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Abstract: In most practical applications, the tracking process needs to update the data constantly.
However, outliers may occur frequently in the process of sensors’ data collection and sending,
which affects the performance of the system state estimate. In order to suppress the impact of
observation outliers in the process of target tracking, a novel filtering algorithm, namely a robust
adaptive unscented Kalman filter, is proposed. The cost function of the proposed filtering algorithm is
derived based on fading factor and maximum correntropy criterion. In this paper, the derivations of
cost function and fading factor are given in detail, which enables the proposed algorithm to be robust.
Finally, the simulation results show that the presented algorithm has good performance, and it
improves the robustness of a general unscented Kalman filter and solves the problem of outliers
in system.

Keywords: maximum correntropy criterion; tracking target; unscented transform; adaptive robust control

1. Introduction

In real-world applications, target tracking problems have attracted much attention such as
maneuvering target tracking [1], ballistic target tracking [2] and multiple target tracking [3], etc.
For getting better accuracy, efficiency and performance of tracking problems, the effect of noise
needs to be reduced, especially of measurement noise. Therefore, the measurement noise needs to
be restrained timely in the process of a tracking target. As is well known, filtering algorithms are
powerful tools for suppressing the effect of noise. Kalman [4] first proposed the Kalman filter (KF)
algorithm in 1960, and the filtering technique has developed quickly ever since. For the linear Gaussian
process [4–7], the KF could get optimal recursive results based on the minimum mean square error
(MMSE) estimation. It is well known that KF can employ the first two moments (mean and covariance)
of state and measurement to obtain optimal estimates. It can be seen that the KF has been applied in
numerous areas such as navigation, target tracking, communications [7], attitude determination [8],
multiple sensors data [9] and many more. However, for amounts of data collected or sent by sensors,
the KF experienced heavy computational load to get an optimal solution. In most practical applications,
the systems are nonlinear. In this case, the performance of KF is unsatisfactory. Furthermore, when a
dynamic model was contaminated by outliers [10], the KF degraded severely. Therefore, it is necessary
to design an efficient algorithm that can suppress the outliers for the nonlinear problem.

In fact, for a nonlinear tracking problem, many nonlinear filtering algorithms were proposed
to deal with the nonlinear systems—for example, extended Kalman filter (EKF), unscented Kalman
filter (UKF), cubature Kalman filter (CKF), particle filter (PF), Gaussian sum filter (GSF), and so
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on. Particularly, it is well known that EKF deals with the nonlinear system by its first-order Taylor
Series expansions and leads to a suboptimal solution. UKF, based on unscented transform (UT), is an
improved filter compared to KF and EKF. It selects deliberately as sigma points to generalize the KF
for both linear and nonlinear systems, and it can be used to propagate three order information for
state estimation. Therefore, it can achieve better estimation accuracy and computational feasibility [11].
Zhan and Wan [12] developed the iterated unscented Kalman filter for passive target tracking. Based
on the spherical-radial cubature rule, CKF is presented to approximate the Gaussian filter [13,14]. GSFs
are based on the idea that a non-Gaussian probability density function (PDF) can be approximated by
a sum of Gaussian PDFs [15]. Based on Bayesian estimation and a sequential Monte Carlo approach,
Du et al. utilized PF to handle nonlinear and non-Gaussian problems, and the PF is applied in small
target tracking in an optimal image sequence [16]. However, these nonlinear filters were susceptible to
outliers and did not have robust property.

For measurement model contaminated by outliers, several filtering algorithms have been
proposed [17–23]. Based on the Huber function, Wang et al. [17] presented the derivative-free filter to
manage the measurement outliers, but it did not suppress the state outliers well. For measurement outliers,
Durovic and Kovacevic [18] utilized the M-estimation to deal with measurement outliers in the presence
of disturbance uncertainty. It can not deal with both state and measurement outliers. Their performance
will diverge if the state and measurement models were contaminated by outliers simultaneously.
To solve a nonlinear system with heavy-tailed noise, Wang et al. [19] studied a robust information filter
to solve the measurements with a large error from the estimation process. However, it did not embed
the fading factor into the framework of information filter. Under this case, Karlgaard [20] proposed
an adaptive robust nonlinear filtering algorithm to resist the effects of outliers. For both the state and
measurement outliers, Gandhi and Mili [21] introduced a generalized maximum likelihood type KF.
However, the KF was limited to a linear system, and the evaluation of Jacobian matrices in EKF could
be nontrivial and this leads to degraded performance. Chang et al. [22] investigated a robust filter to
suppress the state and measurement outliers, and it utilized the robust property of the Huber function.
The H∞ filter has robustness to minimize the estimation error [23], and it can not accommodate the
outliers well for outliers occurring randomly. However, these filters have robustness to some extent.

