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ABSTRACT: Monolayer (ML) transition metal dichalcogenides (TMDCs) have
been rigorously studied to comprehend their rich spin and valley physics, exceptional
optical properties, and ability to open new avenues in fundamental research and
technology. However, intricate analysis of twisted homobilayer (t-BL) systems is
highly required due to the intriguing twist angle (t-angle)-dependent interlayer
effects on optical and electrical properties. Here, we report the evolution of the
interlayer effect on artificially stacked BL WSe2, grown using chemical vapor
deposition (CVD), with t-angle in the range of 0 ≤ θ ≤ 60°. Systematic analyses
based on Raman and photoluminescence (PL) spectroscopies suggest intriguing
deviations in the interlayer interactions, higher-energy exciton transitions (in the
range of ∼1.6−1.7 eV), and stacking. In contrast to previous observations, we
demonstrate a red shift in the PL spectra with t-angle. Density functional theory
(DFT) is employed to understand the band-gap variations with t-angle. Exciton
radiative lifetime has been estimated theoretically using temperature-dependent PL measurements, which shows an increase with t-
angle that agrees with our experimental observations. This study presents the groundwork for further investigation of the evolution
of various interlayer excitons and their dynamics with t-angle in homobilayer systems, critical for optoelectronic applications.

1. INTRODUCTION

Van der Waals (vdW) coupling is emerging as a powerful
method to engineer and tailor the physical properties of
atomically thin two-dimensional (2D) materials.1−4 Transition
metal dichalcogenides (TMDCs) with the chemical formula
MX2 (M = W, Mo, and so on and X = S, Se, or Te) are a class
of 2D materials consisting of predominantly vdW-coupled
atomically thin layers and exhibiting interesting optical
properties governed by their structural symmetry5,6 and
interlayer coupling,7−9 which are highly susceptible to stacking.
As these ultrathin materials are very sensitive to the dielectric
environment and interlayer interactions, understanding these
interactions is a key scientific challenge for building functional
homo- or heterojunction devices and novel hybrid 2D
materials.10 In the evolving era of twistronics, twisted vdW
hetero- and homostructures have demonstrated a plethora of
novel phases and functionalities.11−13 They have many
advantages over conventional heterostructures including
atomically sharp interfaces, no interdiffusion of atoms, and
no lattice parameter constraints.2

Synthesis of monolayer (ML)-to-few-layer TMDCs using
chemical vapor deposition (CVD) has already been reported
by many research groups,14−17 and their layer-dependent
electronic, optical, and vibrational properties have also been
investigated in sufficient detail.18−23 In the last few years, there
has been a surge of interest in the heterojunction of these ML
TMDCs.24−28 Owing to a large number of TMDCs being
available, a variety of combinations have been implemented in

the literature to observe several unique intriguing optical and
electrical features.29−32 This leads to a strong motivation to
understand how the twist affects interlayer interactions and the
excitonic level properties in these materials. However, limited
investigations are available on homobilayer systems, which are
essential for emerging applications in twistronics, spintronics,
valleytronics, and optoelectronics. A few reports on homo-
bilayers, such as Van Der Zande et al.10 showing optical and
vibrational properties of mechanically stacked t-BL MoS2
bilayers, Ji et al.33 showing changes in the photoluminescence
(PL) pathway in t-BL WS2, and Scuri et al.34 demonstrating
gate-controlled valley dynamics in t-BL WSe2, can be found.
The limitations in the study on homo-t-BL TMDCs are, so far,
due to the difficulties involved in the transfer process and
challenges involved in determining the exciton dynamics, the
exact origin of PL peaks, and evolution of interlayer
interactions with t-angle.
In this paper, we demonstrate an intriguing effect of t-angle

on the exciton−trion transition and the evolution of interlayer
coupling in t-BL WSe2. We predict the presence of interlayer
excitations for different t-angles in the range of 0 ≤ θ ≤ 60°.
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Artificially stacked t-BLs on SiO2/Si substrate with different t-
angles demonstrate tunable PL emissions including a drastic
red shift at room temperature (RT) PL and competition
between different excitonic emission peaks with increasing t-
angle relative to 0 and 60°. The observed variations provide
evidence of a t-angle-dependent change in stacking symmetry,
leading to variation in interlayer coupling strength and
interlayer excitons (IEs) in our t-BL systems.

