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Abstract

The microbiome residing in anaerobic digesters drives the anaerobic digestion (AD) pro-
cess to convert various feedstocks to biogas as a renewable source of energy. This micro-
biome has been investigated in numerous studies in the last century. The early studies
used cultivation-based methods and analysis to identify the four guilds (or functional
groups) of microorganisms. Molecular biology techniques overcame the limitations of
cultivation-based methods and allowed the identification of unculturable microorgan-
isms, revealing the high diversity of microorganisms involved in AD. In the past decade,
omics technologies, including metataxonomics, metagenomics, metatranscriptomics,
metaproteomics, and metametabolomics, have been or start to be used in comprehen-
sive analysis and studies of biogas-producing microbiomes. In this chapter, we reviewed
the utilities and limitations of these analysis methods, techniques, and technologies when
they were used in studies of biogas-producing microbiomes, as well as the new informa-
tion on diversity, composition, metabolism, and syntrophic interactions of biogas-
producingmicrobiomes. We also discussed the current knowledge gaps and the research
needed to further improve AD efficiency and stability.

1. Introduction

1.1 A brief overview of the AD process and the guilds
of microorganisms involved in AD

Biogas (comprising mainly of CH4 and CO2) produced through anaerobic

digestion (AD) of various feedstocks (primarily organic wastes such as

livestock manure, food wastes, sewage sludge, crop residues agricultural

byproducts, and the organic fraction of municipal solid wastes (OFMSW))

is enabled by a complex community of microorganisms, or microbiome,

present in AD bioreactors (or anaerobic digesters). The AD process can be

conceptually divided into four phases: hydrolysis, acidogenesis, syntrophic

acetogenesis, and methanogenesis (Lv et al., 2010). Each of these sequential

phases is carried out by a unique functional group (or guild) of microorgan-

isms. In the hydrolysis phase, polymeric substrates, primarily polysaccharides

(cellulose, hemicellulose, starch), lipids, and proteins, are hydrolyzed by the
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extracellular hydrolases (e.g., cellulase, xylanase, pectinase, amylase, lipase, and

protease) secreted by hydrolytic bacteria, releasing monomers or oligomers,

such as glucose and cellobiose from cellulose, glucose, and maltose from

starch, xylose from hemicellulose, amino acids from proteins, and long-chain

fatty acids (LCFA) and glycerol from lipids. The hydrolytic bacteria

are phylogenetically diverse, but Firmicutes and Bacteroides are the two phyla

containing most of the hydrolytic bacteria found in AD bioreactors.

Hydrolytic bacteria, in general, can grow fast and are less sensitive to changes

in environmental conditions, such as pH and temperature. Except for recal-

citrant substrates, such as lignocellulose, the hydrolysis step is not rate-limiting

in AD. All hydrolytic bacteria in AD bioreactors can utilize the hydrolysis

products as growth substrates, primarily through fermentation, to produce

short-chain fatty acids (SCFA).

The hydrolytic products are fermented to SCFA, with acetate, propio-

nate, butyrate, valerate, and isobutyrate as the major SCFA, by acidogenic

microorganisms (or acidogens, primarily bacteria) during acidogenesis.

Carbon dioxide, hydrogen, ammonia, and sulfide are also produced during

acidogenesis. Acetogens include both hydrolytic bacteria and fermentative

bacteria that lack hydrolytic ability. Firmicutes, Bacteroidetes, Chloroflexi,

Proteobacteria, and Atribacteria are the major phyla that contain many species

of acidogens reported in AD bioreactors. Acidogenesis is generally rapid, and

it can cause accumulation of SCFA and concomitant sharp pH drop when

AD bioreactors are overloaded with readily digestible feedstocks, such as

food wastes. Accumulation of SCFA can cause upset or even failure of

the AD process.

Acetate, formate, H2, andCO2, resulted from acidogenesis, can be directly

utilized by methanogens for biogas production, but other acidogenesis prod-

ucts, including propionate, butyrate, isobutyrate, valerate, and isovalerate,

cannot be utilized by any of the known methanogens. They need to be

further degraded and transformed into the methanogenesis substrates through

syntrophic acetogenesis, during which the above hydrolytic and acidogenic

products are further degraded/oxidized into acetate, H2, and CO2.

Syntrophic oxidation of propionate is particularly important because nearly

30% of the electrons generated from complex substrates flow through propi-

onate during AD (Speece et al., 2006).Medium-chain fatty acids (MCFA) and

LCFA from lipid hydrolysis also need to be oxidized to acetate, H2, and CO2

through syntrophic acetogenesis. Unless the H2 partial pressure is kept very

low (>10�4atm), syntrophic acetogenesis is thermodynamically unfavorable.
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Hydrogenotrophic methanogens live in close proximity of syntrophic

acetogens in ADbioreactors and consume theH2 released from the syntrophic

acetogens. This syntrophic relationship is based on interspecies hydrogen

transfer (IHT) from hydrogen-producing bacteria (syntrophic acetogens)

to hydrogenotrophic methanogens. Syntrophic acetogenesis is a critical

process in maintaining the stable and robust operation of AD bioreactors

because some of the SCFA, particularly propionate, are potent inhibitors of

methanogens even at neutral pH.

Methanogenesis is carried out by methanogens, a specialized group of

archaea. They can be categorized into three groups based on the

methanogenesis substrates and pathways, (i) acetotrophic (or acetoclastic)

methanogens, which use acetate to produce methane (CH4) through the

acetoclastic pathway; (ii) hydrogenotrophic methanogens, which use for-

mate and H2 to reduce CO2 to CH4 via the hydrogenotrophic pathway;

and (iii) methylotrophic methanogens, which produce CH4 from methyl

compounds, such as methanol, methylamines, and methyl sulfides, through

the methylotrophic methanogenesis pathway. Methanogens have also

been divided into three classes (Anderson et al., 2009). Class I and II are

hydrogenotrophic methanogens; they utilize formate, H2, and CO2 as

their methanogenesis substrates and are important in the AD process

owing to its ability to scavenge H2 and keep the partial hydrogen pressure

low. Class III methanogens possess the ability to utilize other substrates,

such as acetate, methanol, and other C1 compounds. In AD bioreactors,

about two-thirds of the methane is produced from acetate, and about

one-third produced fromH2 and CO2, with minimal CH4 production from

methanol, methylamines, and methyl sulfides. Compared to other bacteria

in AD bioreactors, methanogens grow the slowest and are more sensitive to

environmental disturbances, such as pH decline and accumulation of SCFA

or ammonia.

Methane can be produced through an alternative pathway under certain

conditions. This pathway couples syntrophic oxidation of acetate to H2 and

CO2 by syntrophic acetate-oxidizing bacteria and conversion of H2 and

CO2 to CH4 by hydrogenotrophic methanogens. This pathway is not a

major pathway for biogas production in most AD bioreactors because

syntrophic acetate-oxidizing bacteria are not as competitive as acetotrophic

methanogens. However, when acetotrophic methanogens (primarily species

of Methanosaeta) are inhibited under certain conditions, such as high
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ammonia concentration and high operation temperature, this pathway is

important to biogas production. This pathway is also favored when hydrau-

lic retention time is long. Collectively, multiple trophic groups of microor-

ganisms are involved in and important to biogas production. It is important

to maintain a balance among the four trophic groups of microorganisms for a

stable and robust AD process.

A recently found pathway of methanogenesis involves direct interspecies

electron transfer (DIET), rather than interspecies hydrogen transfer. Some

fermentative or syntrophic bacteria can directly transfer some of the elec-

trons generated during fermentation or syntrophic oxidation of VFAs

(exoelectrogenic bacteria) to methanogens that can accept electrons for

methanogenesis (electrotrophic methanogens). Such direct interspecies

electron transfer (DIET) is enabled cell-to-cell contact, including contact

via conductive pili, and enhanced by conductive mediators such as metals

(e.g., Fe3O4) and carbon (e.g., activated carbon) (Barua and Dhar, 2017).

Besides hydrogenotrophic methanogens (e.g., species of Methanobacterium

and Methanospirillum), obligate acetotrophic methanogens (e.g., Methanosaeta

harundinacea and M. concilii) can also accept and utilize electron donated by

electron-donating bacteria for methanogenesis. It has been well documented

that DIET outperforms interspecies hydrogen transfer in supporting

methanogenesis (Li et al., 2017).

1.2 The needs for identifying the microorganisms critical to
AD efficiency and stability and the methodologies used

Most of the feedstocks used for biogas production, such as livestock manure,

crop residues (mainly lignocellulosic), and municipal sludge, are complex

and rather recalcitrant to microbial hydrolysis, the rate-limiting step inherent

of these feedstocks. To achieve efficient AD, a diverse microbiome is

required. On the other hand, when the feedstock is rich in readily hydro-

lyzable carbohydrates, such as feed wastes, acidogenesis can outpace

syntrophic acetogenesis and methanogenesis, leading to accumulation of

SCFA and pH drop, which then cause AD upset and even total failure.

Process stability is crucial when it comes to the operation of AD bioreactors.

Most of the AD bioreactors in operation are operated conservatively by lim-

iting the organic loading rate because a failure of the operation is not only

costly and takes a long time (up to several months) to restart or reestablish the

microbial consortia and the process but also affects or disrupts the energy
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supply. Therefore, improving AD stability without compromising biogas

yield has always been a research focus. A stable AD process requires a del-

icate balance of microbial population dynamics and metabolic activities

among the different guilds or trophic groups of the biogas-producing

microbiome. Furthermore, different AD bioreactor designs (interested

readers are referred to other relevant chapters of this book series) have been

used to accommodate different engineering needs and handle different

types of feedstocks. The design, the chemical and physical features of the

feedstocks, and the operation of the AD bioreactors can profoundly affect

the biogas-producing microbiomes. Therefore, it has been well recognized

that understanding the microbial ecology of the AD process can help

improve biogas production thereby and research on the biogas-producing

microbiomes is needed. Indeed, such research has been the focus of numer-

ous studies on AD since the early days of implementation of AD, with a

hope to identify the diversity and composition of the individual microor-

ganisms and better understand the metabolic activities so that AD efficiency

and stability can be improved.

As AD is looked upon as a source of bioenergy, efficient biogas produc-

tion from a wide array of feedstocks in a stable and reliable manner is critical.

To this end, the vast diversity of the microbiome underpinning AD and the

complexity of the interactions between different trophic groups and with the

environmental conditions must be understood. Indeed, in the past century,

many researchers have devoted their careers to research on the microbiome

in various ADbioreactors using the best methodologies, techniques, and tech-

nologies available to them. These include the traditional cultivation-based

methodologies, then the cultivation-independent molecular biology tech-

niques to obtain an appraisal of the unculturable members of the biogas-

producing microbiomes, and now the contemporary omics technologies.

These increasingly powerful and enabling techniques and technologies have

profoundly advanced our understanding of the microbiomes in various AD

processes and contributed considerably to the advancement and development

of AD as an increasingly robust and efficient technology for the production of

biogas, a source of renewable energy from wastes. Here we will provide an

overview of the main methodologies, molecular biology techniques, and

the omics technologies that have been used in biogas-producing microbiome

research, the utility of and limitations inherent to each approach (summarized

in Table 1), the new insight gained from past studies, and the future

perspectives.
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Table 1 Summary of the utility, pros, and cons of different methods, techniques, and technologies used in AD microbiome research.
Methods or
techniques Applicability Pros Cons

Cultivation and

isolation

Isolation of individual microbes;

enumeration of functional groups of

microbes

Definitive characterization of

metabolism; abundance of functional

groups; sources of reference genomes

Unable to analyze difficult-to-cultivate

microbes; low throughput

Molecular

fingerprinting

Microbiota profiling and changes Rapid and low cost Low resolution; unreliable microbe

identification; unable to analyze

microbes at low abundance

qPCR Quantification of microbes of

interest

Precise and accurate quantification Only quantifying small numbers of

microbes; requiring a known specific

marker gene

FISH Detection, quantification, and

localization of specific microbes

Rapid, simple, and specific Only feasible to analyze small numbers

of microbes; poor precision and

accuracy when used in heterogeneous

samples

SIP Detection of microbes capable of

utilizing a specific substrate

Analysis of growing microbes of a

specific guild

Requiring stable isotope and in vitro

cultivation; unable to analyze slow

growers

Microarrays Analysis of taxonomic or functional

diversity

Rapid and straightforward data analysis;

able to achieve absolute quantification

Requiring known sequence for probe

design

Metataxonomics Analysis of taxonomic and

functional diversity

High throughput, analyzing both

known and new microbes; able to

analyze microbes at low abundance;

cost-effective

Prone to PCR bias; only determining

relative abundance; poor below-genus

resolution; not very precise or accurate;

unable to exclude dead microbes

Continued



Table 1 Summary of the utility, pros, and cons of different methods, techniques, and technologies used in AD microbiome research.—cont’d
Methods or
techniques Applicability Pros Cons

Metagenomics Analysis of both taxonomic and

functional diversity at the genetic

level

Analyzing known and unknown

microbes; below-genus taxonomic

resolution; able to recover genomes of

uncultured microbes

Unable to exclude dead microbes or

detect minor microbes; only

determining relative abundance;

computing intensive (e.g., assembly);

relatively high cost

Metatranscriptomics Analysis of taxonomic and

functional diversity at the

transcription level

Analyzing both known and new

microbes that are transcriptionally

active

Maybe unable to detect transcripts at

low abundance; only determining

relative abundance; relatively high cost

Metaproteomics Analysis of metabolic activity at the

translation level

Analyzing proteins and enzymes from

both known and new microbes

including phages

Maybe challenged with AD sample

matrixes, proteins at low

concentrations, and redundancy of

protein identification; maybe difficult

to link the detected proteins to specific

microbes due to lack of adequate

databases

Metametabolomics Analysis of functions at the

metabolite level

Analyzing the outcomes of metabolism Unable to analyze metabolites at low

concentrations; difficult to link

detected metabolites to producers;

maybe challenged with AD sample

matrixes



2. Cultivation-based methods used and the
microorganisms identified thereby

2.1 A brief history of the cultivation-based methods
The biogas-producing microbiomes were analyzed using only cultivation-

based methods before the DNA-based molecular biology techniques

became available in the later 1980s. The AD process was thought to include

two phases: fermentation of feedstocks into SCFA in the acid-forming phase

and then SCFA conversion to CO2 and CH4 in the methane phase. Based on

our literature search, the very first study on the microorganisms in AD bio-

reactors was reported in a dissertation in 1906 (S€ohngen, 1910), and the early
isolates were published in 1924. The so-called methane bacteria received

more research interest than bacteria in the 1930s and 1940s. The challenge

of isolating individual methanogens was well recognized in early studies.