In order to enhance the robustness of the aforementioned filters, some fading factors were
proposed to embed into the above filters to keep them stable and effective [24–26]. Wang et al. [24]
introduced a modifiable fading factor to tackle the nonlinear estimation problem. After that, several
researchers also investigated this problem. Yang et al. [25] investigated the adaptive robust filtering
via the robust maximum likelihood estimation, but it can not control the dynamics model biases.
Safarinejadian and Yousefi [26] proposed an adaptive fading memory KF to deal with static alignment
of inertial navigation systems. Furthermore, Geng and Wang [27] utilized multiple fading factors
in KF to handle the filtering divergence with inaccurate system noise. In [25–27], the fading factors
were embedded into KF, but not nonlinear filters. Therefore, in order to overcome their shortcomings,
Karlgaard [20] and Wang et al. [24] embedded the fading factors into nonlinear filters to handle
nonlinear problems.

Motivated by the above discussion, this work proposes a new adaptive robust UKF scheme based
on both fading factor and maximum correntropy criterion (MCC) to focus on the state estimation
problems with measurement outliers. To the best knowledge of the authors, for the nonlinear
tracking problem, the filtering algorithm based on MCC and fading factor had not been studied
before. In our research, tracking a moving target by a sensor has been carried out to compare with
UKF and an adaptive Huber unscented Kalman filter [24]. Furthermore, the prime dedications of this
paper are as follows: (1) the cost function of the proposed filter is proposed, the fading factor is applied
in the state model and the maximum correntropy criterion is used in the measurement model; (2) the
proposed filter can suppress the effect of outliers effectively in the dynamics system (state or/and
observation equation); and (3) the proposed filter is easy to perform and has better performance in the
presence of outliers.
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The structure of this paper is organized as follows. The Section 2 briefly introduces the
fundamentals of the proposed filter. Section 3 proposes the adaptive robust unscented Kalman
filter based on fading factor and MCC for a nonlinear system. Simulation results and comparisons
are provided to confirm the feasibility and superiority of the proposed filter in Section 4. Finally,
conclusions are shown in Section 5.

2. Fundamentals of the Proposed Filter

2.1. Maximum Correntropy Criterion

For any random variables X and Y, the correntropy is defined as

V(X, Y) = EX,Y[ρ(X, Y)] =
∫ ∫

ρ(x, y)dFX,Y(x, y), (1)

where E[·] represents the mean value, and ρ(·) is a real-valued continuous, symmetric and nonnegative
definite kernel function, respectively. FX,Y(x, y) is the joint probability density function of X and Y.
However, FX,Y(x, y) is usually unknown, and numbers of data samples, (xi, yi), (i = 1, 2, · · ·, N) can
be obtained. Therefore, the correntropy can be computed as follows:

Ṽ(X, Y) =
1
N

N

∑
i=1

ρ(xi, yi). (2)

In theory, various kernel functions can be used. In general, the Gaussian kernel function is selected
as follows:

κG(ei) = κG(xi − yi) =
1√
2πσ

exp{−
e2

i
2σ2 }, (3)

where ei = xi − yi, and σ is the kernel width of correntropy, respectively. If ei = 0, κG(ei) can reach its
maximum value. Therefore, the cost function of MCC is expressed by

JMCC = min(
N

∑
i=1

(κG(0)− κG(ei))). (4)

2.2. Cost Function of Adaptive Robust Kalman Filter

In this section, the cost function of the adaptive robust Kalman filter is derived by analyzing the
following linear state model and measurement model:

xk = Φk|k−1xk−1 + wk−1 yk = Hkxk + vk, (5)

where k denotes discrete time, xk ∈ Rn represents n× 1 system state vector at time k, Φk|k−1 is the state
transition matrix, yk ∈ Rm is m× 1 system measurement vector at time k, Hk is observation matrix,
wk−1 is the process noise with the covariance Qk−1, vk is the measurement noise with the covariance Rk,
and they are uncorrelated zero-mean Gaussian white noises.

