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Free-energy based reinforcement learning (FERL) was proposed for learning in
high-dimensional state- and action spaces, which cannot be handled by standard function
approximation methods. In this study, we propose a scaled version of free-energy based
reinforcement learning to achieve more robust and more efficient learning performance.
The action-value function is approximated by the negative free-energy of a restricted
Boltzmann machine, divided by a constant scaling factor that is related to the size of the
Boltzmann machine (the square root of the number of state nodes in this study). Our
first task is a digit floor gridworld task, where the states are represented by images of
handwritten digits from the MNIST data set. The purpose of the task is to investigate
the proposed method’s ability, through the extraction of task-relevant features in the
hidden layer, to cluster images of the same digit and to cluster images of different digits
that corresponds to states with the same optimal action. We also test the method’s
robustness with respect to different exploration schedules, i.e., different settings of the
initial temperature and the temperature discount rate in softmax action selection. Our
second task is a robot visual navigation task, where the robot can learn its position by
the different colors of the lower part of four landmarks and it can infer the correct corner
goal area by the color of the upper part of the landmarks. The state space consists of
binarized camera images with, at most, nine different colors, which is equal to 6642 binary
states. For both tasks, the learning performance is compared with standard FERL and with
function approximation where the action-value function is approximated by a two-layered
feedforward neural network.
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1. INTRODUCTION
Reinforcement learning (Sutton and Barto, 1998) has been proven
to be effective for a wide variety of delayed reward problems.
However, standard reinforcement learning algorithms cannot
handle high-dimensional state spaces. For standard action-value
function approximators, such as tile coding and radial basis func-
tion networks, the number of features of the function approxi-
mator grows exponentially with the dimension of the state- and
action spaces.

Sallans and Hinton (2004) proposed free-energy based rein-
forcement learning (FERL) to handle high-dimensional state-
and action spaces. In their method, the action-value function,
Q, is approximated as the negative free-energy of a restricted
Boltzmann machine (Smolensky, 1986; Freund and Haussler,
1992; Hinton, 2002). In this study, we propose a scaled version
of FERL to achieve more robust and more efficient learning. The
action-value function is approximated as the negative free-energy,
divided with a constant scaling factor that is related to the size of
the Boltzmann machine (the square root of the number of state
nodes in this study). The initialization of the network weights
and, thereby the initial Q-values, is a difficult problem in FERL.
Even if the network weights are randomly initialized using a dis-
tribution with zero mean, the magnitude of the initial free-energy

grows with the size of the network. The introduction of a scal-
ing factor can, therefore, reduce this problem by initializing the
Q-values to a more appropriate range. In addition, the scaling of
the free-energy reduces the effect of a change in the weight val-
ues (i.e., a learning update) on the approximated Q-values. This
makes it less likely that the learning diverges or get trapped in
suboptimal solutions.

To validate the scaled version of FERL, we compare the learn-
ing performance with standard FERL and learning with a two-
layered feedforward neural network. Our first experiment is a
digit floor gridworld task, where the states are represented by
images of handwritten digits from the MNIST data set. The pur-
pose of the task is to investigate our proposed method’s ability
to extract task-relevant features in the hidden layer, i.e., to clus-
ter images of the same digit and to cluster images of different
digits that correspond to states with the same optimal action.
We also test the method’s robustness with respect to different
exploration schedules, i.e., different settings of the initial tem-
perature and the temperature discount rate in softmax action
selection. Our second experiment is a robot visual navigation
task, where the goal is to reach the correct goal area, which can
be inferred by the color of the upper part of four landmarks.
The color of the lower part of each landmark is unique and
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identifies the landmark’s position, and can therefore be used for
localization.

Apart from Sallans’ and Hinton’s (Sallans and Hinton, 2004)
pioneering work, there have been few studies using a free-energy
approach to function approximation in reinforcement learning.
In our earlier study (Elfwing et al., 2010), we demonstrated the
feasibility to use FERL for on-line control with high-dimensional
state inputs in a visual navigation and battery capturing task
with similar experimental setup as the visual navigation task in
this study. We also demonstrated successful on-line learning in
a real robot for a simpler battery capturing task. In this study,
we compare the performance of scaled FERL with the standard
FERL approach that was used in our earlier study. Otsuka et al.
(2010) extended the FERL method to handle partially observable
Markov decision processes (POMDPs), by incorporating a recur-
rent neural network that learns a memory representation that
is sufficient for predicting future observations and rewards. The
incorporation of memory capability does not improve the learn-
ing performance of standard FERL for the MDP tasks considered
in this study.

