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Introduction
The dual premise that inherited monogenic errors in 
membrane ion currents cause disease, and that drugs 
designed to restore the biophysics of defective volt-
age-gated channels hold the key to correcting them is 
over 50 years old and remains unshaken. Breakthroughs 
in visualizing, modeling, and optically controlling pore 
regions of voltage gated-channels, including alternative 
voltage-sensing (Whicher and MacKinnon, 2016) and 
temperature sensitive (Arrigoni et al., 2016) domains, 
combined with the widening search for therapeutic 
peptide toxins (Verdes et al., 2016) and synthetic al-
losteric modulators (Changeux and Christopoulos, 
2016), all signal continuing grounds for unbridled 
optimism, even while leaving significant kinetic prop-
erties unexplained (Hoshi and Armstrong, 2015). Now 
a third wave of discovery is unfolding, driven by the 
steady drumroll of genetic variants within subunits of 
this molecular superfamily detected by exome sequenc-
ing in cases of human epilepsies and cognitive disorders 
appearing at the earliest stages of life. The challenge to 
isolate and repair the pathogenic mechanisms of these 
experiments of nature provides an overarching scien-
tific framework to explore links between the genetic re-
finement of ion channel biophysics with their cellular 
biology and to trace the critical steps toward their high-
est evolutionary achievement, synchronizing neurons in 
the human neocortex.

Why study channel disorders in epileptic cortical mi-
crocircuits in preference to single cell models? Brain 
tissue is the single largest repository of membrane 
bound proteins (Uhlén et al., 2015), and enrichment 
of ion channel gene mutations in epilepsy, a proto-
typical neuronal synchronization disorder affecting 
nearly 1% of the world population, comes as little sur-
prise. The first 10 genes linked to epilepsy in humans 

and mouse genetic models were all subunits of volt-
age- and ligand-gated ion channels, which currently 
constitute nearly one third of nearly 150 known mono-
genic causes of seizure disorders (Noebels, 2015a). 
Subsets of these channel genes overlap with those for 
other disorders such as ataxia, autism, and cognitive 
development and memory impairment (Spillane et al., 
2016), creating a genetic borderland of single channel 
comorbidities with many different circuits affected by 
shared molecular errors (Noebels, 2015b). Because in-
dividual neurons express up to 300 different channel 
subunits and develop unique use-dependent cell and 
isoform-specific profiles, an inherited variant may be 
tolerated in one neural pathway and damaging in an-
other. The technical simplicity of a transfected heterol-
ogous model cell to determine alterations of activation 
kinetics, an efficient first step, cannot accurately reflect 
the dynamic and cell-specific compartmental density of 
the current and can only suggest rather than explain 
why, where, or when synchronization in a given network 
will be impaired.

Nevertheless, molecular diagnosis of early-onset 
ion channel disorders is having an immediate clinical 
and translational impact in neurology. Causative gene 
discoveries are widely embraced by clinicians eager to 
genetically tag and stratify affected individuals, parse 
their neurological syndromes, and select appropriate 
pharmacology according to the lost or acquired 
conductance of the mutated channel. In parallel, 
they are forging the creation of parent–scientist 
advocacy groups focused on ion channel research, 
bioinformatics tools to evaluate variant pathogenicity, 
relational patient variant database websites that link 
treating physicians with expert channel physiologists 
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(https​://Matchmakerexchange​.org), and molecular 
pharmacology “pipelines” using cell and network 
models to screen for existing approved compounds 
that may restore single variant dysfunction (Griffin et 
al., 2016; Schutte et al., 2016; Streit et al., 2016). New 
methods of optically probing (Zhang et al., 2016) 
and controlling (Rajasethupathy et al., 2016) fast 
transmembrane voltage changes in excitable cells, 
coupled with the ability to modify and assay single 
channel function in neurons induced from patient-
derived and unaffected pluripotent stem cells (Liu et 
al., 2013; Patzke and Südhof, 2016; Sun et al., 2016) 
are also certain to accelerate personalized evaluation of 
mutant channels.

Crystal structures do not predict biological complexity.� 
If this auspicious trend continues, the next decade 
should witness a steep increase in our ability to more 
precisely diagnose human ion channel disorders and 
challenges the field of channel biophysics to complete 
a “rough draft” of a large remainder of the nearly 400 
known ion channel subunits that are currently under-
studied. However, even considering those that are best 
understood, the exact roles of “sticky” or “leaky” mu-
tant activation kinetics versus current density in single 
transfected cells are unclear. In a developing circuit, 
the ability of a channel to shape brain network excit-
ability extends beyond simple ion permeation, and im-
portant stretches of discontinuity in the biological 
evidence remain.