2. METHODS

The ML WSe2 flakes on a sapphire substrate were synthesized
using a low-pressure chemical vapor deposition (LPCVD)
method similar to that in our earlier report.35 The as-grown
ML WSe2 flakes were transferred onto a 300 nm SiO2/Si
substrate using a PMMA-assisted transfer process.35 The
transfer process was repeated another time on WSe2/(SiO2/Si)
prepared earlier to synthesize BL WSe2 flakes. To enhance the
coupling between the two layers, the samples were annealed in
vacuum (<0.1 Pa) with a flow of Ar gas (100 sccm) at 300 °C
for 12 h. BL flakes with selected twist angles ranging from 0 ≤
θ ≤ 60° were chosen for Raman and PL analyses.
Optical microscopy (OM) images were taken on an

Olympus (model no. BX51RF) microscope, with a 100X
objective lens with NA ∼ 0.95. Both low-frequency (LF) and
high-frequency (HF) Raman measurements were performed at
RT using a confocal Raman system (Wi-Tech, model no.
Alpha 300 M+) with backscattering geometry under 488 nm
laser excitation. The laser was focused to a spot size of ∼1 μm
on the sample, obtained with 1800 gr/mm grating. PL spectra
of WSe2 flakes prepared on 300 nm SiO2/Si substrates were
obtained using a high-resolution μRaman spectrometer
(LabRam 800, Horiba Jobin Yvon) in backscattering geometry.
Green laser (514 nm) and red laser (632 nm) were used as
excitation sources for RT measurement, which were focused to
a spot size of ∼1 μm on the sample, obtained with 600 gr/mm
grating. Low-temperature (LT) PL measurement was carried
out with 488 nm laser excitation with the same configuration as

mentioned before. The laser power was kept low (∼50 μW) to
avoid local heating.

3. RESULTS AND DISCUSSION

In this work, we consider various BL WSe2 samples with
different t-angles in the range of 0 ≤ θ ≤ 60° as shown in
Figure 1, and their corresponding schematics are given in
Figure S1 (Supporting Information). The thickness of
vertically stacked ML flakes is confirmed by AFM measure-
ments, illustrated in Figure S2 (Supporting Information), and
found to be consistent with earlier reports.36−38 LF RT Raman
spectra of t-BL WSe2 samples shown in Figure 2 reveal shear
(S) and layer breathing (LB) modes in symmetric 0° (60°)
stacking at ∼19 (∼16.5) cm−1 and ∼33 (∼28) cm−1,
respectively, analogous to the MoX2 system.39,40 LB modes
in symmetric stacking are addressed as LB1. Here, 0 and 60°
are shifted with respect to each other. This is in accordance
with their difference in the stacking orders (R and H,
respectively). Decrease (Increase) in the intensity of S (LB1)
mode from 60 to 0° and greater separation of the two peaks for
0° confirm the different polytypes,41,42 while an extra LB
(called LB2) mode emerges for asymmetric stacking with no
evidence of S mode, confirming the absence of restoring forces
in intermediate t-angles. The emergence of the LB2 mode may
be attributed to the misaligned structure in the asymmetric
stackings. On examining the variation of LB1 with t-angle,
softening of the mode for asymmetric stackings is noted,
indicating weaker interlayer coupling. In contrast, HF RT
Raman spectra do not show considerable shifts with t-angle,
eliminating the presence of significant strain in the samples.
HF Raman spectra are separated into two parts, as shown in

Figure S3a,b. Intralayer E2g
1 [Γ] (∼248.7 cm−1) and A1g [Γ]

(∼251.5 cm−1) modes, seldom resolved together due to
excitation polarization dependency,43 are indicated along with
a higher-order resonance 2LA[M] mode in Figure S3a.
Moreover, improved interlayer coupling due to annealing of
artificially stacked samples is confirmed from the emergence of
B2g
1 [Γ] mode at ∼308 cm−1 in t-BL samples and its absence in