For simplicity, the problem of state and measurement outliers is focused on in this work. For the
linear state space model (5), a combined cost function is used to perform two different criterions to the
state model and measurement model. Utilizing the Bayesian maximum likelihood, the posterior mean
estimate is derived by minimizing the following function

x̂k|k = arg min(‖xk − x̂k|k−1‖2
P−1

k|k−1
+ ‖Hkxk − yk‖2

R−1
k
), (6)

where ‖x‖2
A = xT Ax is the quadratic form with respect to A (A is nonnegative definite matrix ); x̂k|k is

the posteriori estimate, x̂k|k−1 is the priori estimate, Pk|k−1 is the covariance matrix of x̂k|k−1.
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Denoting ξk = R−1/2
k (Hkxk − yk) and utilizing MCC in Equation (4), the cost function of the

filtering algorithm in Equation (6) is formulated as follows:

x̂k|k = arg min(‖xk − x̂k|k−1‖2
P−1

k|k−1
+

m

∑
j=1

(kG(0)− kG(ξk,j))), (7)

where the term m is the dimension of the measurement model. Furthermore, the fading factor is
embedded to strengthen the robustness property of the KF with model error. Then, the cost function in
Equation (7) can be rearranged as

x̂k|k = arg min(‖xk − x̂k|k−1‖2
(αk Pk|k−1)

−1 + ∑m
j=1(kG(0)− kG(ξk,j))). (8)

Differencing Equation (8) with respect to xk, one has that

(αkPk|k−1)
−1(xk − x̂k|k−1)−

n

∑
i=1

∂kG(ξk,i)

∂ξk,i

∂ξk,i

∂xk
= 0. (9)

Substituting Equation (3) into Equation (9), it can be obtained that

(αkPk|k−1)
−1(xk − x̂k|k−1) +

1√
2πσ3

m

∑
i=1

exp(−
ξ2

k,i

2σ2 )ξk,i
∂ξk,i

∂xk
= 0. (10)

Define the function

Ψj =
1√

2πσ3

m

∑
i=1

exp(−
ξ2

k,i

2σ2 ) (11)

and the matrix
Ψ = diag[Ψj] j = 1, . . . , m. (12)

Thus, we find out that Equation (10) can be redescribed as follows:

(αkPk|k−1)
−1(xk − x̂k|k−1) + HT

k R−T/2Ψξk = 0. (13)

Substituting ξk into Equation (13), we arrive at

(αkPk|k−1)
−1(xk − x̂k|k−1) + HT

k R−T/2ΨR−1/2
k (Hkxk − yk) = 0. (14)

Equation (14) satisfies the minimization solution of the cost function as follows:

x̂k|k = arg min(‖xk − x̂k|k−1‖2
P̃−1

k|k−1
+ ‖Hkxk − yk‖2

R̃−1
k
), (15)

where P̃k|k−1 = αkPk|k−1 and R̃k = RT/2
k Ψ−1

k R1/2
k . Comparing Equation (15) with Equation (6), it can be

seen that covariance matrixes of them are different, and others are identical. According to the iterative
equations of KF, the explicit solution of Equation (15) can be performed as

Kk = P̃k|k−1HT
k (Hk P̃k|k−1HT

k + R̃k)
−1, (16)

x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1), (17)

P̃k|k = (In − Kk Hk)P̃k|k−1. (18)

Remark 1. From an engineering viewpoint, it can be seen that the real state vector xk can not be obtained.
However, some methods are proposed to change the proportion of state vector, and they can not utilize the state
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vector—for example, maximum correntropy criterion, Huber function, and so on. Although the state vector was
coped with in [22], the real state xk was replaced by estimation vector x̂k|k−1 in the process.

2.3. Formation of the Fading Factor

The state estimate of Kalman filter depends on the ratio of new measurements and the ones which
are based on predicted state vector, dynamics model, and all previous measurements. If the state
model error is much larger than that of the measurement model, it is obtained that the information
from new measurements will be ignored. Thus, the result of the filter will become poor. The fading
factor in Equation (9) is adopted to ensure the performance of the filter in the presence of dynamics
model error. For improving the utilization rate of the new measurements, the fading factor αk in
Equation (8) becomes greater than 1. Subsequently, the variance matrix Pk|k−1 is inflated. Therefore,
it is obtained that the contribution of x̂k|k−1 to x̂k|k is reduced, and the impact of dynamics model error
would be small.