Proof of the “missing physiology” in sodium channel 
variant epilepsy arose when clinicians and biophysicists 
alike realized that children bearing missense mutations 
throughout the same sodium channel SCN1A subunit, 
often at intramembranous loci distant from S4 volt-
age sensor and S5-6 pore-forming domains, displayed 
an impressive spectrum of severity in their disorder 
or different clinical disorders entirely. Most patients 
bearing gain of function mutations proved resistant to 
therapy with sodium channel blockers. Likewise, the 
unexpected hyperexcitability of cortical circuitry result-
ing from global deletion of a gene for sodium current 
puzzled cellular electrophysiologists. This anomaly can 
only be solved by in situ analysis of the affected chan-
nel as found in the disease circuit rather than recre-
ated in a model cell. We have since learned that the 
paradoxical brain phenotype is explained by neuronal 
heterogeneity within the afflicted network combining 
dissimilar and nonlinear thresholds for action poten-
tial electrogenesis at axonal initial segments, along with 
nonuniform and cell-specific disruption of interaction 
domains, trafficking defects, or compensatory currents 
in different cell types. An added genetic explanation 
invokes epistatic interactions among other variants in 
each individual’s genetic background. Further exome 
analysis reveals that in some cases, seemingly identical 

SCN1A seizure disorders arise from mutations in other 
unrelated voltage- or ligand-gated ion channels. These 
two revelations, allelic and genetic heterogeneity, are 
accepted integral properties of membrane diseases dic-
tated by voltage control, where the timing and strength 
of depolarization, neurotransmitter release, and cir-
cuit stability all depend on the shared participation of 
many colocalized conductances, and where the electri-
cal neighborhood of the affected channel plays a key 
role in sculpting the mutant neuronal phenotype as 
well as prioritizing targets for therapy. But control of 
membrane voltage fluctuation is only the beginning of 
a complex story that must start with an accurate mo-
lecular diagnosis.

The goal of this review is to highlight supramolec-
ular mechanisms not evident in the study of cultured 
heterologous cell systems that will help to more accu-
rately describe the relationship between genotype and 
phenotype in brain ion channel disorders. Examples, 
descending from the level of the phene to in silico ge-
nomic network models, are selected from single ion 
channel–linked cortical synchronization defects that 
illustrate aspects of subunit biology contributing to gen-
otype–phenotype disparity within brain circuitry. The 
intervening dynamics have important implications for 
precision therapy of developmental nervous system dis-
orders and, for the most part, require in situ evaluation 
in developing mammalian brain.

Channel variants as pathogens
When a class of de novo protein-damaging channel 
variants recurs in similarly affected individuals, it pro-
vides convincing evidence in support of disease causal-
ity (Claes et al., 2001). However, so called monogenic 
mutations are accompanied by countless other inher-
ited variants, sometimes within the same channel; char-
acterizing their added roles amid this genetic noise is 
difficult and largely ignored by contemporary clinical 
gene testing. Because inherited variants, both common 
and rare, are found routinely and outnumber by thou-
sands the few de novo mutations in a typical individual, 
understanding their impact is essential to sharpen the 
candidate disease mechanism.

For these reasons, although the solution to unknown 
channel variant pathogenicity is first sought by mining 
functional databases or examining a single model cell 
selected for ease of study rather than derived from the 
actual diseased network, it must ultimately incorporate 
the rich molecular interactomics and neuronal hetero-
geneity of the brain throughout its development, as can 
be achieved experimentally by engineering the variant 
into a “humanized” model. At the molecular genetic 
level, growing evidence of ion channel biological com-
plexity in neurons provides an extensive source of func-
tional variation to account for clinically diverse allelic 
syndromes. Alternative splicing and editing of mRNA 

