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Abstract: 
The emergence of HIV-TB co-infection and multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) drive the need for new 
therapeutics against the infectious disease tuberculosis. Among the reported putative TB targets in the literature, the identification 
and characterization of the most probable therapeutic targets that influence the complex infectious disease, primarily through 
interactions with other influenced proteins, remains a statistical and computational challenge in proteomic epidemiology. Protein 
interaction network analysis provides an effective way to understand the relationships between protein products of genes by 
interconnecting networks of essential genes and its protein-protein interactions for 5 broad functional categories in Mtb. We also 
investigated the substructure of the protein interaction network and focused on highly connected nodes known as cliques by 
giving weight to the edges using data mining algorithms. Cliques containing Sulphate assimilation and Shikimate pathway 
enzymes appeared continuously inspite of increasing constraints applied by the K-Core algorithm during Network Decomposition. 
The potential target narrowed down through Systems approaches was Prephanate Dehydratase present in the Shikimate pathway 
this gives an insight to develop novel potential inhibitors through Structure Based Drug Design with natural compounds. 
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Background: 
During recent years, simulations of biological systems have 
been spurred by the massive acquisition and availability of data 
in molecular and cell biology. It is increasingly becoming 
evident that simulations can be paired with experiments, and in 
fact, they are customarily used by computational scientists to 
understand the quantitative behavior of many complex 
biological systems. Additionally, in-silico simulations are also 
successfully employed in the design of new Biomolecular 
experiments thus driving experimentalists. Although the gap 
between in vivo and in-silico biology has been remarkably 
reduced, there are still many limitations hindering the adoption 
of computational approaches in everyday Biomolecular 
research. Filling in this gap with Systems level approaches will 
help for a better understanding of mechanisms and operation of 

cellular processes in the Tuberculosis (TB) bacterium. TB 
continues to be a devastating public health problem. With the 
first cases of Total Drug Resistant strains reported in India 
during January 2012 and the mortality rate of Multi-Drug 
Resistance (MDR), Extremely Drug Resistance (XDR) and Total 
Drug Resistance (TDR)-TB is 30%, 60% and 100% respectively, 
there is an urgent need to identify novel targets and to develop 
new drugs [1]. 
 
In this paper, we create a network of Molecular Interaction Map 
(MIP) from a list of 141 possible targets reported in the 
comprehensive in-silico target identification pipeline, TargetTB 
[2, 3]. The proteins span across 5 broad functional categories 1) 
Cell Wall Biosynthesis; 2) Lipid Metabolism; 3) Intermediary 
Metabolism and Respiration; 4) Information Pathways; 5) 
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Regulatory proteins. MIP Interactome was increased using the 
STRING database version 9.0, with confidence scores as edge 
weights. The MIP now includes the interactions among these 
141 targets and their interactions across other pathways. The 
network captures different types of interactions such as (a) 
physical complex formation between two proteins required to 
form a functional unit; (b) genes belonging to a single operon or 
to a common neighbourhood; (c) proteins in a given metabolic 
pathway and hence influenced by each other; (d) proteins 
whose associations are suggested based on predominant co-
existence, co-expression, or domain fusion. Network 
Decomposition through K-Core analysis gave rise to the most 
influential target among the 141 selected targets and their 
interacting neighbors. 
 

 
Figure 1: Interactome of all the 141 proteins showing 144 nodes 
and 587 edges in the protein-protein interaction map 
encompassing all 5 functional categories of protein targets in 
Mycobacterium tuberculosis. 
 
Methodology: 
The interacting partners of all the 141 reported protein targets 
were selected from the STRING database and a network was 
constructed with Cytoscape 2.8.0 [9], a network visualization 
and analysis software. The shortest paths between all pairs of 
proteins in the network were computed. For every node in a 
network, the Network Analyzer computes its degree, its 
clustering coefficient, the number of self-loops, and a variety of 
other parameters. ClusterOne plugin used on the network 
strives to discover densely connected and possibly overlapping 
regions within the Cytoscape network. It essentially looks for 
groups of high cohesiveness based on the parameters, 
minimum size, minimum density, edge weights, merging and 
seeding methods. The minimum size of the cluster for all the 
proteins in the network was set to 15 resulting in 19 clusters 
(Figure 1). 
 
The minimum sizes for the individual networks were set to 7. 
The highly interacting nodes in the cluster was identified by 
molecular complex detection (MCODE) algorithm [10], by 
keeping K-Core =4 - 8, node score cutoff = 0.2 and max depth 
up to 100. At each level topological properties were studied to 

justify the important nodes/hubs playing crucial role in the 
functional pathways of the TB bacterium. 
 
Discussion: 
An MIP with 141 targets and their interacting protein partners 
depicting 344 molecules as nodes and 587 edges is a 
mathematical graph, permitting analysis with graph theoretical 
algorithms. Molecules like genes, proteins, transcriptional 
factors are denoted as nodes in the graph and interactions 
between them are called as edges. This MIP is a scale free 
network which obeys power law distribution of connectivity. 
 