Next, the fading factor αk in Equation (5) is analyzed and derived via the innovation sequence
orthogonal principle [28]

E{vk+jvT
k } = 0 j = 0, 1, 2, ... k = 1, 2, ..., (19)

where E{.} and vk are expected value and innovation sequence, respectively.
For the state model and measurement model stated by Equation (5), the lemma in [28] is given as

follows:

Lemma 1. If ‖xk − x̂k|k‖ is significantly smaller than ‖xk‖, then, for any j,

Cj,k = E{vk+jvk}
= Θ(k + j, ..., k, x̂k+j|k+j−1, ..., x̂k|k−1)(Pxkyk − KkC0,k)

= 0, (20)

where Pxkyk is the cross covariance between state and measurement, Kk represents the Kalman gain, C0,k equals
to E{vkvk}, and Θ(k + j, ..., k, x̂k+j|k+j−1, ..., x̂k|k−1) can be written as follows:

Θ(k + j, ..., k, x̂k+j|k+j−1, ..., x̂k|k−1) = Hk+j

k+j−1

∏
l=k+1

Φl(I − Kl Hl)Φk. (21)

The proof of Lemma 1 is omitted here. Please refer to Zhou et al. [28] if needed.

It can be shown that Lemma 1 holds strictly for a linear system, and it is approximately true for a
nonlinear system. A sufficient condition of Equation (20) is given as follows:

Pxkyk − KkC0,k = 0. (22)

Using the common criterion of UKF leads to Kk = Pxkyk P−1
ykyk

, and

Pxkyk (I − P−1
ykyk

C0,k) = 0, (23)

where Pykyk is the error covariance matrix of measurement, and a sufficient condition of Equation (23)
is given as follows:

Pykyk = C0,k. (24)
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According to equations of KF that Pykyk = HkPk|k−1HT
k + Rk, Equation (24) can be rewritten as

HkPk|k−1HT
k + Rk − C0,k = 0. (25)

If there exists a fading factor such that Equation (25) holds, the innovations vk+j and vk become
approximately orthogonal. Thus, Equation (25) can be redescribed as

Hkα0Pk|k−1HT
k = C0,k − Rk. (26)

Noting that the terms Hk, Pk, C0,k and Rk are full rank, by using the property of matrix trace,
we have

tr[Hkα0Pk|k−1HT
k ] = tr[C0,k − Rk]. (27)

Because α0 is a scalar, then it can be expressed as follows:

α0 =
tr[C0,k − Rk]

tr[HkPk|k−1HT
k ].

(28)

It seems that Equation (28) can only be calculated if the state model (5) is a linear or
linearized system. However, the linearization term HkPk|k−1HT

k can be readily approximated by
the other nonlinear methods—for example, EKF and UKF, and so on. The focused UKF is utilized in
this work. Therefore, the fading factor α0 can be applied to the UKF framework, and it is redescribed
as follows:

α0 =
tr[C0,k − Rk]

tr[Pykyk − Rk]
, (29)

where C0,k can be expressed as follows:

C0,k =

vkvT
k , k = 1,

λC0,k−1+vkvT
k

1+λ , k > 1,
(30)

where the forgetting factor λ is commonly set as 0.95 [19].

Remark 2. In the framework of the proposed filter, the fading factor α0 is a single fading factor. For the
complicated multivariable systems in actual applications, it is not enough to use a fading factor. To overcome
the shortcomings, Yang et al. [25] presented a multiple fading factor Kalman filter to deal with multivariable
systems, and α0 is replaced by a matrix of fading factors Λ = diag(α0, α1, . . . , αn).

3. The New Adaptive Robust Unscented Kalman Filter

In this section, we will focus on the proposed unscented Kalman filter based on fading factor and
maximum correntropy criterion. The cost function of the proposed filter in Equation (15) has been
derived, and it is embedded into the structure of UKF. In addition, it is well known that UKF has
some good properties: easy implementation, appropriate performance and computational feasibility.
Therefore, it is very popular in the nonlinear system.

Suppose that the nonlinear discrete-time system can be modelled as follows:

xk = f (xk−1) + ωk−1 yk = h(xk) + rk, (31)

where xk is the state vector with the covariance matrix Pk, and the other terms have the same meaning
as the above terms in Equation (5), respectively. The initial estimate state and its covariance matrix are
given as x̂0 = E(x0) and P0 = E[(x0 − x̂0)(x0 − x̂0)

T ]. Similarly, the estimate state and its covariance
matrix at time k− 1 are given as

x̂k−1 = E(xk−1), (32)
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Pk−1 = E
[
(xk−1 − x̂k−1)(xk−1 − x̂k−1)

T
]
. (33)

The procedure of the proposed adaptive robust unscented Kalman filter depicted in Table 1 is
described as follows:

Step 1: The Unscented Transform with 2n + 1 symmetric sigma points χi,k−1 and weights update:

χ0,k−1 = x̂k−1,

χi,k−1 = x̂k−1 +
√

n + δ(
√

Pk−1)i,

i = 1, 2, ..., n,

χi,k−1 = x̂k−1 −
√

n + δ(
√

Pk−1)i,

i = n + 1, n + 2, ..., 2n,

(34)

where δ = ϕ2(n + κ) − n, ϕ, which ranges from 0 to 1, controls the distribution of sigma points.
κ equals 3− n, and

√
Pk−1 is the Cholesky factor of Pk−1, respectively.