2. METHOD
2.1. GRADIENT-DESCENT SARSA(λ)
The FERL method that we propose here is based on the on-
policy reinforcement learning algorithm (Sutton and Barto, 1998)
Sarsa(λ) (Rummery and Niranjan, 1994; Sutton, 1996), which
learns an estimate of the action-value function, Qπ, while the
agent follows policy π. If the approximated action value function,
Qt ≈ Qπ, is parameterized by the parameter vector θt , then the
gradient-descent update of the parameters is

θt + 1 = θt + αδt et , (1)

where the TD-error, δt is

δt = rt + γQt(st + 1, at + 1) − Qt(st, at), (2)

and the eligibility trace vector, et , is

et = γλet − 1 + ∇θt Qt(st, at), e0 = 0. (3)

Here, st is the state at time t, at is the action selected at time t, rt

is the reward for taking action at in state st , α is the learning rate,
and γ is the discount factor of future rewards, λ is the trace-decay
rate, and ∇θt Qt is the vector of partial derivatives of the function
approximator with respect to each component of θt . In this study,
the action-value function is approximated by the negative free-
energy of a restricted Boltzmann machine.

2.2. FREE-ENERGY BASED FUNCTION APPROXIMATION
The use of a restricted Boltzmann machine (Smolensky, 1986;
Freund and Haussler, 1992; Hinton, 2002) as a function approx-
imator for reinforcement learning was proposed by Sallans and
Hinton (2004). A restricted Boltzmann machine (Figure 1) is
a bi-directional neural network which consists of binary state
nodes, s, binary action nodes a, and hidden nodes, h. The ith
state node, si, is connected to hidden node hk by the weight wik,

FIGURE 1 | Restricted Boltzmann machine.

and the jth action node, aj, is connected to hidden node hk by
the weight ujk. In addition, the state nodes, the action nodes,
and the hidden nodes are all connected to a constant bias input
with a value of 1, with connection weights bi, bj, and bk, respec-
tively. The free-energy, F, of the restricted Boltzmann machine is
given as

F(s, a) = −
K∑

k = 1

⎛
⎝ Ns∑

i = 1

wiksihk +
Na∑

j = 1

ujkajhk

⎞
⎠ −

Ns∑
i = 1

bisi

−
Na∑

j = 1

bjaj −
K∑

k = 1

bkhk +

+
K∑

k = 1

(
hk log hk + (1 − hk) log(1 − hk)

)
. (4)

Here, K is the number of hidden nodes, Ns is the number of state
nodes, and Na is the number of action nodes. The free-energy
of each action j is computed by setting the corresponding action
node, aj, to 1 and the rest of the action nodes to 0. hk is the
activation of the kth hidden node, given as

hk = σ

⎛
⎝ Ns∑

i = 1

wiksi +
Na∑

j = 1

ujkaj + bk

⎞
⎠ , (5)

where

σ(x) = 1

1 + e−x
. (6)

In Sallans’ and Hinton’s (Sallans and Hinton, 2004) original pro-
posal, the action-value function was approximated by the negative
free-energy, i.e., Qt = −Ft . In this study, we propose that the
performance and the robustness of free-energy based function
approximation can be improved by scaling the free-energy by
a constant scaling factor, Z, that is related to the size of the
Boltzmann machine, i.e., Qt = −Ft/Z. The update of the learning
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parameters (Equations 1–3) then becomes

θt + 1 = θt + αδtet , (7)

δt = rt − γ
Ft(st + 1, at + 1)

Z
+ Ft(st , at)

Z
, (8)

et = γλet − 1 + 1

Z
∇θt (−Ft(st , at)). (9)

The derivatives of the negative free-energy, with respect to the
function approximator parameters (wik, ujk, bi, bj, and bk), can
be computed as

∇wik (−F(s, a)) = sihk,

∇ujk (−F(s, a)) = ajhk,

∇bi (−F(s, a)) = si,

∇bj (−F(s, a)) = aj,

∇bk (−F(s, a)) = hk. (10)

Since

θt + 1 = θt + α

(
rt − γ

Ft(st + 1, at + 1)

Z
+ Ft(st , at)

Z

)

t∑
i = 1

γt − iλt − i

Z
∇θi(−Fi(si, ai)), (11)

= θt + α

Z2
(Zrt − γFt(st + 1, at + 1) + Ft(st, at))

t∑
i = 1

γt − iλt − i∇θi(−Fi(si, ai)), (12)

the scaled version of FERL can be transformed to the original
formulation by re-scaling the learning rate (α′ = α/Z2) and the
magnitude of the reward function (r′t = Zrt).