The early isolates were reported in 1936, and the genera Methanobacterium,

Methanococcus, and Methanosarcina were created for those methanogen isolates

(Barker, 1936). The genus exclusively for the slow-growing obligate

acetotrophic methanogens, Methanothrix, was established much later in

1984, and the latter was renamed as Methanosaeta (Boone and Kamagata,

1998; Patel, 1984). S€ohngen (S€ohngen, 1910) was also among the early pio-

neers who studied and isolated bacteria from AD bioreactors. Many anaerobic

bacteria involved in the AD process were isolated using enrichment media in

the 1960s and 1970s. Although time-consuming and labor-intensive,

cultivation-based methods enabled the isolation of many bacteria and meth-

anogens mediating most of the steps of the AD process. Studies on pure or

axenic cultures obtained using the cultivation methods provided valuable

information not only on the characteristics and fundamental metabolism of

individual species but also on the syntrophic interspecies interactions. In addi-

tion to the isolation of bacteria and methanogens, cultivation-based methods

were also used to estimate the abundance of specific groups of methanogens

and bacteria. However, it was soon realized that the majority of any biogas-

producing microbiome was not cultivatable or difficult to cultivate in the lab-

oratory. Therefore, by the early 1990s, cultivation-based methods started to

give way to molecular biology techniques when the latter became available

to analyze methanogens and bacteria in various AD bioreactors.

2.2 Common cultivation-based methods traditionally used
Enrichment on specific substrates is the most effective approach to increase

the abundance of the bacteria or methanogens of interest present in
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biogas-producing microbiomes. Cellulose, starch, protein, and lipids have

been used as the substrates to enrich the respective guild of bacteria, while

acetate and other methanogenesis substrates (H2 and CO2, methylamines,

and methanol) are used to enrich methanogens. After dilution in an anaer-

obic buffer, the bacteria or methanogens of interest can then be isolated on

agar plates (or roll tubes) containing the substrates that support the growth of

the bacteria or methanogens of interest but not the others (referred to as the

“specific substrate” for the ease of reference) by forming individual colonies,

characterized for their ability to utilize different substrates and produce end

products, and finally identified through biochemical andmorphological ana-

lyses. The biochemical characterization provides valuable information on

the isolated bacteria andmethanogens, particularly with respect to their roles

in the AD process.

The population size or abundance of a specific guild of bacteria or meth-

anogens can be estimated using plate counting or the most probable number

(MPN) analysis. The former entails serial dilution (in an anaerobic buffer) of

selected samples and plating the appropriate dilutions (three consecutive

ones) on replicate agar plates (three or more) containing the specific sub-

strate. In MPN analysis, the selected samples are also diluted. However,

the dilutions, typically three, are inoculated into a broth medium that con-

tains the specific substrate. Positive growth in the broth medium can be

ascertained by increased turbidity. In both agar plate counting and MPN

analyses, the population size is calculated based on the dilution factors and

the numbers of colonies (for agar plate counting) or the number of culture

tubes that have positive growth (for MPN).

2.3 The major microorganisms identified and characterized
using cultivation-based methods

The first efforts to study biogas-producing microbiomes relied on

cultivation-based approaches. To date, more than 150 species of microor-

ganisms have been discovered in AD bioreactors (S€ohngen et al., 2016).

Many bacteria and methanogens have been cultured and characterized

biochemically and morphologically. Species of hydrolytic and acetogenic

bacteria have been taxonomically assigned to the genera Acetivibrio,

Clostridium, Bacteroides, Ruminococcus, and Thermotoga (in the phylum

Thermotogae). Non-hydrolytic acidogens have been assigned to

Bifidobacterium (in the phylum Actinobacteria), Lactobacillus, Anaerolineaceae

(in the phylum Chloroflexi), and a few thermophilic non-hydrolytic bacteria

were found to be members of the phylum Thermotogae. Some species of
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syntrophic acetogens have been identified from AD bioreactors. They

include species of the genera Smithllela, Syntrophobacter, and Pelotomaculum

for propionate oxidation and species in the genera Syntrophus and

Syntrophomonas for the oxidation of butyrate and LCFA.

Common hydrogenotrophic methanogens found in AD bioreactors

include species of Methanoculleus, Methanobacterium, Methanobrevibacter,

Methanospirillum, andMethanothermobacter. Acetotrophic methanogens are only

found in Methanosaeta (a genus of obligate acetoclastic methanogens) and

Methanosarcina (a genus of facultative acetoclastic methanogens). Methanosaeta

can only use acetate as the substrate, and it grows very slowly but has a high

affinity for acetate, so it propagates and dominates when acetate concentration

is low.Methanosaeta can have filamentous morphology (and thus it was initially

named as Methanothrix) and play an important role in the granulogenesis

of anaerobic granules or aggregates.Methanosarcina species can utilize a broader

range of substrates, including methanol, methylamine, methyl sulfides, and H2

and CO2, in addition to acetate. Unlike species Methanosaeta, Methanosarcina

species can grow fast but has a lower affinity for acetate so it can outcompete

Methanosaeta when acetate concentration is high.

In recent years, new strains of hydrolytic/acidogenic bacteria such as

Clostridium bornimense, Herbinix hemicellulosilytica, Herbinix luporum, Herbivorax

saccincola, Proteiniphilum saccharofermentans, Petrimonas mucosa, Fermentimonas

caenicola, and Proteiniborus indolifex, have been isolated and characterized owing

to technical improvements in the anaerobic cultivation of microorganisms.

New species for methanogenic archaea, such as Methanobacterium aggregans

and Methanosarcina flavescens were also reported (Hassa et al., 2018).

2.4 Limitation of cultivation-based methods
The culture-dependent methods suffer from severe limitations that may lead

to incomplete or even incorrect information. First, only a small fraction of

the microorganisms in AD bioreactors can be cultivable because the artificial

growth media may not adequately simulate the environment in the AD

bioreactors or provide all the nutrients required for the growth of the micro-

organisms. Second, many microorganisms require syntrophic interactions

with others, and thus they cannot be cultured individually. Third, some

microorganisms share similar physiological, biochemical and/or morpho-

logical characteristics, and thus cannot be distinguished from one another

with certainty. As a result, it has been estimated that no more than 1% of

the microorganisms present anaerobic environments had been isolated or
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characterized (Fang, 2010). Hence, the species of microorganisms identified

do not reflect the actual composition or diversity of the biogas-producing

microbiomes. According to BacDive—the Bacterial Diversity Metadatabase

(http://bacdive.dsmz.de), which provides strain-level information about

bacterial and archaeal biodiversity, about 150 species of biogas-producing

microorganisms have been discovered, which is probably several orders of

magnitude lower than the species richness likely present in any ADbioreactors

(S€ohngen et al., 2016). The sequenced genomes of biogas-producing micro-

organisms are therefore highly under-represented in public nucleotide

sequence repositories. However, more reference genomes are needed to eval-

uate metagenome, metatranscriptome, and metaproteome data from biogas-

producing microbiomes (Hassa et al., 2018). Therefore, there is still a need for

continuous technical improvements in the cultivation of biogas-producing

microorganisms.

2.5 New methods and techniques: Aerobic cultivation of
anaerobic microorganisms and microbial culturomics

It’s well recognized that the cultivation of anaerobic microorganisms, espe-

cially methanogens, is time-consuming due to the need to create and main-

tain anaerobic conditions and their slow growth. Dedicated apparatus and

equipment, such as oxygen-free gases, gas manifolds, anaerobic jars, or

anaerobic chambers, are also needed. Two recent studies showed that strictly

anaerobic bacteria, methanogens, and fungi could be successfully cultured

under aerobic conditions if antioxidants were included in the media

(Dione et al., 2016; Khelaifia et al., 2016). When cysteine, glutathione,

ascorbic acid, uric acid, and α-ketoglutarate were added to media together,

they enabled the growth of 620 (out of 623 strains tested) microbial strains,

including facultative anaerobic bacteria (154 species), strictly anaerobic bac-

teria (82 species), and fungi and methanogens. Two species of anaerobic

rumen ciliate protozoa were also successfully cultured in aerobic media

(Park and Yu, 2018). In the literature, no study has been reported that used

this aerobic approach to cultivate the microorganisms of biogas-producing

microbiomes. Given the ability to cultivate nearly all the tested strains of

anaerobic microorganisms, it is certain that this aerobic method will greatly

facilitate the cultivation of most, if not all, anaerobic microorganisms in

biogas-producing microbiomes.

Microbial culturomics is a relatively new approach to extensively char-

acterize the microbial composition by high throughput culturing. It was first

used to study the gut microbiome composition of cultural microorganisms
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in the human gut (Lagier et al., 2012). Using 212 different culture media and

analyzing 32,500 different colonies, these authors successfully cultured 340

different species (including 32 new species) of bacteria as well as 5 species of

fungi and the largest number of different viruses. The 32 new species equal

approximately to one-third of all the new validated species recovered by

culturing from the human gut in the last decade. To the best of our knowl-

edge, only one study has used culturomics, together with metataxonomics

and metatranscriptomics, in analyzing the microbiomes in AD bioreactors

operated at 54 °C (Maus et al., 2016). Using 11 different cultivation

strategies, 52 taxonomically different microbial isolates were obtained.

These isolates were identified as one species of cellulolytic Herbinix

(H. hemicellulosilytica), 4 species of cellulolytic Clostridium (C. cellulosi,

C. clariflavum, C. stercorarium, C. thermocellum), 30 species of acidogens/

acetogens (including six species of Bacillus; five species of Clostridium; three

species of [Clostridium] in the family Ruminococcaceae; two species of

Tepidimicrobium; one species each of Aneurinibacillus, Defluviitalea, Defluviitoga,

Desulfotomaculum, Geobacillus, Enterococcus, Lutispora, Paenibacillus,

Proteiniborus, Sporanaerobacter, Tepidanaerobacter, Thermoanaerobacterium,

Tissierella, and Ureibacillus), and three species of methanogens (two species

ofMethanothermobacter and one species ofMethanoculleus). Given the power

of culturomics demonstrated in studies of the human gut microbiome,

more culturomics studies are expected in the future to comprehensively

characterize the biogas-producing microbiomes.

3. The molecular biology techniques used and the
microbiome knowledge learned thereby

3.1 The coming of the molecular biology technique era
Thanks to the advancement and development in molecular biology tech-

niques and technologies, many cultivation-independent methods are avail-

able and have become the preferable methods to study the microbial ecology

of biogas-producing microbiomes. Most of these techniques and technolo-

gies analyze marker genes. Particularly, 16S ribosomal RNA (rRNA) genes

have been almost exclusively used as a marker gene in studies of microbial

communities, including biogas-producing microbiomes, either microbiome

composition or population dynamics.

The 16S rRNA gene is a phylogenetic marker for both bacteria and

archaea. This gene is composed of nine hypervariable regions interspersed

with conserved regions. It was chosen as the marker gene over other
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rRNA genes (i.e., 5S or 23S rRNA gene, about 120bp, and 3000bp, respec-

tively) because its sequence (about 1600bp) contains enough phylogenetic

information needed to distinguish different bacteria and archaea, while it is

still not too long for routine sequencing. In addition, the mosaic structure

with both the conserved and the hypervariable regions allows phylogenetic

comparison of different bacteria and archaea and the design of probes and

primers specific at different taxonomic levels, respectively. Furthermore,

because of the common use of 16S rRNA as the marker for phylogenetic

studies of microbiomes, several large public databases dedicated to 16S

rRNA genes have been constructed, including Greengenes (http://

greengenes.lbl.gov/), Silva (http://www.arb-silva.de/), and RDP (http://

rdp.cme.msu.edu/), which greatly facilitate archiving and phylogenetic

analysis of 16S rRNA genes.

Although the 16S rRNA gene has been the most commonly used phy-

logenetic marker in analyzing biogas-producing microbiomes, several genes

encoding enzymes have also been used as marker genes. The mcrA gene that

encodes the α subunit of methyl-CoM reductase of the methanogenesis

pathway has been widely used in studying methanogens as a guild. The

pct gene coding for the propionate-CoA transferase of the syntrophic

propionate oxidation pathway has also been used to investigate the

syntrophic propionate-oxidizing bacteria in temperature-phased AD biore-

actors (Li et al., 2013). Using T-RFLP fingerprinting of mcrA transcripts, a

correlation was found between ammonia concentration and the abundance

of different methanogens (Zhang et al., 2014). The fhs and the acsB genes,

which code for the formyltetrahydrofolate synthetase and the acetyl-CoA

synthase, respectively, of the homoacetogenesis pathway, have also been

used as useful markers in analyzing homoacetogens in anaerobic environ-

ments. Functional genes as phylogenetic markers have a few advantages.

First, they support the analysis of the phylogenetic diversity and population

of a particular guild, such as homoacetogens, methanogens, and sulfate-

reducing bacteria. Second, most functional genes in bacteria and archaea

are mostly single-copy genes, and thus they can support more accurate quan-

tification than the 16S rRNA genes, which can exist in multiple varying

copy numbers in different species.

3.2 PCR, cloning, and sequencing of marker genes
A variety of 16S rRNA-based techniques have been developed and

applied to microbial ecological studies of biogas-producing microbiomes.
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Cloning of PCR-amplified 16S rRNA gene, a fragment or the entire gene,

followed by sequencing of individual clones with the Sanger sequencing

technology has been used for decades in the analysis of microbiomes, includ-

ing biogas-producing microbiomes. Domain-specific primers allow a broad

analysis of microbiome, while primers specific to a lower taxon, such as a

genus, allow for a detailed analysis of its species. Most of the information

on microbial composition in AD bioreactors were produced by this

approach (Nelson et al., 2011). However, because this traditional sequenc-

ing approach can only sequence individual clones one by one, which is

costly and time-consuming, it does not support detailed analysis to reveal

the true microbial composition and diversity, especially when multiple sam-

ples are analyzed. Nonetheless, this culture-independent approach has

greatly expanded the knowledge of the diversity of both bacteria and meth-

anogens in different AD bioreactors.More than 5900 operational taxonomic

units (OTUs, based on �97% sequence identity) of bacteria representing

28 known bacterial phyla had been documented, with Proteobacteria (nearly

1600 OTUs), Firmicutes (more than 1350 OTUs), Bacteroidetes (more than

700 OTUs), and Chloroflexi (nearly 700 OTUs) being predominant. The

archaeal sequences were assigned to 296 OTUs, primarily Methanosaeta

and the uncharacterized WSA2 group. More importantly, nearly 60% of

all the sequences could not be classified into any established genus.

Rarefaction analysis suggested that approximately 40% of the bacterial

and 10% of the archaeal diversity in AD bioreactors remained to be identi-

fied. Interested readers are referred to the meta-analysis by Nelson et al.

(2011) for a detailed description of the biogas-producing microbiomes iden-

tified with the cloning and sequencing approach. Of course, the recent

advancement and decreasing cost of the next-generation sequencing

(NGS) technologies (see below) have made this traditional method obsolete.