The corresponding weights ωm
0 and covariance ωc

0 are as follows:

ωm
0 =

δ

n + δ
,

ωc
0 =

δ

n + δ
+ (1− ϕ2 + η),

ωm
i = ωc

i =
1

2(n + δ)
i = 1...., 2n,

(35)

where η is set as 2 generally for Gaussian distribution and relates with the prior distribution of state.
Step 2: Time update

χi,k|k−1 = f (χi,k−1) x̂k|k−1 =
2n

∑
i=0

ωm
i χi,k|k−1. (36)

Step 3: Modified measurement covariance update

yi,k|k−1 = h(χi,k−1) ŷk|k−1 =
2n

∑
i=0

ωm
i yi,k|k−1, (37)

ξk = R−1/2
k (ŷk|k−1 − yk), (38)

Ψ = diag[ψk,j(ξk,j)] j = 1, 2, ..., m, (39)

R̃k = RT/2
k Ψ−1R1/2

k . (40)

Step 4: Fading factor update
vk = yk − ŷk|k−1, (41)

C0,k =

vkvT
k , k = 1,

λC0,k−1+vkvT
k

1+λ , k > 1,
(42)

α0 =
tr[C0,k − Rk]

tr
[
∑2n

i=0 ωc
i (yk,i − ŷk|k−1)(yk − ŷk|k−1)

T
] , (43)

αk =

{
α0, α0 > 1,

1, α0 ≤ 1.
(44)
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Step 5: Measurement update

Pk|k−1 = αk

[
2n

∑
i=0

ωc
i (χi,k|k−1 − x̂k|k−1)(χi,k|k−1 − x̂k|k−1)

T + Qk

]
, (45)

Pykyk = αk

2n

∑
i=0

ωc
i (yk,i − ŷk|k−1)(yk,i − ŷk|k−1)

T + R̃k, (46)

Pxkyk = αk

2n

∑
i=0

ωc
i (χi,k|k−1 − x̂k|k−1)(yi,k|k−1 − ŷk|k−1)

T , (47)

Pk|k = Pk|k−1 − KkPykyk KT
k , (48)

Kk = Pxkyk P−1
ykyk

, (49)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1). (50)

Table 1. AMUKF. AMUKF is short for Adaptive Robust Unscented Kalman Filter.

First set x0,k|k = [0 m, 1400 m, 2 m/s, −10 m/s]T .
P0,k|k = diag[1, 1, 1, 1].
Then iterate the follow,
for i = 0 : N − 1
Reformulate the augmented covariance
time update
χi,k|k−1 = f (χi,k−1)

x̂k|k−1 = ∑2n
i=0 ωm

i χi,k|k−1
Measurement update:
x̂i,k|k−1 = [χi,k|k−1 χi,k|k−1 + µ(

√
Pi,k|k−1) χi,k|k−1 − µ(

√
Pi,k|k−1)]

yi,k|k−1 = h(x̂i,k|k−1)

ŷk|k−1 = Σ2n
i=0ωkyi,k|k−1

Calculate αk
vk = yk − ŷk|k−1

C0,k =

{
vkvT

k k = 1
λC0,k−1+vkvT

k
1+λ k > 1

αk =

{
α0 α0 > 1
1 α0 ≤ 1

Pk|k−1 = αktr
[
∑2n

i=0 ωc
i (Ei)(Ei)

T + Qk

]
Pykyk = αk ∑2n

i=0 ωc
i (yi,k|k−1 − ŷk|k−1)(yi,k|k−1 − ŷk|k−1)

T + R̃k
Pxkyk = αk ∑2n

i=0 ωc
i (χi,k|k−1 − ŷk|k−1)(yi,k|k−1 − ŷk|k−1)

T

Kk = Pxkyk P−1
ykyk

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 − KkPykyk KT
k

end
where Ei = χi,k|k−1 − x̂k|k−1, µ =

√
n + κ,

W0 = κ/(n + κ), Wi = κ/(n + κ),
i = 1, 2, · · · , 2n and κ is a tune parameter.
More details about the selection of κ can be seen in [11,22].