Figure 1. [a−f] OM images of t-BL WSe2 samples on SiO2/Si substrate with different t-angles indicated by θ.
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ML samples, as shown in Figures S3b and S4. Also, the
intensity variation of this mode with t-angle agrees with the
conclusion drawn from the softening of the LB1 mode
regarding the interlayer interactions. In addition, its higher
intensity for 60° than 0° t-BL confirms the stronger interlayer
coupling in the former owing to its H-type stacking as
discussed earlier.
Furthermore, RT PL spectra are depicted in Figure 3a for

ML and t-BL WSe2 samples to analyze t-angle dependency on
excitonic transition. ML WSe2 shows a sharp peak at ∼1.68 eV,
attributed to direct-band-gap (BG) K−K transition. The
asymmetric nature of the PL envelope of ML WSe2 indicates

contributions from neutral exciton (AX0) and charged exciton
(AX−) separated by ∼28−32 meV, which is in good agreement
with earlier reports.44 The narrow full width at half-maximum
(FWHM) of ∼41 meV for AX0 gives an inference of highly
crystalline WSe2 flakes with minimal defect states. The wider
spectrum in BL samples is the result of several momentum
dark exciton states and trion states in close proximity to the
highest-energy bright exciton peak. The additional peak
(indirect in nature) at ∼1.58 eV (0° t-BL) is regarded as a
momentum dark exciton or a localized exciton and labeled IX.
IX is apparent for stable stackings at 0 and 60° but not for
asymmetric stackings, indicating a direct BG nature for the
latter. Interestingly, an unintuitive red shift in PL is observed
for intermediate t-angles compared to stable stackings, as
illustrated in Figure 3b. Contradictorily, in the literature,
several earlier works have reported a blue shift in PL with
increasing t-angles in BL WSe2.

45,4645,46 But these studies
carried out at cryogenic temperatures (<10 K) are for
momentum indirect Q−K or Q−Γ emissions at lower energies
(∼1.5−1.6 eV). As opposed to Mo-based TMDs,47−49 the
direct emission peak near ∼1.7 eV in WSe2 is strongly
quenched at lower temperatures due to the presence of lower-
lying dark exciton states (see Supporting Information, Figure
S5). This makes it difficult to resolve the peaks near AX0 even
at low temperatures. However, the red shift in the direct
exciton peak of W-based TMDs is evident in recent reports by
Zheng et al.50 and Ji et al.33 Also, in the report by Merkl et
al.,46the K−K peak is seen to shift closer to the Q−K peak with
increasing t-angles at 4 K in WSe2. Although the results in
these reports indicate such an interesting feature, a discussion
on the origin of such a shift is clearly missing.
For confirmation, RT PL measurements were repeated using

a different laser excitation (514 nm) on all t-angles, and the
same trend was found, as shown in Figure S6 (Supporting
Information). Initially, one may come up with two possible
explanations of either strain-induced (due to twist) red shift or
K−K band-gap reduction. However, on the one hand, Raman
measurements indicate the absence of any significant strain,
and on the other hand, our density functional theory (DFT)

Figure 2. LF Raman spectra of t-BL WSe2 with different t-angles in
the range of 0 ≤ θ ≤ 60°. Shear (S) and layer breathing (LB1 and
LB2) modes are marked.

Figure 3. [a] RT PL spectra at 633 nm excitation for ML and t-BL-WSe2 with different t-angles, respectively. [b] Peak position of AX0 and AX−

with different t-angles. [c] Peak intensity ratio of trion and exciton with different t-angles.
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calculations (details in Supporting Information Note 1) show
the negligible effect of t-angle on K−K BG as shown in Figure
4. At 60 and 21.78° (chosen to reduce computational

complexity) t-angles, a similar BG of ∼1.3 eV is obtained at
K valley with merely a ∼9 meV difference. For 0 and 27.79°,
refer to the Supporting Information Figure S7. This is widely
expected in group VI-based TMDs due to the major
contributions from d orbitals of transition metal at K point,
leading to comparatively weaker interlayer coupling at the
band edge state. Further, the AX0 peak blue-shifts from ML to
symmetrically stacked BL WSe2 as shown in Figures 3a and S6,
which is significant in LT PL (Figure 5a). This will be an
unexpected result if we consider the AX0 peak to be solely from
intralayer A exciton emission. Here, we consider AX0 in t-BL