3.3 Molecular fingerprinting of biogas-producingmicrobiomes
In the molecular biology technique era, microbiome fingerprinting was also

frequently used to evaluate and compare different microbiomes, including

biogas-producing microbiomes. The ones that have been used include ter-

minal restriction fragment length polymorphism (T-RFLP), single-strand

conformation polymorphism (SSCP), denaturing gradient gel electrophore-

sis (DGGE), and automated ribosomal intergenic spacer analysis (ARISA).

All these microbiome fingerprinting methods entail PCR amplification

of a hypervariable region of the 16S rRNA gene using universal or
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taxa-specific primers and separation, detection, and quantification of indi-

vidual PCR products. In T-RFLP, one or both of the primers are labeled

with a fluorescent dye at 50 end. The PCR products are digested using

one or two restriction endonucleases, and the terminal fragments with

the fluorescent label are size separated and detected using Sanger sequencers.

Differences in the occurrence and locations of the cutting sites of the

restriction endonucleases produce different terminal restriction fragments

among different microorganisms. The terminal restriction fragments can

be quantified based on the intensity of the fluorescence signal, but such

quantification is not accurate because of PCR bias. T-RFLP fingerprinting

has been used to investigate both the archaeal (e.g., Witarsa et al., 2016) and

bacterial communities (e.g., Acs et al., 2015) in different AD bioreactors.

Automated ribosomal intergenic spacer analysis (ARISA) is another finger-

printingmethod similar to T-RFLP. Themain difference is that (i) the target

of the analysis is the ribosomal intergenic spacer (RIS) between the 16S and

the 23S rRNA genes; (ii) the primers anneal to the 30 end of the 16S rRNA

gene and the 50 end of the 23S rRNA gene; (iii) the PCR-amplified RIS are

size separated and detected using Sanger sequencers based on RIS length

differences.

Both SSCP and DGGE are polyacrylamide gel-based fingerprinting

techniques. SSCP relies on different migration of single strands of DNA

fragments (PCR-amplified hypervariable region of 16S rRNA genes) with

different sequences in a polyacrylamide gel (single-strand DNA fragments of

the same length but different sequences can form different secondary struc-

tures, which affect migration during gel electrophoresis). SSCP has been

used to investigate the methanogenic community in several AD bioreactors

(e.g., Kampmann et al., 2012), but it is not used as frequently as the other

techniques. With DGGE, a 40bp GC clamp is added to one of the two

primers and the PCR products with different sequences are resolved in a

polyacrylamide gel containing a gradient of denaturants. Different PCR

products have different denaturing behaviors and thus form different

banding patterns, reflecting the composition of the microbiome. Bands of

interest can be excised and sequenced to identify the microorganisms.

Because of its technical simplicity, rapidness, and low cost, DGGE has been

used more frequently than T-RFLP or SSCP in the analysis of biogas-

producing microbiomes. DGGE has been used in numerous studies assessing

the effect of feedstock and operation conditions on biogas-producing

microbiomes, including recent studies (e.g., Vasconcelos et al., 2019). It

should also be noted that DGGE profiles concurredwith the detailed profiles
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of the microbiomes in several AD bioreactors that were determined using

454 pyrosequencing, and it was recommended as a preliminary screening

method to identify representative samples from a large number of samples

for detailed analysis using NGS technologies (Nelson, 2011). Similarly, β
diversity analysis using non-metric multidimensional scaling (NMDS)

showed a similar clustering profile for the Illumina, bacterial T-RFLP,

and archaeal T-RFLP data (De Vrieze et al., 2018b).

The major limitations of SSCP, T-RFLP, ARISA, and DGGE include

low resolution and the inability to reliably identify the microorganisms rep-

resented by the band or chromatogram peaks because it is difficult to obtain

sequence information of the 16S rRNA gene fragments. To putatively iden-

tify the bands on either SSCP or DGGE gels, a set of amplicons from known

species can serve as references, but such identification is not reliable. As for

DGGE, individual DNA bands in the gel could be excised out, re-amplified,

and sequenced directly or after cloning, but multiple sequences can result

from one band, making it difficult to reliably identify the bacteria or meth-

anogens represented by individual bands. For T-RFLP, terminal restriction

fragments typically are compared to databases to identify the bacteria or

methanogens, but individual terminal restriction fragments nearly always

match multiple species of microorganisms. Nevertheless, despite their lim-

itations, these microbiome fingerprinting or profiling methods can still be

useful to obtain a snapshot of biogas-producing microbiomes from large

numbers of samples. Indeed, they have been used in recent studies on

biogas-producing microbiomes (most recent studies were found in 2019

for DGGE and T-RFLP, 2016 for ARISA, and 2015 for SSCP).

3.4 Quantification of individual taxa or guilds of
microorganisms using qPCR and droplet digital PCR

Different populations of biogas-producing microbiomes can respond differ-

ently to changes in feedstock, design, and operation conditions of AD bio-

reactors, and the differential responses are reflected by changes in their

population sizes. Quantitative PCR (qPCR) is the most commonly used

technique to reliably and accurately quantify populational changes of

select microorganisms, particularly methanogens and key guilds of bacteria.

By quantifying the accumulation of PCR amplicons in real-time at each

PCR cycle, qPCR can accurately quantify the copy number of the gene

of interest in a sample. By comparing to a standard curve prepared with serial

dilutions of known concentration of the target gene, absolute quantification

can be achieved. Relative quantification of a target group of microorganisms
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is determined using a reference target, mostly total 16S rRNA genes or a

house-keeping gene. Primers and/or probes with specificity at different tax-

onomic levels (from domain to genus) have been designed to quantify the

population of interest, such as the genera Methanoculleus, Methanosarcina,

and Methanothermobacter (Franke-Whittle et al., 2009b). Genus-specific

primers targeting the 16S rRNA of hydrolytic bacteria Clostridium,

Peptostreptococcus, and syntrophic acetogen Syntrophomonas were also used

in qPCR to investigate the spatial distribution of these genera in different

compartments of a plug flow digester (Talbot et al., 2010). Although

metataxonomics empowered by NGS can comprehensively characterize

the diversity and composition of biogas-producing microbiomes, it cannot

accurately quantify the population sizes of individual microorganisms.

qPCR can be used to confirm the populational difference or dynamics of

taxa or guilds of microorganisms as they respond to changes in AD processes.

In addition to qPCR, droplet digital PCR (ddPCR) (Kim et al., 2015),

which is a relatively new technology to precisely quantify a target gene

without an external stander or reference in nanoliter droplets, has also been

used in quantification of individual taxa of biogas-producing microbiomes

(Kim et al., 2015). Interested readers are referred to the above citation.

3.5 Fluorescent in situ hybridization (FISH)
FISH is a visualization technique based on microscopic examination of a

given species or groups of bacteria or archaea after staining their cells with

specific fluorogenic oligonucleotide probes that bind the RNA molecules

inside their cells. FISH probes are short sequences of single-stranded

DNA (about 16–20 nucleotides) labeled with one or two fluorescent dyes.

The probe specifically hybridizes in situ with 16S rRNA, 23S rRNA, or

mRNA inside microbial cells according to DNA-RNA complementary

matching. A list of the probes commonly used on biogas-producing

microbiomes is available in the probeBase 2016 database (www.

probebase.net), while ARB/SILVA is a good tool to perform online analysis

and design of probes. The FISH process can be divided into four stages:

(A) sampling and immediate fixation in formaldehyde to preserve the integ-

rity of the cells, especially the ribosomes; (B) hybridization with a specific

probe labeled with a fluorescent dye at its 50 end; (C) counterstaining with
a universal dye (mostly DAPI, which binds non-specifically to DNA mol-

ecules) or a general probe labeled with a different fluorescent dye; and

(D) visualization via fluorescence microscopy.
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This technique has become the method of choice for reliable and rapid

identification of microorganisms in a microbiome sample since DeLong

et al. (1989) reported the suitability of fluorescently labeled rRNA-targeted

oligonucleotide probes as phylogenetic stains for cultivation-independent

identification of microorganisms. A group of microorganisms of interest

can also be quantified by manual counting the hybridized cells under a

microscope (an epifluorescence or a laser confocal microscope), by analysis

of microscope images, or by automated counting with a flow cytometer.

The ratio of cells that have hybridized with the specific probe to the total cell

count reflects the relative abundance of the target microorganisms. FISH has

its limitations in quantifying individual groups of microorganisms. First,

homogenous samples are required for accurate and precise quantification.

Second, microscopic cell counting is prone to variations among researchers

and can be tedious and time-consuming when large numbers of samples need

to be analyzed. Third, background fluorescence can interfere with cell cou-

nting. Fourth, probes are designed based on known sequences, and thus FISH

may not allow the detection of novel microorganisms.

FISH is a relatively simple and rapid technique that allows for the direct

visualization of microorganisms. As a method without the need for DNA

extraction or PCR, FISH overcomes some of the issues associated with

PCR-based molecular methods, such as DGGE, T-RFLP, cloning, and

sequencing. Furthermore, FISH can help localize the specific group of

interest in anaerobic granules formed in some AD bioreactors (e.g.,

up-flow anaerobic sludge blanket reactors, UASB) and on the surface of

insoluble feedstocks (Angenent et al., 2004; Yamada et al., 2005).

Furthermore, a method that combines microautoradiography and FISH

(MAR-FISH) was successfully developed and used in investigating the

microbial species that are involved in syntrophic propionate oxidation

and non-acetoclastic acetate oxidation in AD bioreactors (Ariesyady

et al., 2007; Ho et al., 2013).With metataxonomics being the primary tech-

nology to detail the diversity and composition of biogas-producing

microbiomes, FISH can still be a useful tool, as demonstrated by the studies

mentioned above.

3.6 Microarrays
Microarrays are a powerful and high throughput tool that allows for the

detection and quantification of thousands of genes or RNA transcripts

simultaneously. The core innovation of the microarray technique is the
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ability to attach oligonucleotide probes onto a solid matrix to create a

densely packed array. DNA microarrays offer the possibility to determine

the occurrence of an entire array of microorganisms in a microbiome,

including that in AD bioreactors. Several types of microarrays have been

developed for the analysis of microbiomes in different environments.

Phylogenetic arrays have probes specific for the 16S or 18S rRNA genes

or other conserved functional genes and are used to examine species

diversity and composition of microbiomes. The ANAEROCHIP is a spe-

cialty phylogenetic array developed specifically for the examination of the

methanogenic community present in AD bioreactors (Franke-Whittle

et al., 2009a). It contains 103 probes specific for different groups of meth-

anogens commonly found in biogas-producing microbiomes. Community

genome arrays have whole genomic DNA from microbial isolates as

“probes,” and they can be used to identify or screen for species of interest.

Functional gene arrays (FGAs) contain probes specific for genes encoding

proteins or enzymes involved in functions of interest. Unlike phylogenetic

arrays or community genome arrays, FGAs can help examine the potential

functional capabilities of microbiomes and link microbial diversity to eco-

physiological processes (Van Nostrand et al., 2010). However, one of the

greatest challenges in using FGAs to detect functional genes and/or micro-

organisms is the design of oligonucleotide probes specific to the target

genes. Another challenge is the lack of arrays that contain a comprehensive

set of probes specific for most, if not all, the genes (Zhang et al., 2019a).

GeoChip is the most comprehensive FGA available to date, and the latest

generation of GeoChip (GeoChip 5.0) has 167,044 distinct gene probes

(including 455 phage probes). The raw microarray data can be processed

with the GeoChip Microarray Data Manager pipeline (http://ieg.ou.edu/

microarray/).

The specialty ANAEROCHIP has been used in several studies of

biogas-producing microbiomes. In a recent study, ANAEROCHIP was

used to investigate how the methanogenic community would respond to

changes in the SCFA levels in AD bioreactors (Franke-Whittle et al.,

2014). The authors reported that the dominant archaeal populations were

not influenced by changes in the SCFA levels. However, real-time PCR

results conducted in parallel to the ANAEROCHIP analysis revealed greater

diversity in methanogens than ANAEROCHIP. Apparently, the probe set

of ANAEROCHIP needs to be expanded to include more probes targeting

the diverse methanogens found in AD bioreactors.

High-density microarrays have also been used in many studies on the

biogas-producing microbiomes. One of the most recent studies used
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GeoChip 5.0 in investigating the functional genes of the methanogenic

pathways (Zhang et al., 2019a) and examining the bacteriophage diversity

in full-scale AD bioreactors in China (Zhang et al., 2017). A total of 334

probes from 18 genes associated with methanogenesis were detected using

the GeoChip 5.0 (Zhang et al., 2019a). By correlating the process perfor-

mance data with the taxonomic data from amplicon sequencing (performed

on a MiSeq platform) and gene data from GeoChip 5.0, the authors con-

cluded that high variations in methanogenic traits (i.e., taxa or genes) were

responsible for variations in biogas production in full-scale AD bioreactors.

They also found that hydrogenotrophic methanogens, especially members

of the orderMethanomicrobiales, were correlated with biogas production per-

formance and nearly all the methanogenic genes detected. High variations in

bacterial community compositions were also observed, with only a few

abundant OTUs (e.g., OTUs assigned to Clostridiales, Anaerolineaceae, and

Methanosaeta) being persistently present across different AD bioreactors at

different sampling time. Functional redundancy, which is defined as multi-

ple species representing a variety of taxonomic groups sharing similar, if not

identical, roles in ecosystem functionality, can lead to a decoupling of tax-

onomic composition from functional structure because functionally similar

but taxonomically distinct species can replace one another. Lower functional

redundancy index, which is calculated as the ratio of functional diversity to

taxonomic diversity, for methanogens than for fermentative microorgan-

isms, explained the high consistency between taxonomy and function in

methanogens. That study also revealed several syntrophic associations, includ-

ing that between hydrogenotrophic methanogens and the population of

Clostridia (it contains known acetate-oxidizing bacteria converting acetate

to hydrogen), between acetate producerAnaerolineaceae and acetoclastic meth-

anogen Methanosaeta, and between hydrogen-producing Syntrophomonas and

Smithella and hydrogen-scavenging Methanomicrobiales and Methanobacteriales.

Bacteriophages infect bacteria, while archeophages can infect archaea.

These prokaryotic phages can thus affect the population dynamics of bacteria

and archaea, playing important roles in shaping the microbiome composi-

tion and ecosystem functions in AD bioreactors. Using GeoChip 5.0

together with MiSeq sequencing, Zhang et al. (2017) examined the phage

and prokaryotic communities and the interactions between the two com-

munities in four full-scale AD bioreactors in China. It was shown that

despite the relatively stable biogas production, populations of some phages

and prokaryotes fluctuated considerably. Significant correlations were also

found between phages and prokaryotes with respect to α- and β-diversity.
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The phages explained 41% of the total variations of the prokaryotic commu-

nity composition and were significantly linked to parameters related to

process performance, including biogas production and volatile solid concen-

trations. That study demonstrated that phages could be a major biotic factor

shaping the biogas-producing microbiomes and therefore affecting process

performance in AD bioreactors (Zhang et al., 2017).