Remark 3. In the process of nonlinear filter, it can be seen that both fading factor and maximum correntropy
criterion are applied in the cost function of the new filter. We can obtain that the estimate state x̂k is more accurate
than estimate state x̂k using other nonlinear filters such as EKF, UKF and other common nonlinear filters, etc.
First, the proposed filter has better adaptive ability to balance the contribution between the process model
information and measurement on the state vector. Second, the proposed filter can retain the effect of outliers.
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Particularly, when the state or/and measurement model are contaminated by outliers, the effectiveness of the
proposed filter is much better than that of UKF.

4. Simulation and Comparison

To illustrate the practical applicability of the proposed nonlinear filtering algorithm, two classical
filtering applications are employed in this section.

4.1. Radar Tracking System

We track a moving object by a radar which utilizes measurements of distances information.
The two-dimensional system uses a single station for tracking targets, and the state vector includes
position and velocity. The dynamics model moves within two dimensional plane according to the
standard dynamics model [29]

Xk = ΦXk−1 + Γuk, (51)

where Xk = [x, ẋ, y, ẏ], x and y are Cartesian coordinates of the moving target, and ẋ and ẏ are
correlative velocities of the moving target, respectively. uk is zero mean Gaussian white noise with the
covariance Q = diag([10−4, 10−4]). The transition matrix and noise excitation matrix are as follows:

Φ =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 and Γ =


T2/2 0

T 0
0 T2/2
0 T

 , (52)

where T = 1 is the time interval, and the measurement equation is

Zk =
√
(xk − ox)2 + (kk − oy)2 + vk, (53)

where (ox, oy) = (0, 1000) is land station, the variance of rk is R = 5, and vk is tuning parameter
satisfying v� 1.

Next, we will analyze and compare estimation performance of the following nonlinear filters
that are conventional unscented Kalman filter (UKF), adaptive Huber unscented Kalman filter
(AHUKF) [24], and the proposed filtering algorithm (AMUKF). Those three filters are utilized to
track position and velocity of the maneuvering vehicle.

The initial position and velocity of the maneuvering vehicle are set as [0 m, 1400 m] and [2 m/s,
−10 m/s], respectively. The value of initial variance P0 is diag[1, 1, 1, 1]. Simulation time lasts 50 s,
the parameter σ of Gaussian kernel function is set as 0.8 here. In this simulation, two cases are
considered: (1) measurement outliers and (2) state and measurement outliers simultaneously.

For the first case, we set the measurement outliers Ẑ20 = Z20 + 2 (m) and Ẑ35 = Z35 − 1 (m).
Under the same condition, Figures 1–3 show the tracking performance of UKF, AHUKF and the
proposed filter (AMUKF). Figure 1 shows the tracking results of the three filters above, and the effects
of AMUKF are better than that of other filters. The performance of AHUKF and AMUKF is much better
than that of UKF because the UKF is a nonlinear extension of the KF, and it is susceptible to outliers.
In Figure 1, we can see that AHUKF has a robust property to some extent, and it can be seen that
the impact of state outlier is to be suppressed to a certain extent. However, comparing with AMUKF,
it is not better than that of AMUKF. In summary, we can draw the conclusion that AMUKF can
suppress the outliers and has better robust properties. Thus, it has a better tracking result for true state.
The tracking errors obtained by AHUKF are bigger than that obtained by AMUKF. Figures 2 and 3
show the position errors and velocity errors about the three filters, respectively. In contrast, under the
measurement outlier, the estimation position and velocity errors for AMUKF are always smaller than
that of other filters.
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Figure 1. Target tracking performance in case 1.
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Figure 2. Position tracking performance in case 1.

0 5 10 15 20 25 30 35 40 45 50

Time(s)

-0.5

0

0.5

1

1.5

2

V
el

oc
ity

 E
rr

or
[m

/s
]

UKF
AHUKF
AMUKF

Figure 3. Velocity tracking performance in case 1.

For the second case, we also estimate position and velocity like the first case. The state outliers are
set as X̂10 = X10 + 0.2 × [5,1,5,1]T(m), X̂25 = X25 − 0.4 × [5,1,5,1]T (m), and the measurement outliers
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are set as Ẑ20 = Z20 + 2 (m), Ẑ35 = Z35 − 5 (m), respectively. From Figures 4–6, we can obtain that the
effect of the three different filters when the process and measurement have outliers simultaneously.
From Figure 4, it can be seen that the tracking results of the three filters in case 2, and the performance
of AMUKF is better than that of other filters. The results of AHUKF and AMUKF are much better than
that of UKF because AHUKF has robust properties, the effectiveness of AHUKF is approaching that
of AMUKF, but it is not better than that of AMUKF. The tracking errors obtained by AHUKF are bigger
than that obtained by AMUKF. Figures 5 and 6 show the position errors and velocity errors about
the three filters, respectively. Finally, it can be concluded that the errors of AMUKF are smaller than
that of AHUKF. From Figures 1 and 4, we also see that the behaviours of three filters are convergent.
Finally, the root mean square error (RMSE) of state is shown in Table 2, which shows that the presented
filtering algorithm outperforms both UKF and AHUKF.