2.3. ACTION SELECTION
In this study, we use softmax action selection with a Boltzmann
distribution, where the probability to select action a in state s is
defined as

P(a|s) = exp(Q(s, a)/τ)∑
b exp(Q(s, b)/τ)

. (13)

Here, τ is the temperature that controls the trade-off between
exploration and exploitation. In this study, we used hyper-
bolic discounting of the temperature and the temperature was
decreased every episode i:

τ(i) = τ0

1 + τki
. (14)

Here, τ0 is the initial temperature and τk controls the rate of
discounting.

To transform the scaled version to the original formulation
when using softmax action selection, the temperature has also to
be re-scaled (τ′ = Zτ).

2.4. DIGIT FLOOR GRIDWORLD TASK
Figure 2 shows the digit floor gridworld task. The thick purple
lines indicate the outer walls and the wall between state “1” and
state “4.” The yellow lines indicate zero reward state transitions.
The red lines indicate negative reward (−0.01) for premature state
transitions to the absorbing goal state (state “5”) from states “2,”
“6,” and “8.” The green line indicates positive reward (+1) for
successful completion of the task, i.e., state transition from state
“4” to state “5.” There were four actions that moved the agent one
step in the directions North, East, South, and West. If the agent
moved into a wall, then the agent remained in the current state
and received a zero reward. The agent started each episode at state
“1” and the goal of the task was to reach state “5” by moving coun-
terclockwise along a path through states “2,” “3,” “6,” “9,” “8,” “7,”
and “4.” Each state consisted of an image of a handwritten digit
from the MNIST data set (LeCun et al., 1998). The 28 × 28 pixels
grayscale images were binarized by setting pixels with grayscale
values larger than or equal to 128 to 1 and pixels with values
smaller than or equal to 127 to 0. For each state, we used 20 differ-
ent digit images that were randomly selected from the first 1000
images in the MNIST data set. At the start of each episode, the
image for each state was randomly selected among the 20 possi-
ble images. An episode ended either when the agent moved to the
absorbing state (state “5”) or after a maximum number of steps
(set to 1000).

2.5. ROBOT VISUAL NAVIGATION TASK
For the robot navigation task we used a simulation environment
that was developed in MATLAB (2010) to mimic the proper-
ties of the Cyber Rodent robot (Doya and Uchibe, 2005). The
Cyber Rodent is a small mobile robot, 22 cm in length and
1.75 kg in weight. The robot has a variety of sensors, including an

FIGURE 2 | Digit floor gridworld task. The thick purple lines indicate the
outer walls and the wall between states “1” and “4.” The yellow lines
indicate zero reward state transitions. The red lines indicate negative
reward (−0.01) for premature state transitions to the absorbing goal state
(state “5”) from states “2,” “6,” and “8.” The green line indicates positive
reward (+1) for successful completion of the task, i.e., state transition from
state “4” to “5.”
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omnidirectional C-MOS camera, an infrared range sensor, seven
infrared proximity sensors, gyros, and accelerometers. It has two
wheels and a maximum speed of 1.3 ms−1. In addition to an
on-board CPU (SH-4), it has an FPGA for real-time color blob
detection.

The goal of the robot task (Figure 3) was to navigate to one of
the four goal areas in the corners of the 2.5 × 2.5 m experimental
area [dashed quarter circles in Figure 3 (left panel)], by learning
to infer the correct goal area by the color of the upper part of four
landmarks (cyan color in Figure 3). The landmarks were located
outside the corners of the experimental area. The color of the
lower part of each landmark was unique and non-changing (red,
green, blue, and black colors in Figure 3), and could therefore
be used for localization. At the start of each episode, the correct
goal area was randomly changed, and, thereby, also the corre-
sponding color of the upper part of the landmarks. The robot
was randomly placed in one of the four starting areas [dotted
rectangles in Figure 3 (left panel)]. The initial position within
the starting area and the robot’s initial heading angle were also
randomly selected. We performed experiments with one goal area
(southwest), two goal areas (southwest and northeast), three goal
areas (southwest, southwest, and northeast), and all four goal
areas.