https://Matchmakerexchange.org
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transcripts greatly expands the functional spectrum and 
subcellular localization of Nav, Cav, and Kv channel pro-
teins (Lipscombe and Andrade, 2015; Trimmer, 2015; 
Onwuli and Beltran-Alvarez, 2016), and an advanced 
catalogue correlating cell type–specific differences 
in morphology, physiology, and channel transcripts is 
being assembled from large-scale single cortical cell 
transcriptomic projects (Cadwell et al., 2016; Tasic et 
al., 2016), which in turn offer a molecular anatomical 
framework for selective spliceform-directed or stop 
codon read-through therapeutic strategies (Lin et al., 
2015). The gene responsible may also encode a protein 
directly involved in channel localization rather than 
primary structure that selectively transforms a subset 
of neurons. An exemplary isoform-specific “secondary” 
brain channelopathy phenotype that has been traced 
at this level has been recently reported in mice lacking 
ANK3 exon 1b isoform transcripts (Lopez et al., 2016). 
This AnkyrinG protein isoform, previously associated 
with human bipolar disorder, proportionately tethers 
Nav and KCNQ2/3 channels to the axon initial seg-
ment in a distinct subset of fast spiking interneurons, 
and the cell-specific isoform imbalance provoked by 
the mutation links a novel monogenic phenotype of ep-
ilepsy and bipolar depression distinct from the (lethal) 
global ANK3 deletion.

The high-resolution portrait of brain ion channel 
complexity emerging from single cell transcriptomics 
forces the realization that a ball and stick, Beadle and 
Tatum view of “one channel–one disease” must be re-
placed by one that builds on biological mechanisms 
underlying pleiotropy. This begins with a map of brain 
channel isoform anatomy and a flexible formulation 
that first recognizes channel isoform diversity and het-
eromeric co-assembly among neurons and the ability of 
a single variant to impact firing properties of entirely 
novel neuronal subpopulations; second, appreciates its 
variable contribution to excitability at discrete develop-
mental stages; and third, accounts for the remarkable 
coordinate regulation of circuit excitability through 
epitranscriptomic changes that self-adjust (or fail to) 
to maintain homeostatic firing patterns. Because firing 
and wiring are mutually reinforcing, membrane excit-
ability itself plays an integral role, in time and space, 
on the impact of each channel mutation upon neural 
circuit development, although inevitably, some circuits 
are more hard-wired than others. The adage, “cells that 
fire together, wire together,” describes a suprathresh
old relationship; however, recent evidence suggests 
that channel-mediated interactions begin well below 
that threshold. In immature brain, glutamate and GA-
BA-gated control of sodium, calcium, and chloride cur-
rents determine where postsynaptic clusters aggregate 
to form synapses on dendritic spines (Kwon and Saba-
tini, 2011; Oh et al., 2016). Even subthreshold channel 
defects may therefore contribute to the synaptic design 

of the microcircuits they are destined to control. Recent 
advances in novel functional cell labeling techniques 
using targeted recombination of immediate early gene 
reporters (Guenthner et al., 2013) or phosphorylated 
ribosome capture (Knight et al., 2012) can help iso-
late and trace circuits activated by channel mutations. 
Although molecular maturation programs underlying 
channel plasticity embody forbidding “dark matter” at 
present, we await large-scale cell type–specific datasets 
and continue to learn new rules for the developmental 
excitability blueprint one gene at a time.

Separating episodic from static circuit phenotypes
From the vantage point of clinically recognizable phe-
notypes, the protean network alterations linked to single 
channel epilepsy variants, from megencephaly (Yang et 
al., 2012) or brain atrophy (Figueroa et al., 2011) to ep-
isodic synchronous discharges and even sudden death 
(Goldman et al., 2009), emphasize the gaps in our cur-
rent understanding of channel structure–function rela-
tionships, as they arise at multiple levels of organization 
during brain development (Fig. 1). These intervening 
mechanisms are essential to unravel, as persistent neu-
rological deficits that appear long after birth may be 
caused by altered developmental and survival programs 
rather than ongoing dysfunction of the mutated chan-
nel and are thus beyond immediate repair by drugs that 
restore kinetics of the mutant current.

The goal of separating reversible and irreversible 
cellular electrical dystrophies is a seminal concern in 
channelopathies leading to seizures and intellectual 
impairment, known as epileptic encephalopathies. 
Whether and when these roles are separable likely 
hinges upon functions that extend beyond simple 
voltage control. For example, some dominant mis-
sense mutations of SCN1A α subunits are linked to 
simple childhood febrile seizures without cognitive 

Figure 1.  Pore and non-pore impact of ion channels in de-
veloping brain. Ion channelopathy is cell type and network spe-
cific and may produce reversible and irreversible alterations in 
brain function at multiple stages of development.
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loss, whereas others, particularly when arising de novo, 
create a severe epilepsy phenotype with profound in-
tellectual disability (Brunklaus et al., 2014), as also re-
ported for loss of SCN1B auxiliary subunits (Wallace et 
al., 1998; Ogiwara et al., 2012). Both have intracellular 
domains important for cytoskeletal interactions, but the 
latter has extracellular immunoglobulin-like motifs in-
volved in cell adhesion (Kruger and Isom, 2016). Could 
some SCN1A deletion mutations interfere with the 
structural role of co-assembled SCN1B’s in brain devel-
opment, or does the basis for intellectual impairment 
reside in each subunit?