Although microarrays have been used successfully in the analysis of

gene expression in pure cultures, its adaptation to the analysis of diverse

and complex microbiomes, including those in AD bioreactors, still presents

numerous challenges in terms of probe design, coverage of gene sequences,

specificity, sensitivity, and quantitation. With the continued improvement

in sequencing technologies and decrease in cost, DNA and RNA sequenc-

ing with NGS or the third-generation sequencing technologies may be

preferred over microarrays.

3.7 Stable isotope probing (SIP)
Coupling of molecular biological techniques with stable isotope probing

(SIP) of biomarkers has provided a cultivation-independent in vitro

approach to linking the identity of microorganisms with their functions

in microbiomes. In SIP, one substrate labeled with a heavy isotope, such

as 13C, 15N, or 18O, is added to in vitro cultures of interest that are incu-

bated. The genomes (DNA), transcriptomes (RNA), and proteomes (pro-

tein) of actively growing microorganisms that can utilize the substrate are

labeled with the isotope. The labeled “heavy” DNA or RNA can be sep-

arated from the “light” counterparts using density gradient centrifugation

and then analyzed using several molecular biology techniques, primarily

sequencing of the heavy DNA (DNA-SIP) or RNA (RNA-SIP). The

labeled “heavy” protein can be identified using liquid chromatography-

tandemmass spectrometry (protein-SIP). The light DNA andRNA can also

be sequenced to examine the microorganisms that cannot utilize the sub-

strate. Thus, these three SIP approaches can be used to investigate the micro-

organisms of particular guilds at DNA, RNA, and protein levels.

DNA-SIP has been used in many studies to identify and discover new

microorganisms important to the ADprocesses, especially themicroorganisms

that are involved in the degradation of SCFA and LCFA. Syntrophic fatty

acid-oxidizing bacteria grow very slowly, and they are difficult to isolate

because they need a hydrogenotrophic partner, mostly hydrogenotrophic

methanogen, for their growth. However, they constitute a key group of
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microorganisms that affects the rate and stability of biogas production in AD

bioreactors. Using DNA-SIP (13C-acetate and pyrosequencing), Hao et al.

(2015) found that taxon OPB54 (assigned to Clostridia) and Methanosarcina

thermophila were the active predominant bacterial and archaeal population,

respectively, at both low (0.26gL�1) and high (7.00gL�1) total ammonia

nitrogen concentrations in a thermophilic AD bioreactor. These researchers

also determined the stable isotopic signature of biogas to evaluate the pathway

dynamics of acetoclastic methanogenesis. In another study using DNA-SIP

(13C-acetate, 13C-lactate, and Illumina sequencing), the population of

Clostridium, Hydrogenophage, Fervidobacterium, Spirochaeta, Limnohabitans, and

Rhodococcus was shown to increase by 13C-acetate, while that of

Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira

was elevated by 13C-lactate in thermophilic AD (Sun et al., 2018). Using
13C-oleate and genome-centric metagenomics, Ziels et al. found that

Syntrophomonas was the major LCFA-degrading populations in AD bioreac-

tors (Ziels et al., 2018b), while Syntrophomonas was probably the major

syntrophic oxidizer of butyrate andMethanothrix the acetoclastic methanogen

utilizing the acetate produced by Syntrophomonas (Ziels et al., 2019). In con-

tract to DNA-SIP, RNA-SIP has only been used in a few studies to examine

the metabolic active microbes in biogas-producing microbiomes. Using

RNA-SIP and T-RFLP, Hori et al. (2014) identified one acidogenic bacte-

rium in the genus Thermoanaerobacterium as the potential acidogen responsible

for the acidification resulting from an increase in glucose feeding. In a recent

study usingRNA-SIP andmetatranscriptomics (Wang et al., 2018), magnetite

was shown to reduce the accumulation of SCFA and accelerate methane pro-

duction by enhancing DIET. The metatranscriptomic analysis, coupled with

analysis of the key enzymes involved in methanogenesis, also showed that

IHT could be partially substituted by enhanced DIET, and acetotrophic

methanogenesis could be improved after the blockage of electron transfer cau-

sed by SCFA accumulation was alleviated. Furthermore, it was shown that

magnetite could downregulate the expression of both pili and c-type cyto-

chromes while maintaining DIET, indicating that magnetite could replace

their roles for efficient electron transfer between acetogens and methanogens.

The first and the only study that used protein-SIP investigated the

syntrophic acetate-oxidizing bacteria in AD bioreactors (Mosbaek et al.,

2016). By mapping the 13C-labeled peptides onto a binned metagenome,

the authors showed that five subspecies of Clostridia and the genera

Methanosarcina and Methanoculleus were the key microorganisms involved

in methane production from acetate. All the acetate-consuming
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microorganisms affiliated toClostridia contained the FTFHS gene coding for

the formyltetrahydrofolate synthetase, which is a key enzyme of reductive

acetogenesis. Those five subspecies of Clostridia are possible syntrophic

acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption

via syntrophic acetate oxidation.

As discussed above, SIP represents a powe approach to identify or dis-

cover bacteria and methanogens of interest without the need for isolation.

However, it may be difficult to successfully identify all the important bac-

terial or archaeal taxa in any AD bioreactors because some of them only

grow slowly or co-exist synergistically with other microorganisms, making

enrichment of their DNA, RNA, or protein labeled with 13C or other stable

isotopes, very low. More efficient separation and collection of “heavy”

DNA, RNA, protein or more sensitive analysis techniques are needed to

overcome these challenges. Future studies may also investigate the bacteria

that are important to digestion and degradation of recalcitrant feedstock,

such as lignocellulose, the most abundant feedstock for biogas production.

3.8 Qualitative and quantitative perspectives of select groups
of microorganisms

3.8.1 Methanogens
Methanogens play a key role in biogas production during AD. Changes in

the dynamics of methanogens may provide important information to better

understand biogas production, and thus methanogens have been analyzed in

most of the studies that involve microbial analyses. Methanogen sequences

constituted over 91% of the archaeal 16S rRNA sequences recovered from

each of three full-scale AD bioreactors treating municipal wastewaters and

solid wastes, withMethanobacteriales,Methanomicrobiales, andMethanosarcinales

being represented by most of the methanogen OTUs. The acetoclastic

genus Methanosaeta was the most abundant methanogenic genus in one of

the three full-scale AD bioreactors (accounting for 33.7–67.9% of total

methanogens), while Methanolinea, a hydrogenotrophic genus belonging

to the newly established family Methanoregulaceae, is the most predominant

genus of methanogens in the other two AD bioreactors (10–41% in the sec-

ond, and 22–88% in the third AD bioreactor). Hydrogenotrophic meth-

anogen Methanobacterium accounted for 34–79% of the total methanogen

abundance of the third digester. Methanosarcina is another predominant

genus of methanogen detected in these digesters (Zhang et al., 2019a).

The occurrence of methanogenic archaea in 78 full-scale AD bioreactors

described in 17 publications (dated from 2008 to 2017) was recently
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reviewed (Hassa et al., 2018). Feedstock appeared to have a stronger impact

on the methanogenic communities than the operating temperature or

hydraulic retention time in those AD bioreactors. Hydrogenotrophic meth-

anogens were the major producers of methane from agricultural material or

municipal bio-wastes (usually high in concentrations of salt and ammo-

nium), while acetoclastic methanogens, namely Methanosaeta, dominated

in AD bioreactors receiving municipal sludge. Hydrogenotrophic meth-

anogens in Methanoculleus, Methanomicrobiales spp. and Methanobacteriales

spp. are relatively tolerant of ammonia toxicity, while acetoclastic meth-

anogenMethanosaeta is usually absent in AD bioreactors with a high concen-

tration of ammonia. In the absence of acetoclastic methanogens, acetate is

converted to methane through SAO coupled with hydrogenotrophic

methanogenesis (SAO-HM), in which acetate is oxidized to CO2 and H2

by SAO bacteria, such as some members of the class Clostridia, and the

hydrogen produced is then consumed by hydrogenotrophic methanogens

in methane production. Positive correlations between hydrogenotrophic

methanogens and Clostridia populations were observed in full-scale AD

bioreactors (Zhang et al., 2019a). The functional redundancy index also

revealed that Methanomicrobiales could replace Methanobacteriales without

changing the formate consumption rate, and Methanoregula could replace

Methanosaeta while maintaining methanogenic community diversity

(Zhang et al., 2019a). Methanosarcina is a genus of versatile methanogens

capable of utilizing acetate, methylamines, methanol, and H2/CO2, and it is

robust when ammonia or salt concentrations are high orwhen operational con-

ditions (e.g., temperature) fluctuate. It is puzzling that it is not a predominant

genus of methanogens in most AD bioreactors.

3.8.2 Syntrophic fatty acid-oxidizing bacteria
Many feedstocks fed to AD bioreactors contain lipids. The LCFA released

from lipolysis of feedstock lipids, together with some of the SCFA (e.g., pro-

pionate, butyrate, and valerate) formed during acidogenesis, must be first

converted to methanogenesis substrates (primarily acetate, H2, and CO2)

by syntrophic fatty acid-oxidizing bacteria before they can be used to pro-

duce biogas by methanogens. Additionally, the accumulation of SCFA or

LCFA can lead to upset or even failure of AD bioreactors. Thus, many

studies have focused on important syntrophic fatty acid-oxidizing bacteria

in biogas-producing microbiomes. These syntrophic bacteria need to

live in syntrophy with hydrogenotrophic methanogens through IHT. In

three full-scale AD bioreactors, the genera Syntrophomonas of Firmicutes
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(5% relative abundance) and Smithella of Proteobacteria (8% relative abun-

dance) were found to be the major syntrophic fatty acid-oxidizing

bacteria (Zhang et al., 2019a). Both Syntrophomonas and Smithella are well

known syntrophic bacteria that degrade SCFA to H2, formate, and

acetate. Species of Syntrophomonas are syntrophic butyrate-oxidizing bacteria

(SBOB), while Smithella is syntrophic propionate-oxidizing bacteria to

produce acetate and butyrate. They live in syntrophy with hydrogen-

scavenging species of Methanomicrobiales or Methanobacteriales. Acetate pro-

ducer Anaerolineaceae and acetoclastic methanogenMethanosaeta were another

two core genera fount to live in syntrophy. This syntrophic relationship

was inferred from the positive correlation between the genus Leptolinea of

the family Anaerolineaceae and Methanosaeta (Zhang et al., 2019a). Other

syntrophs that live in syntrophy with hydrogenotrophic methanogens include

the genera Syntrophus, Pelobacter, Syntrophorhabdus, and Syntrophobacter, all of

which belong to the phylum Proteobacteria (Hassa et al., 2018). Some new

species of syntrophic fatty acid-oxidizing bacteria were found in the families

Thermoanaerobacteriaceae, Costridiaceae, and Syntrophomonadaceae in the class

Clostridia.

3.8.3 Pathogenic bacteria and indicator bacteria
Besides biogas, AD generates residual digestate that is commonly used as fer-

tilizer. Digestate is often used to replace inorganic fertilizers because it is

nutrient-rich and inexpensive for growers and farmers. However, digestate

may contain pathogens when the feedstocks fed to AD bioreactors contain

wastes of human or animal origin. Such pathogens can be spread to the envi-

ronment and food chain when the digestate is applied to agricultural

soil (Maynaud et al., 2016). Potential pathogens in digestate include bacteria

(e.g., Salmonella, pathogenic E. coli strains, Campylobacter jejuni), viruses (e.g.,

adenovirus, rotavirus, and hepatitis A), protozoa (e.g., Cryptosporidium spp.,

Entamoeba histolytica, and Giardia lamblia), and helminths (e.g., Ascaris

lumbricoides, Ascaris suum, and Trichuris trichiura) (Yergeau et al., 2016).

Various regulatory agencies often use indicator organisms (e.g., fecal coli-

forms, Bacteroides, E. coli, and Salmonella) to assess the adequacy and efficiency

of the treatment process in reducing pathogen loads in the final product. For

example, Salmonellamust be absent (non-detectable), and fecal coliform levels

must not exceed 1000 MPN/g of dry weight in biosludge (Federal Canadian

Food Inspection Agency, CFIA).

Culture-based methods (e.g., the MPN method) are the simplest, most

inexpensive, and most common methods used to detect live pathogens.
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However, they cannot detect non-indicator pathogens or viable but non-

culturable (VBNC) bacteria. In contrast, qPCR can detect non-culturable

bacteria and could be and has been used to detect the presence of specific

pathogens in the digestate. However, the wide range of possible pathogens

renders qPCR a highly laborious and costly method. Sequencing-based

methods, such as amplicon sequencing of 16S rRNA and the cpn60 genes

of the pathogens and shotgun metagenomics, are potential alternatives to

culture-based and qPCR approaches to detect pathogens in biosludge.

Shotgun metagenomics is not limited to the detection of targeted pathogens.

It has detected scores of potential pathogens that other methods cannot

detect in digestate. For example, viruses, which can serve as an indicator

of biosludge treatment efficiency, can represent up to 10–14% of the total

sequences in metagenomic datasets but were not detected using other

methods (Yergeau et al., 2016). DNA-based methods can determine the

presence of pathogens, but they cannot distinguish dead from live patho-

gens. Pretreatment of samples with propidium monoazide (PMA) can help

exclude dead bacteria from being detected by DNA-based methods, but its

use in digestate samples is challenging due to the presence of the complex

matrix.

Molecular biology techniques and technologies have detected the pres-

ence of a wide range of pathogens in digestate, including pathogenic

species of Aeromonas, Clostridium, Enterococcus, Corynebacterium, Klebsiella,

Legionella, Mycobacterium, Salmonella, Streptococcus, Vibrio, Yersinia, and para-

sitic geohelminths or helminths. Among these detected pathogens, E. coli,

Salmonella, Yersinia enterocolitica, and Enterococcus were reported to be vulner-

able to AD. On the other hand, C. jejuni, Streptomyces, Collinsella aerofaciens,

Streptococcus salivarius, and Gordonia Bronchialis can survive AD. In addition,

some spore-forming pathogens, such as species of Clostridium and Bacillus,

have high resistance to acute stresses and can survive mesophilic and even

thermophilic AD (Zhao and Liu, 2019). When the digestate is stored after

the AD process (due to varying demands in different seasons), such as the

digestate from AD bioreactors on many confined-livestock farms, different

pathogens can also have different survivability. For example, Listeria mono-

cytogenes demonstrated greater persistence in digestate as compared to E. coli

and Salmonella entericaDerby during digestate storage. It should be noted that

some pathogens can enter the VBNC stage during AD or digestate storage,

and they can still pose a health risk because they can regain growth under

permissive conditions (Maynaud et al., 2016).
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3.8.4 Viruses
Digestate generally have DNA viruses (e.g., adenovirus, herpesvirus, papillo-

mavirus, and bocavirus) and RNA viruses (e.g., coronavirus, klassevirus, and

rotavirus). Viruses were more resistant than coliform bacteria, but less resistant

than bacterial spores, during AD. DNA viruses were also found to be more

persistent than single-stranded RNA viruses (Zhao and Liu, 2019).