The robot’s simulated camera had a resolution of 738 (41 ×
18) pixels covering a horizontal field of view of ±75◦, with a
3.75◦ distance between the pixels. It could detect up to nine dif-
ferent colored objects: obstacles (purple in Figure 3), the lower
part of the four landmarks (red, green, blue, and black in
Figure 3), and one to four colors of the upper part of the land-
marks (cyan in Figure 3), depending on the number of goals in
the experiment. Within the field of view, the landmarks were
visible from all distances and the obstacles were visible up to
2 m. The size of an object in the camera image increased with
the inverse of the distance to the object. The state vector was

constructed by creating a binary image of equal size to the orig-
inal image for each color the robot could detect. The pixels
that detected a colored object was extracted from the original
image and the same pixels in the corresponding binary image
was set to 1. All other pixels were set to 0. In addition, the state
vector consisted of three normalized real-valued distance mea-
sures from the robot’s front proximity sensors, located at −30◦,
0◦, and +30◦ in relation to the robot’s heading direction. The
distance information was normalized to the interval [0, 1] and
higher values corresponded to shorter distances. The total length
of the state vector in the experiment with four goals was 6645
(41 × 18 × 9 + 3). The robot could execute five actions, pairs
of velocities (cm/s) of the left and the right wheels: rotate right
(20,−20), curve right (40, 20), go straight (30, 30), curve left
(20, 40), and rotate left (−20, 20). Gaussian noise was added
to each wheel velocity, with zero mean and a standard devia-
tion equal to 1% of the amplitude of the velocity. An episode
ended either when the robot moved its head inside the cor-
rect goal area or when the length of the episode exceeded a
fixed threshold of 2000 time steps. The robot received a +1
reward if it reached the correct goal area, otherwise the reward
was set to 0.

3. RESULTS
To evaluate the proposed scaled version of FERL, we compared
the performance with standard FERL and with function approx-
imation using a two-layered feedforward neural network (here-
after NNRL). The state nodes si of the neural network were
connected to K hidden nodes by weights wik. The hidden
nodes had sigmoid activation functions (Equation 6), δk =
σ(

∑
i wiksi). The hidden nodes were connected to Q-value

output nodes with linear activation by weights wka. The
approximated Q-values were computed as the linear com-
bination of the output weights and the hidden activation

FIGURE 3 | Overview of the experimental area for the visual

navigation tasks (left panel) and the camera image corresponding to

the robot’s position in the environment (right panel). In the left panel,
the dashed quarter circles at the corners indicate the four goal areas and
the dotted rectangles indicate the starting areas. The circles outside the
experimental area indicate the four landmarks. The color of the lower part

of each landmark was unique and non-changing. The color of the upper
part of all landmarks corresponded to the correct goal area and was
randomly changed at the start of each episode. Note that the difference in
radius between the lower and the upper part of the landmarks is only for
illustrative purposes. In the experiments, both parts of the landmarks had
the same radius.
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[Q(s, a) = ∑
k wkaδk], with derivatives with respect to the weight

parameters computed as

∇wik (Q(s, a)) = δk(1 − δk)wkasi,

∇wka (Q(s, a)) = δk. (15)

For the scaled FERL, we concluded after a trial and error process
that a scaling factor equal to the square root of the number of state
nodes (Z = √

Ns) was an appropriate value for the experiments
conducted in this study. For both tasks, the number of hidden
nodes (K) was set to 20 for all three methods. In the gridworld
task, we tested the robustness of the methods with the respect to
different exploration schedules by comparing the learning perfor-
mance for action selection with τ0 set to 0.5, 1, and 2 and τk set
to 0.01, 0.001, and 0.0005 (Equation 14). In the robot navigation
task, τ0 and τk were determined by searching for appropriate val-
ues in the experiment setting with two goal targets. τ0 was set to
0.5 for all three methods. τk was set to 0.01 for scaled FERL and
0.002 for FERL and NNRL. Table 1 shows the settings of α, γ, and

Table 1 | Meta-parameter settings for the experiments.