A parallel dichotomy arises among potassium chan-
nel mutant phenotypes; however, evidence for non-pore 
effects is scant. Here, the large diversity of channel sub-
types, spatial localization, and coordinate positioning 
with other channels in membrane subcompartments 
is so extensive (Trimmer, 2015) that mutation of these 
channels approaches a near analogue spectral fine 
tuning adjustment rather than a binary switch for neu-
ronal integration. Nevertheless, distinctive “subunit syn-
dromes” persist. Mutation of KCNA2, often co-assembled 
with KCNA1 subunits, causes epileptic encephalopathy 
(Syrbe et al., 2015), as do many other potassium chan-
nel α subunit mutations with seizures (Villa and Combi, 
2016), whereas the intellect is inexplicably spared in 
most human KCNA1 cases, despite its early and major 
axonal expression pattern in cortical and hippocampal 
networks. A variety of point mutations in KCNA1 show 
clear phenotype differences based on whether traffick-
ing or kinetics alone are impaired (Rea et al., 2002). In-
terestingly, a remarkable study of two sets of monogenic 
twins bearing an F414S and a R307C dominant-negative 
mutation showed phenotypes that were strikingly dis-
parate in severity (Graves et al., 2010). An early-onset 
epileptic encephalopathy results from a V378A variant 
in KCNB1 subunits that alters both ion selectivity and 
localization (Thiffault et al., 2015), whereas de novo 
mutations affect sensor and pore domains and inhibit 
repetitive firing (Saitsu et al., 2015). Both loss and gain 
of function in KCNQ2 channels, which also localize 
to axons, correlate with epileptic and cognitive phe-
notypes (Miceli et al., 2015), and in the latter, clinical 
mutations, although few in number, offer remarkable 
insight into the fine structure–function of the voltage 
sensor. Replacement with either of two alternatively 
charged amino acids in the same S4 domain produces 
distinct neurological outcomes, R213W encoding a be-
nign neonatal seizure disorder, and R213Q with severe 
epileptic encephalopathy; both, however, markedly 
destabilize the open state, causing a large decrease in 
voltage sensitivity that could be restored by the Kv7 ac-
tivator retigabine (Miceli et al., 2013). Missense gain of 
function mutations in sodium-dependent KCNT1 potas-
sium channels cause epilepsy with a range of associated 
phenotypes, including intellectual impairment (Lim 

et al., 2016). The mutations appear to affect channel–
channel gating cooperativity between multiple channels 
residing in a single patch (Kim et al., 2014). Quinidine 
blockade has been variably successful in suppressing 
KCNT1-linked seizures and ameliorating cognitive de-
velopment (Chong et al., 2016). In animal models, dele-
tion of Kcnh3 leads to enhanced cognitive performance 
(Miyake et al., 2009), as well as epilepsy (Zhang et al., 
2010). Human BK channel α subunit (KCN​MA1) muta-
tion leads to generalized thalamocortical seizures (Du et 
al., 2005), whereas deletion of its β4 (Kcnmb4) subunit 
in mice produced focal hippocampal epilepsy (Fig. 2 A; 
Brenner et al., 2005). Understanding the prognostic im-
plications of channel gene variants and treating before 
critical periods of intellectual development will be essen-
tial to identify therapeutic opportunities to improve the 
developmental trajectory of the disorder.