Bacteriophages and archeophages can affect the composition, dynamics,

and functions of microbiomes, including the ones in AD bioreactors. Thus,

these phages have been included in some studies on biogas-producing

microbiomes. Together with a large number of prokaryoticOTUs, 183 phage

genes belonging to 78 phages were detectedwith GeoChip 5.0 from four full-

scale ADbioreactors sampledmonthly over 1 year (total of 48 samples) (Zhang

et al., 2017). The α diversity of phages showed considerable temporal fluctu-

ation, and about half of the phage communities was comprised of “common”

phages across the four digesters, while 45 phages were only detected in one of

the AD bioreactors. Biochemical pathway analysis linked the phage and the

prokaryotic communities to the process performance of the AD bioreactors,

and one of the pathways showed the infection of phages on prokaryotic hosts.

The relative abundance of the phage families Myoviridae, Siphoviridae, and

Podoviridaewas significantly correlated with the relative abundance of the class

Methanomicrobia, revealing a linkage between phages andmethane production.

Another pathway showed that the lysis of prokaryotes by phages, also known

as viral shunt, increased the supply of organic matter in the AD bioreactors,

resulting in a positive feedback of net primary productivity. Most

enterobacteria phages showed predominantly positive links to prokaryotic

OTUs, while several enterobacteria phages showed links to Proteobacteria spe-

cies. On the other hand, Aeromonas phage phiO18P, Aeromonas phage Aeh1,

and Mycobacterium phage Che12 showed almost exclusively negative links to

prokaryotic OTUs. Future research is needed to investigate the relationship

between key guilds of bacteria and methanogens and their phages, and

how the phage-host dynamics affect AD performance.

3.8.5 Antibiotic resistance
Antibiotic residues and antibiotic-resistant bacteria find their ways to AD bio-

reactors. Therefore, the microorganisms (both pathogenic and commensal) in

anaerobic digestate are also an important source of antibiotic resistance genes

(ARGs). ARGs in municipal wastewater were shown to be transferrable to

bacteria in biosludge and crops fertilized with the digestate of human wastes

(Zhao and Liu, 2019). Bacterial pathogens are potential hosts of ARGs

encoding resistance to multi-drugs and macrolide-lincosamide-streptogramin
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(MLS). ARGs can spread through mobile genetic elements, such as integron,

plasmids, and transposon,with transferrable genes encoding pathogenicity fac-

tors. Thermophilic AD has been commonly used to destruct integrons and

ARGs in sewage sludge.

3.9 New perspectives on biogas-producing microbiomes
learned in the molecular biology technique era

The use of molecular biology techniques discussed above revealed the great

diversity of the biogas-producing microbiomes. As documented by the 16S

rRNA gene sequences produced from clone libraries, the microbiomes

underpinning AD collectively can have 5926 OTUs of bacteria representing

28 known bacterial phyla, with Proteobacteria, Firmicutes, Bacteroidetes, and

Chloroflexi being the predominant phyla (Nelson et al., 2011). Nearly 300

OTUs of methanogenic archaea were also documented, and the class

Methanomicrobia was one of the major groups of methanogens. Based on rar-

efaction analysis, approximately 40% of the bacterial and 10% of the archaeal

diversity in AD bioreactors remained to be identified. It is also found that

more than half of the bacterial OTUs cannot be assigned to any known

genera. Another important new finding enabled by molecular biology tech-

niques is SAO bacteria and their important role in methane production

from acetate in thermophilic AD bioreactors or at high ammonia concentra-

tions. The finding of six clusters of pct genes (Li et al., 2013) suggests the pres-

ence of a diverse group of syntrophic propionate-oxidizing bacteria in AD

bioreactors.

Omics technologies have replaced most of the molecular biology tech-

niques in studies on biogas-producingmicrobiomes. However, high-density

microarrays, qPCR including droplet digital PCR, and SIP can still be very

useful because they can complement omics technologies by accurately quan-

tifying the taxa or guilds of microorganisms important to certain aspects of

biogas production, such as rate and process stability, or by unearthing the

metabolism of important substrates or intermediates during AD.

4. The omics technologies used and the microbiome
knowledge learned thereby

4.1 The unprecedented opportunities provided by omics
technologies

The rapid advancement and improvement of omics technologies, especially

in the past decade, have provided unprecedented opportunities to character-

ize the diversity, composition, gene expression, and metabolism of various
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microbiomes, including the ones in AD bioreactors, in a comprehensive

manner. These omics technologies include metataxonomics meta-

genomics, metatranscriptomics, metaproteomics, and metametabolomics.

Metataxonomics can help identify the bacteria, archaea, fungi, and proto-

zoa by sequencing an amplicon library of a marker gene (mostly a marker

gene). Therefore, it is a powerful tool to comprehensively examine the

diversity, composition, and structure of biogas-producing microbiomes.

Metagenomics, or shotgun metagenomics, can potentially reveal all the

genes present in a microbiome by sequencing the DNA extracted from

a microbiome sample. Metatranscriptomics analyzes the RNA (either total

RNA or mRNA) transcribed in a microbiome, and thus it provides a snap-

shot of the gene expression at the time of sampling. All these three

sequencing-based omics technologies are empowered by the NGS tech-

nologies, which include 454 pyrosequencing (no longer used), Illumina

sequencing, and Ion Torrent sequencing, all of which afford high throughput

sequencing cost-effectively. The third-generation sequencing technologies,

including Single Molecule Real-Time (SMRT) sequencing (Pacific

Biosciences), the Tru-seq Synthetic Long-Read sequencing (Illumina), and

the MinION (Oxford Nanopore Technologies) can generate long sequence

reads, facilitating (meta)genome sequence assembly. These technologies

have not been used commonly in microbiome research because of their

high cost. Unlike the above sequencing-based omics, metaproteomics and

metametabolomics are chemical technologies that involve a comprehensive

analysis of the proteins and metabolites, respectively, in microbiome

samples. They complement the sequencing-based omics by directly analyze

the products of gene expression (metaproteomics) or metabolic activities

(metametabolomics). These omics technologies, their application to studies

of biogas-producing microbiomes, and the new information learned using

these omics are discussed in this section.

4.2 Metataxonomics
Metataxonomics can comprehensively detail the taxonomic diversity and

composition of a microbiome. By eliminating the needs for cloning and

by sequencing hundreds of millions of a phylogenetic marker gene, it sub-

stantially improves upon the cloning and sequencing approach (Fig. 1). In

most reported metataxonomic studies on AD bioreactors, one amplicon

library is prepared for each microbiome sample by PCR amplifying one

or multiple (two or three) hypervariable regions of the 16S rRNA gene

using a pair of prokaryotes- or domain-specific primers. One unique barcode
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(a short unique sequence region) is added to the 50 end of the primers to

“label” individual samples for multiplexing and simultaneous sequencing

in a single sequencing run, primarily on the Illumina MiSeq platform.

The sequencing reads are quality checked, processed, and phylogenetically

analyzed for taxonomic classification by comparison with reference gene

database, primarily Greengenes (https://greengenes.secondgenome.com/),

Silva (https://www.arb-silva.de/), RDP (https://rdp.cme.msu.edu/), and

NCBI RefSeq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/). The fungal

community in AD bioreactors is analyzed similarly, but one of the two inter-

nal transcribed spacers (mostly ITS1) was used because the fungal 18S rRNA

gene does not provide enough phylogenetic resolution to distinguish fungal

species. The UNITE database is a specialty database for fungal identification

based on ITS1 sequences (Nilsson et al., 2018). For analysis of the protozoal

community, a region of their 18S rRNA gene is sequenced. Several meta-

taxonomic analysis pipelines have been developed and used in metataxo-

nomics, with QIIME (with QIIME2 being the most recent version)

being the most commonly used, followed by Mothur and MG-RAST.

Both the α diversity, which describes the diversity and structure of micro-

biomes, and β diversity, which compares the overall diversity of two micro-

biomes, can be calculated. Then, univariate and multivariate statistical

analyses (e.g., principal component analysis, principal coordinates analysis,

non-metric multidimensional scaling, partial least squares discriminant anal-

ysis, and LEfSe) are used to compare multiple microbiomes or to identify

individual taxa of microorganisms that are affected or changed by feedstocks

or operating conditions.

Fig. 1 Workflow of metataxonomic analysis of microbiomes.
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Metataxonomics can identify the microorganisms present in microbiome

samples but reveal little information on their metabolism or functions.

For some of the detected microorganisms that are closely related to known

species, their potential functions can be inferred from the genomes and

functions of the known microorganisms. Four bioinformatics tools have

been developed and used for such a functional prediction: PICRUSt

(Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States) (Langille et al., 2013), Tax4Fun (Aßhauer et al.,

2015), Piphillin (Iwai et al., 2016), and PanFP ( Jun et al., 2015). Most stud-

ies used PICRUSt or its newest version PICRUSt2 (Douglas et al., 2019). In

PICRUSt, 16S rRNA gene copy number-based normalized taxonomic

abundance information is used to link the taxonomic IDs and the KEGG

ortholog database (KEGG, https://www.genome.jp/kegg/) following

ancestral-state reconstruction. PICRUSt2 can use KEGG and other data-

bases, including COG (http://eggnogdb.embl.de/), ExPASy (https://

enzyme.expasy.org/), PFAM (https://pfam.xfam.org/), and TIGRFAM

(https://www.jcvi.org/tigrfams). PICRUSt has only been used to predict

potential function from 16S rRNA gene sequences. PICRUSt2 can be used

to predict functions from 18S or ITS sequences retrieved from fungi using

the 1000 Fungal Genomes Database (http://1000.fungalgenomes.org). It

should be noted that such a functional inference is only a prediction and

will not provide a reliable functional profile.

The metataxonomic data can also be further analyzed to answer other

important ecological questions. It is important to identify the taxa that con-

tribute to the functional profiles and shifts in a microbiome. FishTaco was

developed to identify taxa that drive functional shifts in the human gut

microbiomes associated with diseases (Manor and Borenstein, 2017). It is

an analytical and computational framework that integrates taxonomic and

functional comparative analyses to accurately quantify taxon-level contribu-

tions to disease-associated functional shifts. It has been used in studies on

other microbiomes, but not the microbiomes in any AD bioreactors yet.

It shall be useful in identifying the bacteria and methanogens that contribute

to functional shifts when AD is affected.

Microorganisms interact with each other, either positively or negatively.

Conceptually, positive interaction results in positive correlation in their

abundance, while negative interaction leads to negative correlation. In many

microbiome studies, co-occurrence patterns of genera or OTUs were used

to infer positive or negative interactions. Gephi (Bastian et al., 2009) and

Cytoscape (Shannon et al., 2003) are two commonly used software tools
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to depict co-occurrence networks. CoDiNA has been recently developed to

allow users to compare differential co-occurrence networks (Gysi et al.,

2018). Thus, it can determine how changing feedstock and other operating

conditions may affect the interactions among different microorganisms in

future studies.

Metataxonomics has been used in numerous studies in the past decade.

These studies provided new insight into the diversity and composition of

biogas-producing microbiomes. For example, Firmicutes, Bacteroidetes,

Proteobacteria, and Chloroflexi were confirmed to be the predominant phyla

of bacteria. Microbial successions during the startup of AD bioreactors

can also be detailed using metataxonomics. The feedstocks fed to AD bio-

reactors can induce the emergence of different active bacterial and archaeal

assemblages (Lu et al., 2013). In a relatively large-scale study that compar-

atively examined 32 full-scale AD bioreactors fed wasted activated sludge

over a 6-year period using 16S rRNA gene amplicon sequencing, it was

found that several of the most abundant populations were likely inactive

and immigrating with the influent (Kirkegaard et al., 2017). Apparently,

the failure to exclude nonactive microorganisms immigrating with feed-

stocks, especially feedstocks that contain dense microorganisms (e.g., wasted

activated sludge and livestock manure), can interfere with correlation anal-

ysis between microbial and AD performance data. A core microbiome was

also identified among these AD bioreactors. Most of the biogas-producing

microbiomes have a high diversity at species or below levels, suggesting

functional redundancy in AD bioreactors. Anaerolineaceae is a group of novel

abundant primary acidogens in AD bioreactors treating waste activated

sludge (McIlroy et al., 2017). Proteolytic bacteria are quite abundant in

full-scale AD bioreactors fed municipal solid waste (Cardinali-Rezende

et al., 2016). Stage-specific bacterial and archaeal populations were found

to reside in thermophilic vs. mesophilic AD bioreactors (Li et al., 2015;

Shaw et al., 2017). Based on rRNA/rRNA gene ratio, some rare taxa were

found to have disproportionate activities in AD bioreactors ( Jia et al., 2019).

By comparing the metataxonomic data from DNA and RNA, it is found

that a significantly greater diversity results from DNA than from RNA

for archaea, but not for bacteria, and β-diversity analysis showed a significant
difference in microbiome composition for both bacteria and archaea

between the DNA- and RNA-based analysis (De Vrieze et al., 2018a).

The same authors also showed in another study that DNA- and RNA-based

metagenomic analyses revealed different responses of biogas-producing

microbiomes to salt perturbation (De Vrieze et al., 2016). Unique bacteria
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and archaea were also found in solid-state AD bioreactors, probably attrib-

utable to the physical and chemical features in solid-state AD bioreactors

(Li et al., 2015). High concentrations of ammonia led to an increased pre-

dominance of genera that contain syntrophic bacteria (e.g., Clostridium,

Bellilinea, Longilinea, and Bacteroides) and shift of methanogens from

acetoclasticMethanosaeta to hydrogenotrophicMethanoculleus and the poorly

understood methylotrophic Methanomassiliicoccus (Ruiz-Sanchez et al.,

2019). New SAO bacteria also increased at high ammonia concentrations.

Co-occurrence network analysis of rRNA, not rRNA gene, can identify

active populations, and syntrophic and methanogenic taxa are highly repre-

sented within the networks, indicating that the obligate energy-sharing part-

nerships between syntrophic bacteria and methanogens play critical roles in

stabilizing biogas production (Ziels et al., 2018a). The combination of SIP

and metataxonomics allows identification of bacteria that mediate the con-

version of particular substrates in AD bioreactors (Limam et al., 2014).