Gridworld task Robot task

Scaled FERL FERL NNRL Scaled FERL FERL NNRL

α 0.01 × Z 0.001 0.001 0.01 × Z 0.001 0.001

γ 0.96 0.96 0.96 0.98 0.98 0.98

λ 0.8 0.8 0.8 0.8 0.8 0.8

λ in the experiments. For all three methods, the weights were ran-
domly initialized using a Gaussian distribution with zero mean.
For the weights connecting the state nodes and the hidden nodes
the variance was equal to 0.001 and for weights connecting the
hidden nodes and the action nodes the variance was equal to 1.

3.1. DIGIT FLOOR GRIDWORLD TASK
For the gridworld task, we performed 20 simulations runs for
each method and each setting of τ0 and τk. Figure 4 shows the
average rewards computed over every 100 episodes. The result
clearly shows better and more robust learning performance for
scaled FERL (left panel in Figure 4). The learning converged
to average reward values exactly equal to, or close to equal to,
the maximum reward of 1 for 8 out of the 9 different set-
tings of τ0 and τk. The only exception was the experiment with
the largest initial temperature (τ0 = 2) and lowest discount rate
(τk = 0.0005) where the average reward was still increasing at the
end of learning (dotted blue line in the left panel in Figure 4). The
learning speed was, not surprisingly, determined by the explo-
ration schedule. Experiments with smaller initial temperatures
and higher discount rates converged faster. In the experiment with
the smallest initial temperature (τ0 = 0.5) and highest discount
rate (τk = 0.01), the average learning performance reached close
to 1 after about 2500 episodes (solid red line in the left panel in
Figure 4). The learning then converged after about 5250 episodes
with the average reward exactly equal to 1 with 0 variance. If
we define successful learning as a simulation run where, at the
end of learning, the greedy action [argmaxa Q(s, a)] was equal
to the optimal action for all 20 digit images for all states, then

FIGURE 4 | The average reward computed over every 100 episodes

and 20 simulation runs, for scaled FERL (left panel), FERL (middle

panel), and NNRL (right panel). The line colors correspond to the

settings of τk (red: 0.01, green: 0.001, and blue: 0.0005) and the line
types correspond to the setting of τ0 (solid: 0.5, dashed: 1, and
dotted: 2).
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scaled FERL was successful in 100% (20) of the simulation runs
for eight settings of τ0 and τk. The only exception was, again, the
experiment with τ0 = 2 and τk = 0.0005, where 90% (18) of the
simulation runs were successful.

The exploration schedule did also effect the learning of the
Q-values for optimal and non-optimal actions. Figure 5 shows
the average learned Q-values (circles) with standard deviations
(bars) in the experiments with τ0 = 0.01 and τk = 0.01 (left
panel), τ0 = 1 and τk = 0.001 (middle panel), and τ0 = 2 and
τk = 0.0005 (right panel), computed over all state images for all
states in all 20 simulation runs for scaled FERL. The different col-
ors show the values of the four different types of actions for the
states along path from the initial state “1” to the goal state “5”:
(1) red for optimal actions; (2) blue for actions that moved the
agent into a wall; (3) purple for actions that moved the agent
away from the goal; and (4) black for negative rewarded actions.
Since the goal reward was set to +1, the optimal Q-values (dashed
red lines) were equal to γt − 1, where t is the number of steps to
the goal. A move into a wall increased the steps to the goal by
one (optimal Q-values equal to γt , see dashed blue lines) and
actions that moved agent away from the goal increased the steps
to the goal by 2 (optimal Q-values equal to γt + 1, see dashed pur-
ple lines). In the experiment with the smallest initial temperature
and highest discount rate (left panel in Figure 5), scaled FERL
learned almost perfect Q-values for the optimal actions. For the
non-optimal actions, the average Q-values differed significantly

FIGURE 5 | Average Q-values (circles) with standard deviation (bars)

computed over all 20 simulation runs using scaled FERL in the

experiments with τ0 = 0.01 and τk = 0.01 (left panel), τ0 = 1 and

τk = 0.001 (middle panel), and τ0 = 2 and τk = 0.0005 (right panel). The
figure shows the average learned Q-values, along the optimal path from
the initial state “1” to the goal state “5,” of the four types of actions:
(1) optimal actions (red); (2) actions that moved the agent into a wall (blue);
(3) actions that moved the agent away from the goal (purple); and (4)
negative rewarded actions (black).