Mismatches between mutant gene, current, and cell de-
fect.� In rare instances, the pattern of mutant channel 
expression is remarkably congruent with the malignant 
circuit; more commonly, the underlying pathogenic cir-
cuits are hidden in plain sight by widespread expression 
of the mutated subunit in cells that do not participate in 
the clinical phenotype (Fig. 2). In the latter case, these 
cellular “unaffected carriers” obscure the critical thera-
peutic targets. A clear lesson emerging from channel 
disease in the brain is that regardless of overall cellular 
expression pattern of the pathogenic channel, some 
cell types are more vulnerable than others to loss of the 
same subunit, and the emergent neurological disorder 
arises from very specific afflicted networks which may 
appear, change, and even disappear during life. Expla-
nations for unequal functional penetrance of the vari-
ant at the cellular level at varying stages of life should 
therefore be incorporated into mechanistic thinking. 
Acknowledging this key issue at the time of functional 
variant testing is important because the intrinsic impact 
of a variant at the single cell level depends on its molec-
ular neighborhood, that is, the remaining nonmutated 
channel composition. Combined patch clamp–single 
cell PCR channel expression studies of identified corti-
cal excitatory neurons clearly demonstrate that distinct 
patterns of evoked cell firing properties are sculpted by 
the ratios of their channel mRNAs, with some currents 
exerting far more influence than others (Toledo-Rodri-
guez et al., 2004). Furthermore, these channel expres-
sion profiles, as studied in isolated fast spiking cortical 
interneurons, undergo a remarkable shift during early 
postnatal brain development (Okaty et al., 2009). 
Therefore, designating a clinical channel variant as be-
nign or pathogenic using evidence from a single cell 
type and age is hazardous because in other cells, the 
same variant may be functionally silent.

Unexpectedly, inhibitory neurons may be less toler-
ant of channel defects than excitatory neurons. Epi-
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lepsy mutations in sodium channels offer intriguing 
examples of unequal genetic penetrance at the cellular 
level, and in these cases, whole cell current in pyramidal 
cells is not altered despite mutation of the channel. The 
mismatch was first noted when hemizygous reduction 
of the Scn1a subunit was found to dramatically reduce 
sodium current in mouse interneurons, while sparing 
pyramidal neurons, despite apparently equivalent lev-
els of gene expression (Yu et al., 2006). Interestingly, 
analysis of interneurons in a Scn1a mouse model car-
rying the human Dravet Syndrome Nav1.1-R1648H 
mutation confirmed the selective hypoexcitability of 
interneurons across several brain regions; however, this 
was not caused by reduced somatic Nav1 current, but 
rather slower inactivation affecting the spike electro-
genesis threshold at the axon initial segment (Hedrich 
et al., 2014). The basis of selectivity for interneurons 
and resistance in excitatory cells to both deletion and 
missense Scn1a mutations remains unexplained, but 
the contrasting current measurements suggest that re-
storing Nav current alone may not rescue all mutations. 
Reconciling interneuron vulnerability with the para-
doxical resistance of excitatory cells may hold a key to 
understanding network imbalance in these disorders.

In apparent contrast, a gain of function mutation, 
R192Q, in the widely expressed P/Q type calcium 
channel CAC​NA1A linked to cortical hyperexcitability, 
seizures, and premature lethality selectively spares cal-

cium current in interneurons. This variant predictably 
enhances pyramidal cell Cav2.1 current density, causes 
left-shift in activation gating, and increases transmitter 
release at excitatory terminals, but paradoxically has no 
apparent effect on inward calcium current in cortical 
interneurons (Vecchia et al., 2014). Allele-specific res-
cue strategies, including temperature-specific modifica-
tion of protein folding and trafficking sodium channel 
variants (Bechi et al., 2015), and quantitative analysis 
of mRNA transcripts for cell-specific compensatory 
changes in paralogous calcium channel α subunits (Eth-
eredge et al., 2007) may also help dissect the issue in 
both disorders.

Rather than directly altering membrane excitabil-
ity, loss of function P/Q channel α subunit mutations 
demonstrate a more subtle, trans-synaptic mechanism 
of disinhibition leading to epileptic hypersynchroniza-
tion. They consistently reduce inward calcium current, 
but also modify the cooperativity with release machin-
ery rather than reduce total evoked transmitter release 
at central excitatory synapses, which is sustained by 
N and R type channel coupling (Qian and Noebels,  
2000). Whereas a balanced, genomic loss of P/Q at all 
excitatory and inhibitory presynaptic terminals ought 
not produce epilepsy, reduction of P/Q coupled re-
lease increases synaptic “jitter” and destabilizes thal-
amocortical circuit development. This leads to cortical 
hypersynchronization in the form of generalized spike-