Table 2. RMSE of State. RMSE is short for root mean square error.

Filter RMSE of x RMSE of ẋ RMSE of y RMSE of ẏ

UKF 28.1 0.315 145 0.117
AHUKF 26.7 0.017 139 0.037
AMUKF 25.8 0.011 135 0.029
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Figure 4. Target tracking performance in case 2.
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Figure 5. Position tracking performance in case 2.
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Figure 6. Velocity tracking performance in case 2.

4.2. Mars Entry Model

In this subsection, the Mars entry model is considered. During Mars entry, the vehicle is affected by
some uncertainty disturbances such as lift, drag, gravity, and measurement outliers, etc. Measurement
outliers are investigated. The dynamics of the entry vehicle are described by [30][

ṙ
v̇

]
=

[
v

−D v
‖v‖ − L cos σ̃ v

‖v‖ ×
v×r
‖v×r‖ + L sin σ̃ v×r

‖v×r‖ − g r
‖r‖

]
, (54)

where r = [rx, ry, rz]T and v = [vx, vy, vz]T denote position vector and velocity vector, and σ̃ is bank
angle. The lift acceleration L, drag acceleration D and gravitational acceleration g are

L =
1
2

ρ̃‖v‖2s/CL M D =
1
2

ρ̃‖v‖2s/CD M g =
g̃

R2 , (55)

where ‖r‖ and ‖v‖ are the scalar values of r and v, M is the mass of the vehicle, and g̃ is the planet’s
gravitational constant. Atmosphere density ρ̃ is given by

ρ̃ = ρ̃0 exp(
r0 − ‖r‖

hs
), (56)

where ρ̃0 = 2× 10−4 kg/m3 is the nominal reference density, r0 = 3.4372× 106 m is the reference
radius of Mars (40 km above Mars surface), and hs = 7500 m is the constant scale height.

For the measurement model, the two Mars orbiters–Mars Reconnaissance Orbiter (MRO) and
Mars Express (MEX) used by Curiosity for relay communications are employed. The movement of the
orbiter in polar coordinate can be constructed [31]:

rob =
a(1− e2)

1 + ecos(θ − ω̄)
r2

ob θ̇ =
√

g̃a(1− e2), (57)

where rob is the distance between the orbiter and the center of Mars, θ is the angle between the ascending
node and the orbiter, a is the semi-major axis of the movement ellipse, e is the eccentricity ratio, ω̄ is
the argument of perigee, and g̃ is the gravity constant of Mars. The ecliptic longitude and latitude of
the orbiter are:
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Ωob =

{
− cos−1[ cos θ

cos φob
] + Ω, φob ≤ 0,

cos−1[ cos θ
cos φob

] + Ω, φob > 0,
(58)

where φob = sin−1[ sin θ sin i
sin k ], Ωob is ecliptic longitude, and φob is the ecliptic latitude, and i is orbital

inclination (angle between longitude and latitude, k = π
2 ). Thus, the relative range measurement

between the vehicle and the orbiter can be constructed:

Rob =
√
(r− rob)T(r− rob),

R̃ob = Rob + εob,
(59)

where rob = (cos φob cos Ωob cos φob sin Ωob sin φob)
T , and εob is the range measurement noise,

whose prior covariance is set to be 100, meaning the range measurement error is 10 m.
The relative range measurements between Mars surface beacons (MSBs) and the vehicle can be

obtained by:

R̃î
B = Rî

B + εî
R, (60)

where Rî
B =

√
(xî

B − rx)2 + (yî
B − ry)2 + (zî

B − rz)2 refers to the true range from the entry vehicle to

the ith beacon, R̃B is the measurement range, and xî
B, yî

B and zî
B are the position coordinates of MSBs.

εî
R is the range measurement noise.