from the optimal Q-values and for several states the learned
values were in the wrong order. This is explained by the fast con-
vergence of the learning. The average number of steps to goal
converged close to the optimal number of steps of 8 after about
5000 episodes and to exactly 8 steps after about 25,000 episodes.
After the initial learning phase, there was almost no exploration to
improve the estimates of the Q-values of the non-optimal actions,
only exploitation of the already learned optimal actions. In the
experiments with larger initial temperatures and lower discount
rates (middle and right panels in Figure 5), scaled FERL not only
learned estimates of the Q-values for the optimal actions, but of
the full action-value function. In both experiments, there were
clear separations between the average Q-values for all actions
in all states. At the end of learning, there was still considerable
exploration of the environment, even if the greedy actions were
equal to the optimal actions for all, or almost all, state images.
The average number of steps to the goal were 10.2 steps (τ0 = 1
and τk = 0.001) and 19.8 steps (τ0 = 2 and τk = 0.0005). The
results showed a trade-off between fast learning convergence,
which required fast decay of the temperature, and learning of
the full action-value function, which required slower decay of the
temperature and much longer learning time.

FERL and NNRL (middle and right panels in Figure 4)
required careful tuning of both τ0 and τk to converge to aver-
age reward values close to the maximum reward of 1 within the
learning time. FERL achieved this for only two settings of τ0 and
τk (dashed green and solid blue lines in Figure 4) and NNRL
achieved this for three settings (dashed green, dotted green, and
dashed blue lines in Figure 4). The low average learning perfor-
mance for many settings of τ0 and τk was caused by that the
learning completely failed in some simulation runs. The agent
either moved prematurely to the goal state (−0.01 reward), or
the agent remained in the gridworld until the maximum num-
ber of steps (1000) had passed. In general, NNRL learned faster
and had a higher rate of successful learning, compared with FERL.
For NNRL, the highest rate of successful learning was 100% of the
simulations runs (τ0 = 1 and τk = 0.001) and the average success
rate, computed over all nine settings of τ0 and τk, was 76%. For
FERL, the highest success rate was 70% (τ0 = 1 and τk = 0.001)
and the average success rate was only 30%.

To try to explain the difference in performance between the
scaled version of FERL and standard FERL, we looked at the pat-
terns of activation in the hidden nodes. Figure 6 shows typical
hidden activation patterns after successful learning, for all 20 digit
images for all states. The displayed activation patterns are grouped
according to state and optimal action, i.e., South for states “1,”
“2,” and “4,” East for states “3” and “6,” North for states “8”
and “9,” and West for state “7.” The difference in hidden activa-
tion patterns between the two methods is quite remarkable. FERL
learned a very sparse and strong action-coding with minimal
separation between images of the same digit and between states
with the same optimal action. The action-coding was achieved
with a few active hidden nodes and the majority of the nodes
were silent for all state inputs. In the hidden activation pattern
shown in Figure 6, the action-coding was achieved using almost
only hidden node 17. The actions were separated by differences
in the node’s activation level: 0.16 ± 0.04 for South, 0.44 ± 0.06
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for East, 0.92 ± 0.03 for North, and 0.65 ± 0.06 for West. In con-
trast, the coding learned by scaled FERL was much more complex
with no silent hidden nodes. The pattern of hidden activation did
not only separate states according to optimal action, there was
also clear differentiation between states and even individual state
images.

FIGURE 6 | Typical hidden activation patterns after successful learning

for FERL (left panel) and scaled FERL (right panel). The figures show the
activation of all 20 hidden nodes for all 20 digit images for all states.

3.2. ROBOT VISUAL NAVIGATION TASK
The result of robot navigation task is summarized in Figure 7.
The left panel shows the average number of steps to goal, com-
puted over every 100 episodes and 10 simulation runs for each
experiment. The right panel shows the average number of steps
to goal with standard deviation in the final 100 episodes. Scaled
FERL converged to similar average number of time steps to goal,
with low variance, in all simulation runs in each of the four
experiments. The learning converged faster and the final learn-
ing performance was significantly better (p < 0.001) in all four
experiments. The only exception was NNRL in the one goal exper-
iment, which performed very similar to scaled FERL, both with
respect to convergence speed and final learning performance. For
experiments with 2 and 3 goals, NNRL performed almost as well
as scaled FERL. The learning performance decreased significantly
in the experiment with four goals. NNRL failed to learn to nav-
igate to the goal for at least one starting area and one goal area
in 7 (out of 10) simulation runs. The final learning performance
of FERL was reasonably good in the experiments with one and
two goals. The learning only failed in one simulation run, in
the experiment with two goals. However, the convergence speed
was slow compared to the other two methods. In the experi-
ments with 3 and 4 goals, the learning performance decreased
significantly and the learning failed in 4 and 5 simulation runs,
respectively.