Metataxonomics enables comprehensive analysis of complex

microbiomes by potentially identify all their members of prokaryotic and

eukaryotic microorganisms. This is demonstrated by the numerous studies

reported in the literature. However, metataxonomics has its limitations

and can result in biases. First, DNA extraction methods can have different

efficiency and bias of DNA recovery. Second, variations can be introduced

by the selection of marker genes (including the region to PCR amplify,

PCR primers, number of PCR cycles, etc.) in preparation of amplicon

libraries (Bonnet et al., 2002;Walker et al., 2015). Third, different sequenc-

ing platforms, sequence analysis pipelines, and databases affect the analysis

results, especially with respect to minor taxa. Fourth, only a short region

(<500bp) of a marker gene is sequenced in most studies, and such short

sequences may not have the sufficient phylogenetic information needed

to detect microorganisms at the species level. Fifth, the detection of a taxon

does not necessarily reflect its activity, and DNA- and RNA sequencing

can produce different results. Additionally, in metataxonomic studies,

the relative abundance of individual taxa is used to reflect their richness,

but the relative abundance of unchanging taxa is affected by that of changed

taxa. Co-occurrence network analysis only reflects a mathematical relation-

ship between two taxa, but not biological interaction. Furthermore, differ-

ent amplicon libraries need to be prepared for prokaryotes, fungi, and

protozoa.

Metataxonomic studies on biogas-producing microbiomes will further

improve with the advancement of sequencing technologies, improvement
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of phylogenetic analysis pipelines, and expansion of databases. Themost com-

monly used phylogenetic marker 16S rRNA genes can be sequenced to full

length using the third-generation sequencing technologies. The biogas-

producing microbiomes have their unique features with respect to diversity

and functions. Dedicated databases for the microorganisms involved in AD

will greatly help robust analysis of metataxonomic data of biogas-producing

microbiomes. In most studies, results are often compared with those from

other studies. Because results can vary because of differences in DNA extrac-

tion and other analysis methods, a standardized protocol is required.

A standardized analysis protocol will also enable the compilation of datasets

from different studies to develop more robust anaerobic digestion models.

4.3 Metagenomics
Shotgun metagenomic sequencing refers to the sequencing of metagenomic

DNA extracted directly from microbiome samples such as samples from AD

bioreactors. Metagenomics goes beyond metataxonomics based on the

sequencing of amplicons of phylogenetic markers such as 16S rRNA genes

because it provides insight into the taxonomic diversity and functional diver-

sity as well as the physiological potential of microbiomes (Vanwonterghem

et al., 2014). Metagenomics entails high throughput sequencing of meta-

genomic DNA, sequence assembly, gene prediction and annotation, and bin-

ning of contigs into metagenome-assembled genomes (MAGs) or genome

bins (GBs) (Fig. 2). Shotgun metagenomic sequencing is most commonly

done using the Illumina HiSeq platform because of its low cost and high

throughput capacity. The de novo assembly of metagenomic sequence reads

is often the most challenging step because it is computing demanding

and time-consuming. Many algorithms and bioinformatic tools have been

developed to improve the speed and the accuracy of de novo assembly, such

as MEGAHIT, MetaVelvet, metaSPAdes, IDBA-UD, Genovo, and

SOAPdenovo2. De novo assembly is computing intensive and prone to

errors. The quality of assembled contigs needs to be assessed by mapping

the sequence reads to the contigs or comparing metagenome assemblies to

close references using MetaQuast. Binning can be performed using

CONCOCT, MetaBAT2, or MaxBIN2.

Annotation of metagenomic genes is achieved by comparison to data-

bases. The commonly used databases include Gene Ontology (GO, http://

geneontology.org/), KEGG, COG, IMG/M (https://img.jgi.doe.gov/),

SEED (http://pubseed.theseed.org/), and Pfam. Metabolic pathways can
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be reconstructed and or modeled from the genes annotated to metabolic

pathway databases, such as the KEGG Pathway database (https://www.

genome.jp/kegg/pathway.html), the MetaCyc Metabolic Pathway

Database (https://metacyc.org/), and the BRENDA (BRaunschweig

ENzyme DAtabase) database (http://www.brenda-enzymes.org). The

metagenomic sequences can also be annotated by comparison with

“specialty databases,” such as the CAZy database (http://www.cazy.org/)

dedicated to carbohydrate-active enzymes, the MEROPS database

(https://www.ebi.ac.uk/merops/) for peptidases. Therefore, metagenomics

can potentially recover the genomes and predict the metabolism of novel

and unculturable microorganisms. Metagenomics has been used in many

studies on the biogas-producing microbiomes. This has led to the compila-

tion of hundreds of MAGs or GBs. The Biogas Microbiome Database

(https://biogasmicrobiome.env.dtu.dk/) is one repository that contains a

collection of reference microbial genomes (1635 MAGs, at the time of

writing) recovered from biogas-producing microbiomes (Campanaro

et al., 2019). The metagenomic data provided new information on the

functional diversity of biogas-producing microbiomes and the metabolic

pathways that underpins the AD process.

In the past decade, many studies have investigated the biogas-producing

microbiomes using metagenomics. The first metagenomic study was

Fig. 2 Workflow of metagenomic analysis of microbiomes. Functional and taxonomic
features are statistically analyzed using univariate and multivariate analyses as done
in metataxonomic analysis.

36 Jun Wei Lim et al.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://metacyc.org/
https://metacyc.org/
http://www.brenda-enzymes.org
http://www.brenda-enzymes.org
http://www.cazy.org/
http://www.cazy.org/
https://www.ebi.ac.uk/merops/
https://www.ebi.ac.uk/merops/
https://biogasmicrobiome.env.dtu.dk/
https://biogasmicrobiome.env.dtu.dk/


reported in 2008 that used the 454 pyrosequencing technology and exam-

ined the functional diversity of the microbiome in a full-scale AD bioreactor

fed with maize silage, green rye, and some chicken manure (Schl€uter et al.,
2008). Besides house-keeping genes, genes involved in the degradation of

sugars and amino acids were found. With a 64% depth coverage of the

genome of Methanoculleus marisnigri JR1, the genus Methanoculleus was

thought to play a dominant role in methanogenesis in that AD bioreactor.

Moreover, numerous contigs were assigned to clostridial genomes, includ-

ing genes encoding cellulolytic functions, suggesting that clostridia are

important for the hydrolysis of cellulosic plant biomass in that AD bioreac-

tor. One of the most ambitious metagenomic sequencing efforts was made

to characterize the metagenomes of four full-scale biogas plants (three mes-

ophilic and one thermophilic) digesting maize silage together with manure

(Stolze et al., 2016). From the 348Gb of sequence data obtained, de novo

assembly yielded a total of 1.5Gb of contigs and supercontigs. About 1.6

million genes were predicted from the four metagenomes. Binning of these

(super)contigs resulted in 532 MAGs, with five of them meeting the strin-

gent quality requirements and being assigned to the taxa of interest (in the

phyla Thermotogae, Fusobacteria, Spirochaetes, and Cloacimonetes). Most of the

MAGs represent novel and uncharacterized species, corroborating the pre-

mise that most of the microorganisms remain unknown. The metabolism of

these five MAGs was deduced from the MAG sequence information. The

MAGs assigned to Fusobacteria and Cloacimonetes appeared to be from amino

acid-fermenting and CO2/H2-producing bacteria, while those assigned to

Thermotogae and Spirochaeteswere probably recovered from bacteria that uti-

lize sugar to produce acetate, CO2, and H2. However, the nearly 1.6 million

hypothetical genes identified in that study remain to be further analyzed.

New cellulolytic bacteria and glycoside hydrolase (GH) genes were also

abundant in AD bioreactors (Wei et al., 2015).

The biogas-producing microbiomes are very diverse and contain thou-

sands of species of microorganisms. However, the number of niches is much

smaller than the taxonomic species richness. Indeed, several metagenomic

studies revealed high functional redundancy in AD bioreactors (Bertucci

et al., 2019; De Vrieze et al., 2017; Langer et al., 2015). Such functional

redundancy explains taxonomic variations under certain changing opera-

tional conditions, while biogas production remaining relatively stable. It also

explains the recovery of upset AD bioreactors without external inoculation.

Some of the metagenomic studies focused on the genetic potential of cellu-

lose degradation, which is often the bottleneck step in biogas production
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from cellulosic feedstocks. In one metagenomic study, 19,335 CAZymes

were identified from four full-scale mesophilic AD bioreactors in

Denmark (Wilkens et al., 2017). About 30% of these CAZymes showed

50% or lower sequence similarity to known proteins, demonstrating the

presence of novel CAZymes in these AD bioreactors. Many different α-glu-
can-acting CAZymes were identified, with GH13 being most abundant.

Cellulase genes were also abundant in the four metagenomes, which include

almost exclusively endoglucanases and beta-glucosidases. No dockerin

domains were identified, suggesting that the cellulolytic enzymes in those

AD bioreactors are not organized into cellulosomes. Xylanase genes were

also abundant, and most of them encode xylanases and β-xylosidase.
A battery of accessory enzymes was also found. Given the importance of

CAZymes in biogas production from agricultural feedstocks, more studies

with a focus on CAZymes are expected.

The major methanogenesis pathways in AD bioreactors have been iden-

tified by assigning metagenomic sequences to the KEGG Pathway database.

The functional potential of metagenomes in AD bioreactors depends strongly

on the feedstocks. The genes involved in acetoclastic methanogenesis are

more abundant in ADbioreactors fed with sewage sludge. Themost abundant

genes of the acetoclastic pathway include the genes encoding acetyl-CoA syn-

thetase and the acetyl-CoA decarbonylase/synthase complex. These genes are

essential in the synthesis of acetyl-CoA from acetate.However, these genes are

also present in bacteria. Therefore, the identification of major methanogenesis

pathways based on the abundance of these genes needs to be interpreted with

caution (Hassa et al., 2018). On the other hand, the genes involved in the

hydrogenotrophic pathway are at high abundance in AD bioreactors fed

agricultural residues and livestock manure. The most dominant genes of the

hydrogenotrophic pathway include those encoding formate dehydrogenase

and formylmethanofuran dehydrogenase. Genes involved in the met-

hylotrophic pathway are at low abundance, indicating that this methanogenesis

pathway is generally of less importance in AD bioreactors.

Nearly complete genomes of dominant bacteria can be assembled from

shotgun-sequenced metagenomes, but MAGs cannot be obtained from

bacteria or methanogens that have a low relative abundance (typically

<1%) owing to insufficient sequencing depth or difficulty in binning

(classification) and assembly of individual genomes. Rapid improvements

in sequencing throughput, read length, and quality have made it theoreti-

cally possible to assemble genomes from low abundance populations in

“deep” (tens of Gb per sample) metagenomic data sets. Indeed, genomes
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of rare and uncultured bacteria inhabiting an AD bioreactor fed activated

sludge were obtained by differential coverage binning of multiple

metagenomes (Albertsen et al., 2013). A total of 31GBs was generated that

could be assigned to five different phyla, and they included many rare mem-

bers with a relative abundance as low as 0.02% in the microbiome. Thirteen

of these GBs were further refined into complete or nearly complete MAGs,

with four being assigned to the candidate phylum TM7. The nearly com-

plete TM7 genomes (average genome size of 1Mb) contain all the key genes

of the pentose phosphate pathway and the heterolactic fermentation path-

way, but not any of the key genes of the Embden-Meyerhof-Parnas pathway

(i.e., the phosphofructokinase gene) or the Entner-Doudoroff pathway

(i.e., the KDPG aldolase gene). This suggests that members of TM7 prob-

ably use only the pentose phosphate and heterolactic fermentation pathways.

The differential coverage binning approach can be used in recovering the

genomes of candidate taxa and other under-represented or rare taxa.

ManyMAGs and GBs were recovered from recent metagenomic studies

that used deep sequencing. The initial Biogas Microbiome database con-

tained 236GBs that were assembled from sequences generated using the

Illumina NextSeq 500 platform. A core microbiome for biogas production

was suggested by a comparison between two datasets (Campanaro et al.,

2016; Treu et al., 2016). This core microbial group was found to be present

independently from the operational conditions and contain members of

Methanoculleus, Methanothermobacter, Syntrophomonas, and Proteobacteria. The

composition of the archaeal community was also found to be resilient,

and the bacterial community was more diverse due to higher functional var-

iability. In addition, only 13% of the GBs can be identified at the genus level

(30GBs) and 3% (8GBs) at the species level. The taxonomic assignment of

the remaining 84% (198GBs) was possible only at higher taxonomic levels,

confirming that most biogas-producing microorganisms have not been

characterized.

By compiling 134 publicly available metagenomic datasets derived from

different AD bioreactors, 1635 MAGs were obtained recently (Campanaro

et al., 2019). These MAGs were estimated to be>50% complete, and nearly

half of them were �90% complete with �5% contamination. Of the abun-

dant MAGs (each with a relative abundance >1%), only 25 were identified

in more than 10% of the datasets. Four of these prevalent MAGs were sin-

gularly assigned to Candidatus Methanoculleus thermohydrogenotrophicum,

Methanosarcina thermophila, Methanothrix soehngenii, and Methanoculleus

thermophilus. The remaining 21 MAGs were assigned to the phyla
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Firmicutes (14 MAGs), Bacteroidetes (2 MAGs), Synergistetes (2 MAGs),

Thermotogae (1 MAG), and Coprothermobacterota (1 MAG). The abundant

Thermotogae MAGs were classified as Defluviitoga tunisiensis, potentially

reflecting its central role in thermophilic AD. The minor MAGs were

assigned to Chloroflexi, Elusimicrobia, Firmicutes, and Planctomycetes among

other bacterial phyla. Analysis (based on distribution and completeness) of

the MAGs for KEGG pathway modules showed that only a very small num-

ber of modules was widespread among the MAGs, with only 15 modules

present in more than 90% of the phyla, 108 in 50–90% and 434 in less than

50% of the phyla. This suggests a partitioning of microorganisms according

to their predicted substrate utilization capacities. Additionally, many of the

modules showed a remarkable association with specific taxa. Some of the

crucial AD processes, such as the conversion of acetate to CO2, may be

carried out by a small number of species. It was also concluded that the

biogas-producing microbiomes are flexible at the species level, allowing

for adaptation to different conditions, including a wide range of operational

temperatures and feedstocks. This adaptation is facilitated by the presence

of functional redundancy in biogas-producing microbiomes. It should be

noted that the complied datasets were generated using different methods,

including DNA extraction, sequencing, bioinformatic analysis (databases

and software programs used), and metadata registration. The high heteroge-

neity of the methods used probably affected the analysis results.

A standardized set of methods and analyses are required to compare different

datasets.