Figure 2.  Match and mismatch of mutant channel expression in channelopathy phenotypes. (A–D) In situ hybridization of ion 
channel mRNA transcripts show concordant (A and B) and discordant (C and D) expression in brain circuits mediating mutant channel 
phenotypes. (A) Expression of Kcnma1 subunits linked to human thalamocortical absence epilepsy phenotype show strong matching 
expression in cortical-thalamic (TCR, nRT nuclei) circuit. (B) Mutation of the related β subunit Kcnmb4 in mouse lacks significant tha-
lamic expression (circle); without it, the mutant mouse shows a hippocampal epilepsy phenotype of temporal lobe epilepsy instead. 
(C) Diffuse expression of Cacna1a transcripts broadly overlaps with pathogenic thalamocortical absence seizure pathway and with 
cerebellar ataxia, but does not clinically affect most other synaptic pathways. (D) Mutation of the related β subunit Cacnb4 shows 
identical seizure/ataxia phenotype as Cacna1a mutant mice, but somewhat better defines thalamocortical disease circuitry.
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wave discharges arising from enhanced rebound burst 
properties and disinhibition in the network (Noebels, 
2012). Selective isolation of the critical synapses by con-
ditional Cacna1a deletion in layer 6 pyramidal cells has 
narrowed the generalized P/Q defect to a singular ab-
errant descending corticothalamic input onto thalamic 
neurons (Fig. 3; Bomben et al., 2016). Impaired presyn-
aptic P/Q channel–mediated transmission at this single 
class of excitatory synapses (with no change in layer 6 
intrinsic neuronal excitability) up-regulated low thresh-
old T-type (Cacna1G) current in postsynaptic thalamic 
cells. The downstream thalamic inhibitory interneu-
rons in nucleus reticularis displayed enhanced rebound 
bursting; this firing pattern is a sufficient cause of this 
seizure type. The mechanism underlying trans-synaptic 
induction of aberrant burst properties by reduced pre-
synaptic P/Q excitation–release coupling is unknown, 
but P/Q channels mediate a form of rapid synaptic ho-
meostatic plasticity that might present a novel target for 
rescue (Frank et al., 2006).

Subunit reshuffling: Reassembly modifies variant pene-
trance.� The stoichiometry of α and β subunits can be 
altered by mutation, providing another means of sculpt-
ing the pathogenic network. The lethargic mouse  
carries a point mutation truncating the CacnB4 sub-

unit–binding site to the intracellular α subunit interac-
tion domain of CAC​NA1A-F channels (Burgess et al., 
1997). β4 is one of four cytosolic regulatory subunits 
that bind promiscuously to these α subunits, each con-
ferring distinctive changes. The β1–4 subunit expres-
sion patterns themselves are variably overlapping, 
creating complex profiles of αβ stoichiometry and high 
voltage-gated calcium current behavior in different 
cells. Absence of the β4 subunit throughout lethargic 
brain allows replacement at all α subunits by an alter-
nate family member, resulting in potentially novel pat-
terns of excitation-release coupling (Burgess et al., 
1999). In lethargic brain, P/Q current is partially res-
cued in cells expressing β1 or β3 (preferred partners of 
P/Q subunits) but is impaired in cells lacking these pa-
ralogues, so the vulnerable circuit is defined not by the 
cells where the mutant β4 subunit is lost, but by those 
where it is not rescued. An additional mechanism in-
vokes alternative gene transcription caused by altered 
intranuclear activity of a β4 subunit protein fragment 
(Ronjat et al., 2013).

Reassignment of subunit function.� Macromolecular re-
assembly by subunit reshuffling is distinct from func-
tional “subunit switching” (Fig. 4), a shift in transcription 
that occurs in some neurons during development and 

Figure 3.  Genetic isolation of critical epilepsy circuit underlying widespread calcium channelopathy. (A and B) Cre-driven 
selective ablation of Cacna1a in layer 6 corticothalamic projection neurons only delimits critical synapses sufficient for appearance 
of thalamocortical seizures, shown in C. (D) Defective glutamate release (N-type, rather than P/Q type) at these thalamic synapses 
induces postsynaptic enhancement of low threshold T-type calcium current and rebound bursting in downstream thalamic cells. Re-
modeling caused by loss of developmental homeostasis at this single class of synapses results in diffusely hypersynchronized cortical 
networks (reprinted from Bomben et al., 2016).
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may contribute to the onset of symptoms when the mu-
tant subunit is called into play. In both mouse and 
human, thalamocortical seizures show a clear onset 
during early childhood. A second developmental event 
during the functional maturation of synapses, which is 
not understood but is possibly caused by altered cal-
cium cooperativity and physical rearrangement, is ex-
emplified by the shared roles of P/Q and N type 
(Cacna1B) channels in exocytosis. In immature brain, 
excitation-secretion coupling depends primarily on cal-
cium entry through N type channels that is later sup-
planted at most synapses by P/Q channels (Miki et al., 
2013). Functional reallocation from a wild-type N chan-
nel release to an ineffective P/Q channel isoform may 
therefore contribute to the timing of seizure onset in 
Cacna1a mouse mutants (Noebels, 2012).