samples not to be from K−K intralayer exciton owing to the
red shift with t-angle and blue shift from ML to BL. This
strongly indicates the presence of interlayer excitons (IEs). As
explained earlier, the difficulty in resolving these peaks even at
cryogenic temperatures makes it more challenging to
determine the exact origin. However, we try to present an
intuitive and logical explanation here.
First, due to the contributions from W d orbitals at K/K′

point in BL WSe2, the interlayer hopping amplitude of both the
electrons and holes is less than the spin-splitting at the
conduction and valence bands (specifically for H stacking),
respectively. This restricts the carriers to a single layer at the K
point of the Brillouin zone.48,51 However, this restriction is
valid only at the band edge K point of the Brillouin zone and
not at a point close to K.30 Owing to the finite momentum of
the incident photon, the excitons can be excited at a position
slightly away from the band edge state. Das et al.52 provide
details on the finite probability of formation and emission of
this direct interlayer exciton. Hence, for the case of symmetric
stackings (0 and 60° t-BL), the presence of momentum direct
interlayer exciton at K can be considered. As the binding
energy of interlayer exciton is less than that of intralayer
exciton and the K−K electronic BG does not have a
considerable variation, the blue shift of the AX0 peak observed
from ML to BL is justified. Also, a difference in the peak
position of AX0 between 0 and 60° t-BL, shown in the PL
spectra, can be explained using the deviation in spin-splitting
and spin-valley locking of interlayer excitons in the two
symmetrically different systems.30 The formation of direct
interlayer exciton at K occurs from the upper (lower)
conduction band minimum in 0° (60°) t-BL WSe2. However,
justification for the red shift in the AX0 peak with t-angle is still
needed. Higher interlayer separation and momentum mis-
match in the asymmetric stackings indicate lower binding
energy of the interlayer exciton, as compared to symmetric
stackings. This should, in general, lead to a blue shift in the
peak position with t-angle, the inverse of the observed
variation.

Figure 4. DFT calculated band structure of t-BL WSe2 for 60° [a] and
21.78° [b]. Red arrows indicate the direct BG transitions. Blue and
yellow arrows correspond to the indirect BG transitions.

Figure 5. [a] PL spectra at 100 K and 488 nm excitation for ML and t-BL-WSe2 with angles 0, 35, and 60°, respectively. [b] Lorentzian FWHM for
AX0 is extracted from Voigt profile fitting done on the PL spectra obtained at various temperatures for ML and t-BL flakes.
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Earlier theoretical investigations on interlayer excitons in BL
WSe2 indicate the presence of several momentum dark exciton
states (K−Γ and K−K′) in close proximity to the K−K
transition (<∼60 meV) peak that remain unresolved to date in
experiments. Moreover, spin-splitting in K valley leads to two
different indirect K−Γ excitons that are shown to be red-
shifted with respect to K−K exciton by ∼40 and ∼100 meV.53

Interestingly, the peak position of AX0 does not vary for the
intermediate t-angles and is approximately ∼45 meV red-
shifted from that of symmetric stackings. We assume the AX0

peak in asymmetric stackings to be from the phonon-assisted
emission of K−Γ excitons with the electrons in the upper
conduction band minimum at K valley. But again, intervalley
scattering of holes in WSe2 is considered to be forbidden due
to large momentum mismatch and spin orbit splitting at K or
K′ valleys. However, as explained earlier, we have carriers near
to but not exactly at K point, which makes this scattering to be
allowed in nature. Importantly, this scattering is more
prominent for thermally excited carriers, i.e., at RT. This is
precisely our observation. RT PL spectra show a significant red
shift from symmetric to asymmetric stacking when compared
to those of LT PL. Furthermore, with the increase in interlayer
separation and momentum mismatch, the K−K transition is
expected and observed to drastically quench. However, due to
delocalization of the holes at the zone center, we have
significant contributions from the momentum dark K−Γ
excitons for intermediate t-angles.
Next, the energy of the peak labeled IX (∼100 meV red-