To try to explain the difference in learning performance
between standard FERL and scaled FERL, we looked at learned
trajectories and the corresponding hidden activation patterns.
Figure 8 shows typical trajectories learned by FERL (left panel)
and scaled FERL (right panel) for navigating to the northeast
(NE) goal and the southwest (SW) goal in the experiment with
two goals, starting from the center of the south starting area and
the north starting area, respectively, and facing the outer wall.

FIGURE 7 | The average number of time steps to goal for the whole

learning process (left panel) and in the final 100 episodes (right

panel), for the four experiments with 1, 2, 3, and 4 goal areas. The
average values were computed over every 100 episodes and 10 simulation
runs in each experiment. In the left panel, the line type indicates the

number of goals: dotted lines for 1 goal, dash-dotted lines for 2 goals,
dashed lines for 3 goals, and solid lines for 4 goals. The colored asterisks
in the right panel indicate experiments in which the final average
performance of scaled FERL was significantly better (p < 0.001) than
NNRL (black) or FERL (blue).
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The color coding indicates the selected actions: red for rotate right
(action 1), green for curve right (action 2), blue for go straight
(action 3), yellow for curve left (action 4), and cyan for rotate left
(action 5). Figure 9 shows the activation of the hidden nodes and
the selected actions along the learned trajectories.

FIGURE 8 | Typical trajectories learned by FERL (left panel) and scaled

FERL (right panel) for navigating to the northeast goal and the

southwest goal in the experiment with two goals. The color coding
indicates the selected actions: red for rotate right (action 1), green for curve
right (action 2), blue for go straight (action 3), yellow for curve left (action 4),
and cyan for rotate left (action 5).

The learned policies and the hidden activation patterns were
very different between the two methods. FERL learned a policy
which selected separate combinations of actions for navigation
to different goal areas. In the example shown in the left panel in
Figure 8, the robot only executed the curve right and the rotate
left actions to reach the NE goal, after the initial part of the tra-
jectory. To reach the SW goal, the robot executed either the curve
right and the curve left actions to pass obstacles, or the go straight
action to move toward the goal and the rotate right action for
course corrections. FERL learned, as in the gridworld task, a very
sparse and strong action-coding with little separation between
states corresponding to the same action (left panels in Figure 9).
Each action corresponded to the activation of one or few hidden
nodes, e.g., hidden node 6 coded action 5 (rotate left) and hidden
node 7 coded action 4 (curve left). Scaled FERL learned a policy
which selected similar actions in corresponding positions along
the trajectories to different goals, as shown in the right panel in
Figure 8. In contrast to FERL, there was clear differentiation in
the hidden activation patterns for different states (right panels
in Figure 9).

4. DISCUSSION
In this study, we proposed a scaled version of FERL, where the
action-value function is approximated as the negative free-energy
of a restricted Boltzmann machine, divided by a constant scaling

FIGURE 9 | Hidden activation patterns and selected actions for the states along the trajectories to the northeast goal (top panels) and southwest

goal (bottom panels) shown in Figure 8, for FERL (left panels) and scaled FERL (right panels).
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factor. The scaling factor was set to the square root of the number
of state nodes. To validate our proposed method, we compared
the learning performance with standard FERL and with NNRL
(function approximation using a two-layered feedforward neu-
ral network), for a digit floor gridworld task and a robot visual
navigation task. The learning with scaled FERL performed sig-
nificantly better than the other two methods for both tasks.
In the gridworld task, we also compared the robustness with
respect to different exploration schedules (i.e., settings of ini-
tial temperature and temperature discount rate in softmax action
selection). The learning with scaled FERL was very robust and
the results showed a trade-off between fast learning convergence,
which required fast decay of the temperature, and learning of
the full action-value function, which required slower decay of
the temperature and much longer learning time. In contrast, the
learning with FERL and NNRL could only converge to average
reward values close to the maximum reward for a narrow range
of initial temperatures and discount rates. Analysis of activation
patterns in the hidden nodes showed big differences between
FERL and scaled FERL. FERL learned a very sparse action-
coding with little separation between different states correspond-
ing to the same action. In contrast, scaled FERL learned a much
richer neural encoding with no silent hidden nodes and clear
separation between different states corresponding to the same
action.