Activity-induced channel remodeling.� The potential 
disease impact of a channel mutation is also driven by 
its own ability to alter the electrical stability of the cir-
cuit. Epitranscriptomic mechanisms underlying chan-
nel remodeling and the progressive developmental 
excitability architecture of cortical circuits point to 
candidate mechanisms for “acquired channelopathy” 

(Nainar et al., 2016). For example, seizures dysregu-
late Kv channel transcription (Tsaur et al., 1992), 
which might result from promoter region methylation 
(Guo et al., 2011), microRNA effects (Henshall and 
Kobow, 2015), or A-I RNA editing genes such as ADAR 
that create Kcna1 isoforms differing in inactivation, 
assembly, and surface expression (Bhalla et al., 2004; 
Streit et al., 2014; Behm and Öhman, 2016), all lead-
ing to changes in seizure threshold. Sodium channel 
processing (Baek et al., 2014) and the stoichiometry 
of ligand-gated channels are also activity dependent 
(Scharfman and Brooks-Kayal, 2014). Inherited potas-
sium channelopathy may also arise secondarily from 
mutations in enzymes that desumoylate potassium 
channels. Senp2 deletion leaves Kcna1 and Kcnq2 
channels hypersumoylated and hypoactive, causing 
severe epilepsy with premature lethality (Qi et al., 
2014). Finally, activity-dependent “neurotransmitter 
switching” adds another layer of flexibility where re-
modeling the transmitter phenotype can reverse the 
identity of a circuit from excitatory to inhibitory 
(Spitzer, 2015). Overall, this level of supramolecular 
plasticity means that once established, seizures them-
selves alter the landscape and hence the evolving im-

Figure 4.  Maturation of ion channel expression and firing properties in developing interneurons. Channel subunit switching in 
a fast spiking neocortical inhibitory interneuron demonstrated by laser capture of parvalbumin + cells at differing ages and analyzed 
by microarray for sodium, potassium, and calcium channel subunit transcripts. Many subunits show clear reversal of channel tran-
script pattern in second postnatal week (reprinted from Okaty et al., 2009).
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pact of a channel variant, including its role in pharma- 
coresistance (Kobow et al., 2013).

Genomic channel variant architecture and 
cellular epistasis
Extensive personal ion channel gene variation was first 
uncovered in a large-scale parallel Sanger sequencing 
study of 237 ion channel subunits in several hundred 
individuals with epilepsy and neurologically unaffected 
controls to assess the impact of their global “channo-
type” (Fig. 5 A; Klassen et al., 2011). A major finding 
was the unexpectedly large number of variants, includ-
ing pathogenic rare channel variants, present across all 
channel genes in both groups, implying extensive epi-
static interaction and therefore no simple numerical 
threshold for epilepsy risk. Thus although epilepsy may 
arise from only one (or many more) channel variant(s), 
it is the specific identity and pattern, rather than the nu-
merical sum, of channel variants in an individual that de-
termines the final clinical phenotype. This makes sense 
if one considers the wide range of their conductances, 
valences, and uneven distribution across brain circuits. 
A second finding with major therapeutic implications 
for pharmacoresistance was the detection of individuals 
bearing a complex variant profile with multiple channel 
variants known to cause epilepsy (sometimes as many as 
eight). Computational simulations of multiplex current 
variation in a single model neuron demonstrated their 
enhancing or suppressant interaction.