 
Figure 2:  Best five interconnected cliques among all the 141 
target proteins and their interactions with neighboring proteins. 
 
Network Analysis 
Molecular interaction map can be represented as undirected 
graph M (N, E), which consists of set of nodes as N and set of 
edges as E. The size of the graph is given by the number of its 
nodes. The degree of its nodes indicates the number of 
interaction to a single node with all the other nodes. A clique is 
a complete n-node sub-graph, which means that within a sub 
graph, each pair of nodes is connected by an edge. Using the 
MCODE plugin, we have found clusters (highly interconnected 
regions) in the networks (Figure 2). At K-core 7, 5 sub-
networks/cliques from the entire 141 proteins developed Table 
2 (see supplementary material). 
 
Clique A represents enzymes of the Lipid Metabolism. 
Phospholipids represented by phosphatidylethanolamine (PE), 
phosphatidylinositol mannosides (PIMX) and cardiolipins (CL) 
constitute about 25 % of total lipids and 3–7 % of total dry 
weight of mycobacteria (Figure 2). Clique B are Cytochromes 
(Figure 2), the major enzymes involved in drug metabolism and 
bio-activation, accounting for about 75% of the total number of 
different metabolic reactions [12]. Clique E is represented by 
Menaquinones (2-methyl-3-polyprenyl-1,4- naphthoquinones) 
which are the predominant lipoquinones of mycobacteria. The 
lipoquinones involved in the respiratory chains of bacteria 
consist of menaquinones and ubiquinones [7], while mammals 
have only ubiquinone. A detailed characterization of an aerobic 
respiratory chain in M. tuberculosis showed that 
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NADH:menaquinone oxidoreductase is a viable target for anti-
tubercular agents [8]. 
 
Clique C represents Cys proteins (Sulphate Assimilation 
Enzymes) and Clique D represents Aro proteins (Shikimate 
pathway enzymes) are found to repeat themselves in the 
network with a stringent K-core (Figure 2). The Sulfur 
metabolic pathways are essential for survival and the 
expression of virulence in many pathogenic bacteria, including 
Mycobacterium tuberculosis. Extracellular presentation of sulfated 
metabolites plays important regulatory roles in cell-cell and 
host-pathogen communication [5] 
 
Mutants with defects in sulfate assimilation indicate that the 
fate of sulfur in Mycobacterium tuberculosis is a critical survival 
determinant for the bacteria during infection and suggest novel 
targets for tuberculosis drug therapy [6]. The Shikimate 
pathway leads to the biosynthesis of chorismate, a precursor of 
aromatic amino acids. This pathway is absent from mammals 
and shown to be essential for the survival of Mycobacterium 
tuberculosis [4, 8, 11]. PheA (Prephenate Dehydratase) is a new 
interacting partner appearing along with other Shikimate 
pathway enzymes in the MIP Table 2 (see supplementary 
material) 
 
Topological analysis of the 5 functional classes of networks in 
TB was done through three properties of network analysis i.e, 
Closeness centrality, Betweenness centrality and Node degree 
distribution. The R-squared value (also known as coefficient of 
determination) gives the proportion of variability in a data set, 
which is explained by a fitted linear model. 
 
Closeness centrality is a measure of how fast information 
spreads from a given node to other reachable nodes in the 
network. The closeness centrality, Cc (n) was calculated for 
every functional category taking into consideration, all of the 
shortest path for each node. Cc(n) of node n is defined as the 
reciprocal of the average shortest path length and is computed 
as follows: Cc(n) = 1 / avg (L(n,m)), where L(n,m) is the length of 
the shortest path between two nodes n and m. Cc(n) was high 
for all the functional categories leaving Intermediary 
Metabolism and Respiration. 
 
The Betweenness centrality of a node reflects the amount of 
control that this node exerts over the interactions of other nodes 

in the network. In undirected networks, the node degree of a 
node n is the number of edges linked to n. A self-loop of a node 
is counted like two edges for the node degree. Node degree 
distribution for all the functional categories is high ranging 
from 0.91 to 0.98 which shows high interactive networks with 
the edges Table 1 (see supplementary material). 
 