Although quite arbitrary, the setting of the scaling factor to the
square root of the number of state nodes worked very well for the
tasks considered in this study. One reason was probably that we
used the same number of hidden nodes (20) in all experiments.
A more general setting of the scaling factor should probably also
include the number of hidden nodes, because the magnitude
of the initial negative free-energy increases with the number of
hidden nodes of the Boltzmann machine. For example, in the
gridworld task, the magnitude of the initial negative free-energy
is about 16 with 20 hidden nodes, about 80 with 100 hidden
nodes, and about 160 with 200 hidden nodes. An alternative
approach would be to include the scaling factor as a parame-
ter of the function approximator. The scaling factor, Z, would
then be updated according to ∇ZQt = Ft/Z2. We plan to inves-
tigate the setting of the scaling factor more thoroughly in future
work.

The introduction of the scaling factor can ensure that the
Q-values are initialized within a more appropriate range, e.g.,
between zero and one in the episodic delayed reward tasks with
a goal reward of +1 considered in this study. This could partly
explain why the learning with scaled FERL was more stable than
learning with FERL. However, it does not explain the much faster
convergence speed of scaled FERL and the remarkable difference
in activation patterns of the hidden nodes. These issues will also
be explored in future work.

In our earlier research, we have developed methods such as
multiple model-based reinforcement learning (MMRL) (Doya
et al., 2002) and competitive-cooperative-concurrent reinforce-
ment learning with importance sampling (CLIS) (Uchibe and
Doya, 2004) to improve the learning performance and the
learning speed of reinforcement learning. FERL and such
methods are complementary and suitable for different types

of learning tasks. Restricted Boltzmann machines are global
function approximators. They grow linearly with number of
nodes and they are, therefore, well suited for tasks with very
high-dimensional binary state inputs, such as binarized images.
FERL offers few, if any, benefits in tasks with low-dimensional
state spaces and real-valued state input. MMRL has proven to
work well for low-dimensional non-linear control problems, but
would, in our opinion, not scale well to tasks with very high-
dimensional state input. In addition, MMRL requires a contin-
uous reward function, because each module learns its policy in
separate parts of the state space and there is no sharing of values
between modules. In the two task in this study, it would there-
fore be impossible for a module to learn a policy for a part of the
trajectory to the goal, since the reward is zero for all state tran-
sitions except transitions to the absorbing goal state. CLIS was
developed for tasks with real-valued state input. CLIS selects an
appropriate policy out of a set of heterogeneous modules with
different levels of resolution in the state representation (i.e., sim-
pler modules with coarse discretization of the state input and
more complex modules with fine discretization of the state input).
The CLIS framework, therefore, offers no benefit for tasks with
binary state inputs. A common alternative approach to use an
advanced function approximator, such as FERL, is to use a hybrid
approach with a separate state abstraction module combined with
a simple reinforcement learning algorithm. In our experience,
a hybrid approach makes concurrent learning difficult, because
it in most cases requires pre-training of the state abstraction
module to achieve efficient learning. The experimental results in
this study show that scaled FERL can achieve both fast learning
convergence (with appropriate settings of τ0 and τk) and gener-
alization of the state space in the neural encoding in the hidden
layer.

In this study, we used a machine learning approach to visual
navigation in neurorobotics, where the neural encoding is an
emergent property of the function approximation used in the
learning algorithm. An alternative approach is to use biologically-
inspired computational modeling of the brain circuits involved in
navigation in real animals (Arleo and Gerstner, 2000; Krichmar
et al., 2005; Fleischer et al., 2007; Barrera and Weitzenfeld,
2008; Giovannangeli and Gaussier, 2008; Milford and Wyeth,
2010; Caluwaerts et al., 2012). Currently, the two approaches
are mostly complementary. In the former approach, the main
focus is to develop efficient and robust learning algorithms that
works well for a wide variety of learning tasks. In the lat-
ter approach, the main focus is to increase our understanding
of the underlying brain mechanisms of animal behavior. The
most important test is whether the robot’s behavior and the
activity of the simulated nervous system match empirical data
from experiments with real animals. A natural long-term goal
of neurorobotics would be to merge the two approaches to
achieve both efficient learning and biologically plausible neural
encoding.
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