The application of metagenomics has provided a deeper mechanistic

understanding of AD microbiomes and substantially extends the existing

repository of genomes. Metagenomics enables the identification of previ-

ously unknown but abundant species featuring important functional

potential in the context of the AD process (Maus et al., 2017). Novel and

rare species residing in AD bioreactors have also been discovered. The

established database represents a useful resource for future studies related

to AD bioreactors. However, detection of particular genes does not inform

if they confer any metabolic activity (De Vrieze et al., 2016). The complex-

ity and diversity of biogas-producing microbiomes make it difficult to iden-

tify the rare species, which may be important to the AD process by affecting

other keynote species. Additionally, the analysis of metagenomic sequencing

data, especially the sequence assembly step, is time-consuming and requires

bioinformatics expertise in microbiology. The limited reference genomes

of biogas-producing microorganisms also hinder accurate assembly and
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annotation of metagenomic sequences from biogas-producing microbiomes

(Bharagava et al., 2019). Genomic sequencing and studies of major microor-

ganisms involved in each of the four phases of AD, at least representative ones,

will help future metagenomic and other omic studies of biogas-producing

microbiomes. Continued improvement in DNA sequencing technologies,

including the third-generation sequencing technologies, will further lower

the cost while increasing the read length and throughput and the identification

of microorganisms at low abundance. Furthermore, novel binning methods,

such as the differential coverage binning method (Albertsen et al., 2013), can

also help identify rare microorganisms in biogas-producing microbiomes. Of

course, metagenomic data do not provide any information on the gene

expression. This is exemplified by the significant differences in the relative

abundance of methanogens found in metagenome (4% of total 16S rRNA

sequences) and metaproteome (20–30% of total identified proteins)

(Hanreich et al., 2013). To further elucidate the metabolic activities critical

to biogas production, metatranscriptomics and/or metaproteomics are

required.

4.4 Metatranscriptomics
In microbiome studies, it is essential to link microorganisms to their specific

activities. Metatranscriptomics offers the ability to determine RNA

sequences matching a specific functional activity or category and the micro-

organisms produce those RNA sequences. Metatranscriptomics involves the

sequencing of all the transcripts of a given microbiome and bioinformatic

analysis of the transcripts (Fig. 3), thus providing insights into its transcrip-

tional activity by revealing what genes are expressed at RNA level at a

microbiome scale. Therefore, metatranscriptomics can capture a snapshot

of the gene expression of a chosenmicrobiome at a givenmoment and under

specific conditions by sequencing the total mRNA. It can complement

metagenomics by revealing the microorganisms that are actively growing

and the genes that are expressed. In order to analyze a metatranscriptome,

the first step is to isolate high-quality RNA. It is more difficult to isolate

representative RNA than to extract representative DNA from microbiome

samples that contain complex matrix such as AD bioreactor samples.

Additionally, different isolation methods may yield different isolation

efficiencies, leading to nonrepresentative RNA. In general, isolation of

RNA is less efficient fromGram-positive than fromGram-negative bacteria,

and thus transcripts from Gram-positive bacteria may be under-represented,

41AD microbiome and its analysis



whereas transcripts from Gram-negative bacteria may be over-represented

(Stark et al., 2014). Special caution must be taken when interpreting

metatranscriptomics data or using such data for certain purposes, such as

modeling of the AD process. Total RNA can be sequenced so that the diver-

sity and composition of a microbiome can be examined from the rRNA

sequences, while the functional genes that are expressed can be determined

from the mRNA sequences. Because about 85% of the total RNA is rRNA,

mRNA is under-represented. Alternatively, mRNA can be enriched by

depleting rRNA. RNA can be reverse transcribed to the corresponding

cDNA and sequenced as DNA on Illumina platforms or directly sequenced

on the Nanopore platform. The first approach requires reverse transcription

and amplification and produces short sequencing reads, whereas the direct

RNA sequencing on the Nanopore platform has a high error rate.

Continued improvement of direct RNA sequencing will greatly facilitate

robust transcriptomics.

The bioinformatic analysis of a transcriptome includes the following

steps. The first step is to filter out low-quality raw sequences to improve

the accuracy of the metatranscriptome. The quality-checked sequences

are either subjected to bioinformatic analyses directly or de novo assembled

into transcript contigs using bioinformatic tools that are adapted to de novo

assembly of RNA sequencing data, such as AbySS, MetaVelvet, Oases,

SOAPdenovo2, Trans-Abyss, and Trinity. De novo assembly can improve

annotation, but it is computing demanding and requires powerful sequence

Fig. 3 Workflow of metatranscriptomic analysis of microbiomes. Functional and taxo-
nomic features are statistically analyzed using univariate and multivariate analyses as
done in metataxonomic analysis. Specialty bioinformatic pipeline, such as MetaTrans
and SAMSA2, can also be used (see Section 4.4 for details).
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assembler programs and computers. The quality-checked sequences or the

transcript contigs can be annotated by mapping to reference genome data-

bases. Such an approach can produce accurate annotation, but it is limited by

the lack of reference genomes of new and novel microorganisms. In most

studies, the quality-checked sequences or transcript contigs are annotated

by comparison to reference databases, which are the same as the one used

in the annotation of metagenomic sequences. Specialty bioinformatic tools

are available to annotate transcript sequences or contigs. MetaTrans is a pipe-

line that exploits multi-threading computers to analyze metatranscriptomic

data. It can analyze both 16S rRNA for taxonomic diversity and composi-

tion and mRNA for gene expressions. Analysis using MetaTrans involves

four major steps. First, sequence reads are quality-filtered. Second, the

sequences are sorted into rRNA and mRNA. Third, 16S rRNA sequences

are mapped against the Greengenes database using SOAP2 to determine

taxonomic diversity. Fourth, mRNA sequences are mapped against a

functional database (e.g., MetaHIT-2014) using SOAP2 to identify the gene

expressed. MetaTrans is highly flexible and offers the possibility to use third-

party tools. However, it relies on rRNA sequences for the identification of

microorganisms.

SAMSA2 is a standalone metatranscriptome analysis pipeline that is

designed specifically for metatranscriptomic data analysis. It can perform

preprocessing (merging of paired-end reads with PEAR, removing low-

quality sequences with Trimmomatic, and removing rRNA sequences with

SortMeRNA), annotation of transcript sequences with DIAMOND against

custom DIAMOND-searchable databases, which can be created from

NCBI’s RefSeq database, the SEED Subsystems Hierarchical database,

and other databases including the CAZy database. SAMSA2 can sort meta-

transcriptome data by microorganisms or by function or functional category.

One metatranscriptome can be subdivided to examine only the sequences

annotated to a single genus or species so to determine whichmicroorganisms

produce a specific group of transcripts. Therefore, SAMSA2 can help obtain

both the taxonomic and functional results for each specific sequence in an

entire metatranscriptome. Web-based servers, such as COMAN (http://

sbb.hku.hk/COMAN/) and MG-RAST (https://www.mg-rast.org/) can

also be used to analyze metatranscriptomics data. These web servers elimi-

nate the need to install programs into local computers and are simpler to use.

However, they are not as flexible as standalone pipelines and often limit the

size of data that can be processed.
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Metatranscriptomics has been used in many recent studies to investigate

how some of the most important factors affect the performance of AD bio-

reactors. Fischer et al. (2019a) examined the response of biogas-producing

microbiomes to different ammonia nitrogen concentrations (4.9 vs.

8.0gL�1) with respect to microbiome composition using metataxonomics

and the transcriptional activity using metatranscriptomics. It was found

thatClostridia andMethanomicrobiales dominated the microbiome persistently

at both ammonia concentrations, while Methanosarcinales was only present

at low relative abundance. The genes encoding enzymes of the hydrolysis

step (e.g., cellulase, EC 3.2.1.4) were expressed at high levels, and they

were assigned to Clostridia. The genes encoding the key enzymes of the

methanogenic pathway (e.g., methyl-CoM reductase, EC 2.8.4.1;

heterodisulfide reductase, EC 1.8.98.1) were also expressed at high levels.

At the high ammonia concentration, expression of the genes involved in

cellulose hydrolysis and methanogenesis were significantly down-regulated.

It was concluded that besides methanogenic archaea, hydrolytic cellulose-

degrading microorganisms were also negatively affected by high ammonia

concentrations. Both Acholeplasma and Erysipelotrichia, both of which showed

lower abundance under increased ammonia concentrations, might serve as

indicator species for earlier detection of ammonia shock. In another study

(Fischer et al., 2019b), the same authors showed that the microbiome in a

full-scale mesophilic AD bioreactor was highly flexible to changing ammonia

concentration and feedstocks by changing its composition and transcriptional

activities over nearly 600 days of operation. As ammonia concentration

increased, Methanosarcina gave way to Methanomicrobiales and the genes

involved in acetoclastic methanogenesis were down-regulated, while those

involved in syntrophic acetate oxidations and hydrogenotrophicmethanogens

were up-regulated. It was concluded that the overall process performance

could maintain stable during increased ammonia concentration by shifting

the microbiome composition and transcriptional activities.

Anaerobic digestion of waste sludge is slow because of the limited

amounts of readily fermentable carbohydrates present, and thus it necessi-

tates long retention time. Different pretreatments have been evaluated to

increase the AD rate by enhancing the hydrolysis of polymeric feedstocks

such as plant cell wall materials and microbial cellular proteins. In a study

evaluating the efficacy of pretreatment using part-stream low-frequency

ultrasound (Xia et al., 2018), the pretreatment resulted in a gradual increase

of Bacteroidales and its transcriptional activity in hydrolyzing cellulosic

biomass. Thermotogales with high cell mobility was also highly active tran-

scriptionally. Hydrogenotrophic methanogenesis was the major pathway,
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and it was mostly mediated by Methanomicrobiales. More interestingly, it

was found that the genus Methanoculleus was the major contributor to

methanogenesis within Methanomicrobiales and a major group of protein

hydrolyzers. Cellulosic biomass from agriculture is an abundant feedstock

for the production of biogas as a renewable energy source. To understand

the cellulosic biomass-degrading potentials in two full-scale AD bioreactors,

Jia et al. (2018) used both metagenomics and metatranscriptomics to analyze

the active microbial populations. Clostridium cellulolyticum-related, Clostridium

leptum-related, and Ruminococcus-related bacteria were identified as major

hydrolyzers and primary fermenters. The authors maintained that their results

could facilitate the development of potential biomarkers and the rational

design of the microbiome in AD bioreactors ( Jia et al., 2018). Other trans-

criptomic studies revealed that (i) Thermotogae and Spirochaeteswere important

to sugar metabolism, while Fusobacteria and Cloacimonetes contributed signifi-

cantly to amino acid metabolism (Stolze et al., 2018); (ii) Defluviitoga,

Clostridium cluster III, and Tepidanaerobacter were highly transcriptionally

active bacteria, whileMethanoculleus is the most transcriptionally active meth-

anogens in three mesophilic and one thermophilic AD bioreactors, whereas

Hallocella, Tepidimicrobium, and Methanothermobacter were transcriptionally less

active (Maus et al., 2016); (iii) AD process upset and failure could impact the

transcriptional activities of many bacteria and methanogens (Grohmann et al.,

2018); and (iv) syntrophic and methanogenic taxa were highly correlated in

co-occurrence network. These metatranscriptomic data not only shine new

light on the microorganisms that are important to the AD process and their

response to variation in feedstock and operational conditions but are also

useful to improve Anaerobic Digestion Model 1 (Weinrich et al., 2019).

4.5 Metaproteomics
Metaproteomics is the identification and quantification of the microbial

enzymes and proteins of microbiomes. By linking the function of proteins

to a taxon, it is possible to draw correlations between the presence of pro-

teins and metabolic activities. While metatranscriptomics provides insight

into gene expression and activity, cellular localization and regulation of

enzymatic activities occur at the protein level. In metaproteomics, proteins

are extracted from a mixed microbiome sample, followed by protein puri-

fication, fractionation, separation using liquid chromatography (LC), and

detection with tandem mass spectrometry (MS/MS) (Heyer et al., 2015;

Vanwonterghem et al., 2014). Peptide and proteins are then identified

through a comparison of fragment spectra against theoretical spectra from
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a database, such as UniProt/Swiss-Prot (https://www.uniprot.org/),

KEGG, and GO. Specialty database, such as PRIDE Archive (https://

www.ebi.ac.uk/pride/archive/), and algorithms and pipelines, such as

MetaProteomeAnalyzer (Muth et al., 2015), are also available for annotation

of metaproteomes. The number of correctly identified peptides and proteins

and the reliability of their identification can be increased by combining mul-

tiple algorithms (Heyer et al., 2015).

Metaproteomics has been applied to various AD bioreactors to identify

key enzymes important to the metabolic pathways and novel functional pro-

teins (Vanwonterghem et al., 2014). Combining isoelectric focusing (IEF)

and GeLC-MS/MS, Kohrs et al. (2014) identified up to 1000 proteins that

were mapped to the main steps of hydrolysis, acidogenesis, acetogenesis, and

methanogenesis in an AD bioreactor fed a mixture of whole crop silages of

maize, forage rye, cattle manure and slurry and operated at mesophilic and

then thermophilic temperatures. Using a combined metagenomic and

metaproteomic approach, the microbiome in an AD bioreactor degrading

plant carbohydrates was analyzed at both the gene and protein level

(Hanreich et al., 2013). About 98% of themetagenomic sequences were iden-

tified to be bacterial and the remaining 2% archaeal. The orders Clostridiales

and Bacteroidales were predominant and were thought to play important

roles in the degradation of plant carbohydrates. The metaproteomic data

revealed several GHs expressed by Firmicutes, suggesting Firmicutes as the main

degraders of cellulose. Metaproteomic analyses also detected a large number

of sugar transporters, expressed by members of the Bacteroidetes, which prob-

ably takes up various glycans efficiently and digests some of the plant

polysaccharides.

Significant differences in the relative abundances of both bacteria and

methanogens were reported between metagenomic and metaproteomics

analyses. While metagenomic data showed that methanogens represented

only 2% of the microbiome, 20–30% of the proteins identified through meta-

proteomics were of archaeal origin (Hanreich et al., 2013). These results sug-

gest a posit that methanogens were disproportionally active. In another study,

the discrepancy in relative abundance of metagenomic and metaproteomic

data was highlighted once again when proteins for both hydrogenotrophic

and acetoclastic methanogens were detected, even though 99% of the

Euryarchaeota sequences were represented by hydrogenotrophic methanogens

and 1% by acetoclastic methanogens (Hagen et al., 2017). The discrepancy

between metagenomic and metaproteomic data was also reported for the

bacterial genera, which was highly abundant in the pyrosequencing data
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but not on the metaproteomic data (L€u et al., 2014). Therefore, future

research needs to use multiple meta-omic approaches when investigating

biogas-producing microbiomes.