Conclusion: 
The proposed approach uses the creation of molecular 
interaction map and then finding the best cliques by using k-
core application. Topological parameters were calculated for the 
proposed Molecular Interaction Map representing the core 
proteins responsible for survival of the TB pathogen and the 
proteins not found in mammalian systems, making them 
suitable targets for Structure Based Drug Design. Analysis of 
closeness centrality, betweenness centrality and node degree 
distribution showed that enzymes of the Sulphate Assimilation 
pathway and the Shikimate pathways part of the Intermediary 
Metabolism of Mycobacterium tuberculosis are crucial for the 
survival of the microbe. From the Shikimate pathway clique, 
Prephenate dehydratase (pheA), a key regulatory enzyme in L-
phenylalanine biosynthesis was identified as a potential drug 
target. The absence of a human counterpart of the aromatic 
amino acid biosynthesis pathway makes the member enzymes 
promising targets for therapeutic interventions against the 
Tuberculosis bacterium. 
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Supplementary material:  
 
Table 1: Network property analysis showing the Closeness, between’s centrality, and the node degree distribution for all proteins, and individual networks. The number 
of clusters in each category is given within braces. The correlation coefficient and Coefficient of Determination (R2) for each property is also given. 
Cluster-(No. of merged clusters) Closeness centrality Between’s centrality Node degree distribution 
All clusters (19) Correlation coefficient=0.286 

R2=0.065 
Correlation coefficient=0.259 
R2=0.195 

Correlation coefficient=0.980 
R2=0.961 

Cell wall Biosynthesis(2) Correlation coefficient =0.7 
R2=0.5 

Correlation coefficient=0.4 
R2=0.7 

Correlation coefficient=0.944 
R2=.609 

Lipid Metabolism(2) Correlation coefficient=0.755 
R2=0.535 

Correlation coefficient=0.861 
R2=0.845 

Correlation coefficient=0.959 
R2=0.649 

Intermediary Metabolism and 
Respiration(15) 

Correlation coefficient=0.177 
R2 =0.018 

Correlation coefficient=0.217 
R2=0.279 

Correlation coefficient=0.984 
R2=0.568 

Information Pathways (2) Correlation coefficient=0.897 
R2=0.805 

Correlation coefficient=0.892 
R2=0.863 

Correlation coefficient=0.912 
R2=.784 

Regulatory Pathways (3) Correlation coefficient=0.771 
R2=0.516 

Correlation coefficient=0.217 
R2=0.025 

Correlation coefficient=0.926 
R2=0.538 

 
Table 2: The 5 best Cliques generated by MCODE at K-core-7, node score cutoff = 0.2 and max depth up to 100 along with interacting protein partners and names of the 
proteins. 

CLIQUE No. INTERACTING SCORE NODES EDGES NAME OF THE PROTEIN  
NAME PROTEINS      

1 KasA 5 9 45 3-oxoacyl-(acyl carrier protein) synthase II  
 FabG    3-oxoacyl-[acyl-carrier protein] reductase  
 FabH    3-oxoacyl-(acyl carrier protein) synthase III  
Lipid Metabolism 

FabD 
   

acyl-carrier-protein S-malonyltransferase 
 

     
 InhA    enoyl-(acyl carrier protein) reductase  
 AcpM    acyl carrier protein; Acyl carrier protein  
     involved in meromycolate extension  
 KasB    3-oxoacyl-(acyl carrier protein) synthase II  
 MabA    fabG1 - 3-oxoacyl-[ACP] reductase  
 AccD3    putative acetyl-coenzyme A carboxylase  
     carboxyl transferase subunit beta  
2 Cyp143 4.429 7 32 cytochrome P450 143  
       
 Cyp142    cytochrome P450 142  

Cytochrome P450’s 
Cyp128    cytochrome P450 128  

Cyp130 
   

cytochrome P450 130 
 

     
 Cyp141    cytochrome P450 141  
 Cyp125    cytochrome P450 125  
 Cyp121    cytochrome P450 121  
 Cyp 144    cytochrome P450 144  
3 CysT 4.375 8 35 sulfate-transport integral membrane protein  
     ABC transporter CysT  
Sulphate CysD    sulfate adenylyltransferase subunit 2  
Assimilation 

CysNC 
   

bifunctional sulfate adenylyltransferase 
 

     
Enzymes     

subunit 1/adenylylsulfate kinase protein 
 

      
 CysN    sulfate-transport integral membrane protein  
     ABC transporter  
 CysW    phosphoadenosine phosphosulfate  
     reductase  
 CysH    sulfate-binding lipoprotein  
 SubI    sulfate-binding lipoprotein  
4 AroK 4.286 7 30 shikimate kinase  

Shikimate Pathway 
AroA    3-phosphoshikimate 1-  
    

carboxyvinyltransferase 
 

Enzymes 
     

AroC 
   

3-dehydroquinate synthase 
 

     
 AroB    3-dehydroquinate dehydratase  
 AroE    chorismate synthase  
 PheA    prephenate dehydratase  
 AroQ*    shikimate 5-dehydrogenase  
5 MenA 3.8 5 20 1,4-dihydroxy-2-naphthoate  
     octaprenyltransferase  
Menaquinone MenE    O-succinylbenzoic acid--CoA ligase  
Biosynthesis MenC    O-succinylbenzoate synthase  
 MenD    2-succinyl-5-enolpyruvyl-6-hydroxy-3-  
     cyclohexene-1-carboxylate synthase  
 MenB    naphthoate synthase  
 


