depleting GTP pools [117–119]. The resulting GTP deficiency in host cells could
prevent proper capping of newly synthesized viral mRNA by nsP1, and consequently allow cellular 5′

exonucleases to degrade the uncapped mRNA. The absence of the cap structure could also impede
viral mRNA translation. In addition, Ribavirin has been proposed to directly inhibit nsP4 RdRp
through its interaction with Cys483 residue, resulting in an increase in replication fidelity [120,121].
Another modified nucleoside analog, β-D-N4-hydroxycytidine (NHC), was effective in reducing the
rates of VEEV release and its infectivity [122]. NHC is by far the most potent nsP4 inhibitor ever
reported (EC50 = 0.426 µM, CC50 > 200 µM) and could potentially be a substitute for Ribavirin as it
is inefficient in developing NHC resistant mutants. Another well-studied nsP4 inhibitor, Favipiravir
(T-705; a purine analog approved in Japan for the treatment of influenza infections), was shown to
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exert broad-spectrum anti-alphavirus activity in vitro and provide protection in a mouse model of
lethal CHIKV infection [123]. Favipiravir selectively inhibits CHIKV nsP4 RdRp function through
its interaction with Lys291 residue. Interestingly, this particular lysine residue is conserved in
the polymerases of other positive-sense RNA viruses. Thus this may provide an explanation for
Favipiravir’s broad-spectrum antiviral activity. Through the screening of chemical compound libraries,
Compound-A was also recently found to inhibit CHIKV infection. Compound-A was demonstrated as
a specific nsP4 RdRp inhibitor that could potentially inhibit RdRp’s ribonucleotide selection function
by targeting Met2295 residue [124]. It demonstrated potent CHIKV antiviral activity but exhibited
very poor selectivity (EC50 = 1.29 µM, CC50 = 5.84 µM). Nonetheless, Compound-A could serve as a
starting point for chemical modifications so as to reduce its toxicity.

4. Concluding Remarks and Perspectives

The current understanding of interactions through structural evaluation of the nsP2 protease
domain has opened avenues for the development of specific inhibitors. It is by far the most well-defined
out of the other nsP domains and its structural information has been inspirational for computational
biologists and chemists alike in designing many series of compounds, mainly targeting its catalytic
binding pocket. The representation of E64d inhibitor bound to the nsP2 catalytic pocket is a major
advancement towards identifying the key residues that may be important for substrate binding
and recognition [30]. However, the lack of structural information on the other viral nsPs makes
understanding of the mode of action of inhibitors and rational designing of specific and efficient
inhibitors challenging. It is worthwhile to note that for all nsP1 and nsP4 inhibitors discussed
earlier, the direct interactions with their targeted residues were never demonstrated. In particular,
obtaining the crystal structure of alphavirus nsP4 RdRp would allow more robust comparison of this
polymerase to other viral RdRps and new relationships between RdRp-encoding viruses could be
formed. Resolving the structure of the RC will also allow for a better understanding of the function of
the polymerase and the entire RC.
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