The observation of rate measurement can be given as:

Ṽ î
B = Vî + εî

V V î
B =

dRî
dt î = 1, · · · , N, (61)

where V î
B is the true rate, Ṽ î

B is the measured rate, and εî
V is the rate measurement noise, whose prior

covariance is set to be 1, meaning that the measurement error rate is 1 m/s.
From the above measurement models, the overall observation model can be obtained as

y =

 R̃ob
R̃B
ṼB

 .

In this simulation, the measurement outliers are considered. We utilize UKF and AHUKF [24] to
compare with the proposed filtering algorithm too. Their performance is to be analyzed as follows.
First, the initial values are listed in Table 3. The parameters of the two orbiters are listed in Table 4.
The simulation time is 500 s.

The initial position and velocity of maneuvering vehicle are also showed in Table 3. The initial
errors matrix P0 = diag([1000; 1000; 1000; 1000; 10; 10]). Q = 10−5 × diag([0.1; 0.1; 0.1; 0.1; 0.1; 0.1]);
R = diag([100; 100; 100; 1; 1; 1]). The parameter σ of Gaussian kernel function is set as 10 here.
The measurement outliers are assumed as ỹ100 = y100 + 0.3×[800, 800, 800, 800, 30, 30]T and ỹ200 =

y200 − 0.4 ∗ [800, 800, 800, 800, 30, 30]T , respectively. From Figures 7–9, obviously, it can be seen that the
state errors of UKF become very large for measurement outliers. while others’ errors are very small.
Therefore, we can determine that the performance of AHUKF and AMUKF is far better than that of
UKF, especially AMUKF. Even when the measurement outliers occur, AMUKF can effectively track
the movement of the vehicle. Finally, from Figures 7–9, we also see that the behaviours of three filters
are convergent.
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Table 3. Parameters setting of initial conditions. MSBs is short for Mars surface beacons.

Initial Setting Notation Values

Initial position (rx0 , ry0 , rz0 ) (−3.92 km, −3099.09 km, −1663.11 km)
Initial velocity (vx0 , vy0 , vz0 ) (463.25 m/s, −1528.75 m/s, 5268.14 m/s)

MSBs’ locations (1) (x1
B, y1

B, z1
B) (875.35 km, −2914.43 km, −1509.77 km)

MSBs’ locations (2) (x2
B, y2

B, z2
B) (410.25 km, −2955.32 km, −1624.04 km)

Vehicle mass M 2804 kg
Vehicle cross-section s 15.9 m2

Table 4. Parameters of the orbiters. MRO and MEX are short for Mars Reconnaissance Orbiter and
Mars Express, respectively.

MRO MEX

semi-major axis a 3663.7 km 8572.2 km
eccentricity ratio e 0.0089 rad 0.5770 rad

argument of perigee ω̄ 4.7124 rad 2.7911 rad
orbital inclination i 1.6154 rad 1.5055 rad
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Figure 7. Position and velocity tracking errors on the x-axis.
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Figure 8. Position and velocity tracking errors on the y-axis.



Sensors 2018, 18, 2406 15 of 17

0 50 100 150 200 250 300 350 400 450 500

Time(s)

-50

0

50

P
os

tio
n 

E
rr

or
[k

m
]

Z-axis

UKF
AHUKF
AMUKF

100 150 200 250 300
-4
-2
0
2
4

0 50 100 150 200 250 300 350 400 450 500

Time(s)

-10

-5

0

5

V
el

oc
ity

 E
rr

or
[m

/s
]

100 150 200 250 300
-1

0

1

Figure 9. Position and velocity tracking errors on the z-axis.

5. Conclusions

In this paper, a new adaptive robust unscented Kalman filter is obtained by combining both the
robust property of maximum correntropy criterion and the adaptive property of the fading factor
with the superiority of UKF. The cost function of the proposed filter includes both the fading factor to
the state model and the maximum correntropy criterion to the measurement model. The maximum
correntropy criterion can enhance the ability of being insensitive to outliers, and the fading factor can
improve the ability of strongly tracking the state estimate. Therefore, the proposed filtering algorithm
can track the state strongly and is insensitive to outliers. After that, the process of fading factor is
derived in detail. Two numerical examples are given to illustrate the effectiveness of the proposed filter.
UKF and AHUKF are selected for comparison with the proposed filtering algorithm in simulation.
When state or/and measurement outliers occur, the proposed filter can track the target effectively
and suppress the effect of outliers. Therefore, from the theoretical and numerical simulation results,
it can be concluded that the proposed filter has not only the robustness of the fading factor but also the
accuracy and flexibility of nonlinear systems. In the future, we will study the stability of the adaptive
robust unscented Kalman filter based on the maximum correntropy criterion.
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