The main microorganisms and metabolic pathways driving the different

steps of AD of food wastes at thermophilic temperature (60 °C) and elevated
levels of free ammonia were investigated using metataxonomics, meta-

genomics, and metaproteomics by Hagen et al. (2017). Several bacteria were

identified to actively produce enzymes needed for the degradation of

proteins, amino acids, and polysaccharides (the major components of

food waste). The metaproteomic analysis suggested that acetate turnover

occurred predominantly via syntrophic acetate oxidation in coexistence

with hydrogen-consuming Methanothermobacter thermoautotrophicus-like

methanogens. The metaproteomic data also suggested acclimation of a

member of Methanosaeta to high ammonia levels. The metaproteomic data

corroborated shift from acetoclastic methanogenesis to hydrogenotrophic

methanogenesis at high ammonia levels and at thermophilic temperature.

Methanosaeta was at low abundance, but several enzymes involved in its

acetoclastic methanogenesis pathway were detected in the metaproteome,

indicating that M. thermophila is metabolically active in the thermophilic

AD of food wastes. Based on the identified enzymes required for glycolysis,

the pentose phosphate pathway, methanogenesis pathways, Abram et al.

(2011) proposed a metabolic model for AD of synthetic glucose-based

wastewater. Because cellulosic biomass and livestock manure are the major

feedstock for biogas production, similar research is needed to model the

metabolic pathways for the degradation of these feedstocks to biogas.

Infection with phages can lead to lysis of host microorganisms and sig-

nificant microbial process disturbances due to the removal of essential

microbial groups. However, phages are difficult to examine owing to their

small size, low biomass, and the lack of a universal phylogenetic marker.

Metaproteomics offers an ability to detect and quantify phages present in

microbiomes through the identification and quantification of phage

proteins. Through the examination of microbial functional networks of

10 agricultural biogas plants and one laboratory-scale AD bioreactor using

metaproteomics, Heyer et al. (2019) found that biogas-producing

microbiomes could be affected by host-phage interactions besides other

microbial interactions such as syntrophy and competition. Mapping of

the proteins identified using metaproteomics to different metabolic path-

ways also confirmed the main assumptions used in the Anaerobic

Digestion Model 1 and revealed some indications for additional metabolic
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pathways (e.g., syntrophic acetate oxidation) and microbial interactions.

Some antimicrobial peptides and proteins were also detected at high abun-

dance. These antimicrobial peptides and proteins, as well as the phages

observed in thermophilic biogas plants, were factors contributing to the less

stable operation therein. Additionally, each biogas plant appeared to have its

own protein signature, and protein patterns could be linked to process dis-

turbances. Some enzymes were even identified as potential biomarkers for

process monitoring (Heyer et al., 2015). Therefore, metaproteomics can be

used tomonitor the changes of the AD process at the functional level and can

potentially provide information on the metabolic activities of individual

groups of microorganisms in AD bioreactors (Hanreich et al., 2013).

The main advantage of metaproteomics, as compared to metataxonomics,

metagenomics, andmetatranscriptomics, is the detection and quantification of

expressed enzymes and proteins, which directly contributes to the phenotypes

of themicroorganisms. It can also detect phages by identifying phage proteins.

Thus, metaproteomics greatly complements the other -omics technologies.

However, metaproteomics is challenged by sample impurities, sample com-

plexity, redundancy of protein identifications, and the lack of adequate

genome sequences required for accurate protein identifications (Heyer

et al., 2015). Additionally, dedicated algorithms and software tools are

required to process and analyze the large amounts of metaproteomic data.

Because of these limitations, only a small number of studies have used meta-

proteomics to investigate the biogas-producing microbiomes. Continued

improvement in sample preparation, protein separation and identification, a

grouping of redundant proteins, and new algorithms for verification of protein

identification will help improve metaproteomic studies of biogas-producing

microbiomes. As illustrated above, for comprehensive analysis of the

microbiomes in AD bioreactors, metaproteomics should be used in concert

with other technologies, such as microscopy, cytometry, metataxonomics,

metagenomics, metatranscriptomics, and metametabolomics.

4.6 Metametabolomics
Metabolism (catabolism for degradation and anabolism for synthesis) is the

ensemble of biochemical transformations occurring in cells of all organisms,

and it is embodied in the conservation of energy, degradation of substrates,

and synthesis of various molecules essential to sustain life. Metabolomics is a

comprehensive analysis to identify and quantify all the metabolites in an

organism. Metametabolomics is the microbiome-targeted version of
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metabolomics used on individual organisms. It collectively analyzes all

the metabolites in a particular physiological state of a microbiome. In met-

ametabolomics, metabolites are defined as small molecules (MM�1000Da;

e.g., glucose, cAMP, GMP, glutamate, etc.) transformed in the process

of metabolism and are important to or required for the maintenance,

growth, and function of individual microorganisms. Broadly speaking,

the products (i.e., SCFA) of acidogenesis during AD are also metabolites.

Metametabolomics is also reported to be useful in elucidating the intracel-

lular metabolic pathways that produce the metabolites within a microbiome

(Sasaki et al., 2014). Different analytical techniques have been used for met-

ametabolomic analyses, such as high-performance liquid chromatography

(HPLC) coupled with UV detection, Fourier-transform infrared (FTIR)

spectroscopy, liquid or gas chromatography coupled with mass spectrometry

(GC-MS and LC-MS, respectively), and nuclear magnetic resonance

(NMR). Most metametabolomic studies reported thus far used MS and/or

NMR because both can detect a wide range of metabolites with relatively

high specificity and reproducibility. NMR and GC-MS-based met-

ametabolomic approaches have been used to identify extracellular metabo-

lites, while GC-quadrupole-MS (GC-Q-MS) and liquid chromatography

triple-stage quadrupole MS (LC-QqQ-MS) were used to identify intracel-

lular metabolite profiles (Sasaki et al., 2014). Metametabolomics can provide

two types of analysis: targeted analysis and non-targeted discovery-oriented

analysis, with the former analyzing a specific class of compounds (e.g., amino

acids, fatty acids, lipids, carbohydrates), while the latter capturing a global

overview of the metabolic diversity of a microbiome by using technologies

that can detect and identify most, if not all, the metabolites.

Only a small number of studies have used metametabolomics hitherto,

and nearly all of them used untargeted metametabolomics. The first met-

ametabolomic study on biogas-producing microbiomes investigated the

degradation processes of glucose, starch, and cellulose using NMR spectros-

copy and microbiome profiles using DGGE (Date et al., 2012). Variations in

metabolites were evaluated as peak heights of 1H NMR signals. DGGE-

NMR correlation analysis identified some simple relationships between

microbiome profiles and metabolites, including the negative correlation

between glucose concentration and several DGGE bands related to

Firmicutes and Thermotogae. It was speculated that bacteria represented by

those DGGE bands might use glucose. By analyzing the intracellular metab-

olites using metametabolomics, Sasaki et al. (2014) compared the central

metabolite profiles from glucose in the microbiome of two AD bioreactors
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that were operated at neutral (pH 7.5) vs. acidic (pH 5.0) pH. The met-

ametabolomic analysis focused on the identification of the metabolites of

the EMP pathway, the pentose phosphate pathways, and the tricarboxylic

acid (TCA) cycle. The ratio of coenzymes, ATP, NADH, and NADPH

were also determined. It was found that the concentrations of intracellular

metabolites of the EMP pathway and the pentose phosphate pathway,

except for pyruvate, remained high during stable methanogenesis at the neu-

tral pH, indicating increased carbon flux through the glycolysis pathway

during stable methanogenesis. The extracellular acetate concentration tem-

porarily increased, consistent with a higher ATP level, during stable

methanogenesis. Intracellular concentrations of the intermediates of the

reductive branch of the TCA cycle, including malate, fumarate, and succi-

nate, were higher during deteriorated methanogenesis at the acidic pH. It

was surmised that NADH was consumed during acetate production under

stable methanogenesis, whereas NADH was used for lactate and succinate

production during deteriorated methanogenesis. Also, glutamate produc-

tion probably led to NADPH consumption. During deteriorated

methanogenesis, intracellular pyruvate and acetyl-CoA were accumulated,

which was suggested to be the cause of delayed glucose consumption and

decreased methane production. In a recent study, metametabolomics,

together with metagenomics, was used to examine the impact of operational

shocks (42°C vs. 32 °C, either side of mesophilic 37°C; and 20% loading of

lipids) to biogas production, functional potential of the microbiome, and its

metabolism in lab-scale AD bioreactors (Beale et al., 2016). The results

showed that increased biogas production correlated with an increase in

SCFA when lipids were added. Another study (Yang et al., 2014) compared

the metametabolomes between the two stages of a two-staged AD bioreac-

tor fed corn stalk using GC-MS. Increased levels of sugars and sugar alcohols

during methanogenesis and fatty acids during acidogenesis were reported.

Identification of stage-specific metabolic pathways will help understand

the metabolic pathways that are predominant or important in each stage

of staged AD.

Metametabolomics has the advantage to provide phenotypic informa-

tion, whereas metataxonomics, metagenomics, and metatranscriptomics

primarily provide genotypic information. As illustrated above, met-

ametabolomics can provide definitive information on the metabolism of

given nutrients and metabolic pathways. However, it suffers from several

limitations. First, it is challenging to efficiently extract most of the metabo-

lites frommicrobiome samples, especially those with a complexmatrix while
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preventing biased recovery and possible physical and chemical alteration.

The complex matrix of AD bioreactor samples makes the extraction of rep-

resentative and quantifiable metabolites particularly challenging. Second,

the physical and chemical properties of different AD bioreactor samples

can vary. Different solvents may have to be tested to achieve efficient extrac-

tion from different samples. Third, NMR and MS are the major analytical

technologies used in most metametabolomic studies. However, each has its

limitations in detecting and identify many of the metabolites. Interested

readers are referred to two recent reviews (Chaleckis et al., 2019; Smirnov

et al., 2016). The lack of a specialty metabolomic database for biogas-

producing microbiomes also hinders the analysis of metametabolomic data

obtained from AD bioreactors. Continued advancement and improvement

in chemical analysis technologies and new approaches will further improve

the capability of metametabolomics. For example, multidimensional NMR

was shown to be highly resolving, sensitive, high throughput, and quantitative

(Marchand et al., 2017). The combination of both MS and NMR also

improved the identification and analysis of new metabolites (Bingol et al.,

2015). New and improve bioinformatics algorithms and tools, such as

Workflow4Metabolomics (Giacomoni et al., 2015), will also enhance the

capability of metametabolomics.

5. Summary and future perspectives

Research on the biogas-producing microbiomes in the past many

decades has led to the accumulation of information and knowledge on

the diversity, composition, activities, and microbial interactions that deter-

mine the rate of biogas production and process stability of AD. The early

studies using cultivation-based methods and analysis enabled the elucidation

of the four major phases of AD (depolymerization of polymeric substances in

the feedstock, acidogenesis through fermentation, syntrophic oxidation of

fatty acids, and methanogenesis through both the acetoclastic and the

hydrogenotrophic methanogenesis pathways). Some species involved in

each of the four phases were also identified taxonomically, and biochemical

characterization of some of the representative species laid the foundation to

understand the entire AD process. Additionally, the phylogenetic, biochem-

ical, and physiological information of the cultured microorganisms present

in AD bioreactors seeded many of the public databases with important

microorganisms of biogas-producing microbiomes.
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The studies conducted using the various molecular biology techniques,

primarily cloning and sequencing of phylogenetic marker genes (before the -

omics became available) expanded the perspectives on the extent of bacterial

and archaeal diversity in biogas-producing microbiomes (Nelson et al.,

2011). The use of microbiome fingerprinting also made it possible to rapidly

evaluate and examine the microbiome dynamics and responses of individual

taxa to changed conditions, including startup, loading rate, change of feed-

stock, and operating temperature and pH. Owing to FISH, groups of micro-

organisms of interest, such as methanogens, were localized in anaerobic

granules. Coupled with DNA-based analysis, guilds of microorganisms, such

as acetate-oxidizing bacteria, were identified. The tremendous diversity at

low taxonomic ranks (species and below) provided the early evidence of

functional redundancy in biogas-producing microbiomes. qPCR also

substantially improves the quantification of individual groups of micro-

organisms of biogas-producing microbiomes, including pathogens and

antibiotic-resistant bacteria.

The omics technologies further advanced the findings made in the

molecular biology era. In particular, studies using metataxonomics, primar-

ily sequencing analysis of phylogenetic marker genes, documented the

majority of the taxonomic diversity (including the diversity of eukaryotes)

of biogas-producing microbiomes, while metagenomics unearthed the

majority of the functional diversity (Castellano-Hinojosa et al., 2018).

A core microbiome was found among AD bioreactors even though varia-

tions are inherent depending on a host of conditions (Peces et al., 2018;

Treu et al., 2016). Functional redundancy was clearly documented, and it

explains the relative stability of AD when the taxonomic diversity and com-

position changes (Bertucci et al., 2019; De Vrieze et al., 2017). Community

resilience is conferred from the functional redundancy and the high taxo-

nomic diversity in biogas-producing microbiomes (Abendroth et al.,

2018; Ferguson et al., 2016). The resilience can help biogas-producing

microbiomes to recover from shocks. Metatranscriptomics, meta-

proteomics, and metametabolomics complemented metataxonomics and

metagenomics and provided important information toward understanding

the phenotypic traits and features of biogas-producing microbiomes.

Metagenomics, metatranscriptomics, and metaproteomics can also analyze

the viruses and phages present in AD bioreactors. However, except

metataxonomics, metagenomics, and metatranscriptomics, the use of

metaproteomics and metametabolomics still faces some technical challenges,

and they have been used only a few studies. All the techniques and
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technologies have inherent applicability and limitations (Table 1). The most

appropriate technologies and technologies should be selected to achieve the

research goals.

The ultimate goal of the research on and analysis of biogas-producing

microbiomes is to effectively improve AD efficiency and stability rationally.

To that end, efforts and progress have been made to correlate bacterial and

archaeal populations and their functions to AD process parameters (Shin

et al., 2016; Venkiteshwaran et al., 2017). Although such correlations cannot

directly identify the drivers or barriers of AD, they can guild future research

toward rational monitoring and control of AD. Indeed, several studies found

distinct responses of certain bacteria and methanogens to ammonia accumu-

lation (Peng et al., 2018), operation temperature (Kim et al., 2017), and pH

(Zhang et al., 2019b). Some of the responsive groups of microorganisms

may serve as indicators during AD process monitoring (Sun et al., 2019),

while others may be used in bioaugmentation to help restore normal AD

process (Onwosi et al., 2019) and help with effective management of dys-

function of AD bioreactors (Onwosi et al., 2019). Future research on

biogas-producing microbiomes will further help enhance AD efficiency

and stability. Such research will benefit greatly from the continued improve-

ment of the omics technologies, particularly metaproteomic and met-

ametabolomics. Furthermore, standardized methods and analyses are needed

to produce data that can be compared used in the development and improve-

ment of anaerobic digestion models.
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