shifted from K−K), observed in the symmetric stackings, lies
close to the expected K−Γ excitons with the electrons in lower
conduction band minimum at K valley. The intensity of the IX
peaks is observed to drastically quench in the asymmetric
stackings, resembling a competition between the two K−Γ
excitons. Similarly, in Figure 3c, competition in the intensity of
AX− and AX0 peaks is evident with t-angle. Also, AX− energy
shows a similar red shift as discussed earlier. This suggests the
interlayer nature of the peak with contributions from K valley.
The exact nature of the AX− and IX peaks requires further
investigation, which is out of the scope of this work.
Now, we attempt to address exciton dynamics to some

extent using the temperature-dependent steady-state PL
spectra (Figure S8, Supporting Information). Comprehending
radiative recombination processes in TMDCs is challenging
and requires precise time-resolved measurements and pump−
probe measurements. Also, a complex technique such as four-
wave mixing spectroscopy54 needs to be employed for the
determination of homogeneous and inhomogeneous compo-
nents. Therefore, it is always beneficial to have a theoretical
approach for estimating the value of a desired observable that
requires an intricate experimental setup for its determination.
For radiative lifetime variation with t-angle, a specific approach
(Supporting Information Note 2) involving temperature-
dependent homogeneous line width (γ) is used. It should be
noted that this method is suitable only for the most significant
peak (AX0 in our case), as other peaks are mostly dominated
by inhomogeneous broadening. Figure 5a demonstrates the
deconvoluted peaks at 100 K for ML and t-BL WSe2 samples.
The significant blue shift observed in moving from ML to
symmetric t-BL is unusual and only indicates the existence of
interlayer excitons as discussed earlier. Here, γ of the AX0 peak
(in red) is extracted at temperatures ranging from 100 to 300
K (shown in Figure 5b) and fitted with Rudin’s function55 to
obtain γ at 0 K, needed for lifetime estimation (refer

Supporting Information Note 2). The radiative lifetime
calculated for AX0 at RT for ML (∼1.2 ns) and t-BL (0, 35,
and 60°) samples (∼4.4, ∼5.2, and ∼4.1 ns, respectively) show
a longer lifetime in BL, confirming the indirect nature of
excitons in momentum and/or real space. The lifetime
evaluated for the ML indicates a slower relaxation channel
that dominates at RT47 and a fast relaxation process that is
predominant at low temperatures (∼400 fs for ML and ∼600−
800 fs for t-BL at 0 K). However, our focus is based on trends
rather than the actual values obtained from the theoretical
approximations. Previous reports show improved overall
lifetime in BL systems compared to ML due to either trion
contribution30 or indirect excitons. However, in our analysis,
we observe an increase in the lifetime of AX0 alone, discarding
the role of AX−. Also, the longest lifetime of AX0 obtained for
the misaligned stacking (35°) agrees with the transition from
K−K to K−Γ excitons, as detailed above. K−K is momentum
direct for the case of symmetric stackings yet has a longer
lifetime compared to intralayer excitons due to dielectric
screening and spatial misalignment. But for other t-angles, the
IEs at play are momentum indirect in nature (K−Γ) and are
further spatially separated, resulting in the suppression of
nonradiative relaxation channels and improvement in radiative
lifetimes. Hence, a longer radiative lifetime of AX0 is observed
with a red shift in its peak position due to twists relative to
stable stackings. These intriguing observations demand further
intense investigations into theoretical and experimental aspects
to fully comprehend twisted bilayer systems.

4. CONCLUSIONS
In this work, we present various experimental observations in
Raman and PL spectra highlighting t-angle dependency in the
interlayer coupling, nature of BGs, and interlayer excitons. One
major observation was the red shift in PL spectra from
symmetric to asymmetric stacking in t-BL WSe2, prominent at
RT. Possible explanations for this observation were made
corroborating with the existing literature and DFT calculations.
Evolution of the interlayer nature in the highest-energy peak
from 1L to BL was predicted. Deviations in the interlayer
excitons and radiative lifetimes were observed with the
variation of stacking symmetry arising from the twist. The
higher-energy PL peaks in W-based TMDCs tend to quench
with lowering of temperature, increasing the complexity of
resolving the peaks close to this energy. Hence, this work
demands more rigorous theoretical investigations on twist-
dependent evolution of trions and high energy interlayer
excitons in these homobilayer systems.
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