Experimental genetic validation of inter-channel epis-
tasis by combining pairs of known variants supports this 
model. Early studies in Drosophila mutants demonstrated 
simple compound interaction of two axon excitability 
loci, later shown to encode ion channels (Ganetzky and 
Wu, 1982). In mouse brain, similar digenic suppression 
of seizure phenotypes has been demonstrated, surpris-
ingly even when both are individually epileptogenic. 
Crossing Kcna1-null mice amplified transmitter release 
in P/Q loss of function mutants and masked the seizure 
disorder, a result that could be phenocopied by phar-
macological potassium channel blockade (Glasscock 
et al., 2007). Phenotypic suppression occurred only in 
pathways where both channels were coexpressed, sup-
porting an anatomical basis for predicting candidate 
ion channel modifiers. Epistatic modulation may also 
be bidirectional, and crossing epileptogenic Scn2a and 
Kcnq2 variants increased seizure severity (Kearney et al., 
2006). Co-mutation of Scn8a can dramatically influence 
phenotype severity of mice carrying the Dravet syndrome 
Scn1a-R1648H mutation (Hawkins et al., 2011). Alter-
natively, channel variants influencing sodium channels 
can be isolated from the background by classical genetic 
techniques (Calhoun et al., 2016). These studies point 
to the importance of full channel profiling rather than 
single gene testing in the epilepsy clinic.

Large-scale simulation of personal variant profiles.� Ulti-
mately, computational models must be extended by in-

Figure 5.  Human ion channel variant complexity requires massive simulation to solve complex personal excitability profiles. 
(Left) Unexpected complexity of novel nonsynonymous single nucleotide variants detected among 237 channel subunits sequenced 
in two individuals with epilepsy (upper plots, affected 1 and 2) and without (lower, control 1 and 2). Overall, the numerical burden 
of channel variants did not significantly differ between these groups (epilepsy adults n = 152, neurological normal adults n = 139), 
indicating that pattern rather than load is a major contributor to phenotype. (Right) Computer simulation of a single hippocampal 
neuron firing pattern when current amplitudes are varied in a simple “two hit” model of a digenic mutation interactions between 
Nav/Cav (A) and Nav/Kv (B). In the future, personalized models of complex masking and degenerate current/firing pattern outcomes 
can be systematically tested in large networks incorporating an individual’s full compound variant profile (“channotype”) and cor-
related with real-life sensitivity to ion channel-based therapies (reprinted from Klassen et al., 2011).
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corporating evermore complex pattern of conductances 
to assess a complete personal channel variant profile, 
first cell by cell in single defined neuron types, and then 
combined in circuits (Fig. 5 B). The extent of multiplex 
variation also has important therapeutic implications 
for precision rescue, namely whether a polygenic pro-
file of epileptogenic variants can better predict pharma-
coresistance (as debated in cancer therapy; Bredberg, 
2011), because drugs acting on a single class of chan-
nels may not suppress epileptogenic defects in others.

An optimized model to simulate variant interactions 
in single cell behavior would incorporate not only their 
kinetics in light of recent past behavior, but their local-
ization. Defining the channel microenvironment can 
help predict the efficiency of gene–gene interactions in 
distinct subcompartments, both directly among physical 
channel dyads as well as those within effective electro-
tonic distance. For example, Kv4.2 is a major dendritic 
K+ conductance; monogenic deletion in mice does not 
cause seizures, but may modulate their threshold in 
dendritic trees. In contrast, deletion of the nine differ-
ent Kv channels localized in axons all lead to epilepsy, 
suggesting that tight coupling to impulse electrogenesis 
and release rather than dendritic integrative proper-
ties is more pathogenic. Evidence for the importance 
of channel proximity to transmitter release sites ex-
tends to distal preterminal regions, where mutation of 
ADAM11, a nonenzymatic disintegrin metalloprotein-
ase, eliminates retention of Kv1.1 and Kv1.2 channels at 
presynaptic terminals while sparing nodal Kv channels 
and leads to epilepsy in mice (Fig. 6; Kole et al., 2015).

Similarly, membrane currents in the vicinity of mu-
tated channels pinpoint an effective target for phar-
macological rescue, essential when a mutation has 
eliminated the protein entirely. For example, deletion 
of Kv1 channels in juxtaparanodal regions at nodes of 
Ranvier leads to ectopic burst firing, yet there is no 
physical channel left to target. However, Kcnq2 chan-
nels reside in the adjacent paranode, and opening 
these channels is sufficient to allow transcompartmen-
tal rescue of axon hyperexcitability (Fig. 7; Glasscock et 
al., 2012). The direct interaction of BK channels with 
calcium current (Kim and Oh, 2016) and their growing 
pharmacology (Hoshi and Heinemann, 2016) suggest 
an opportunity to co-regulate these neighboring epi-
leptogenic currents. Their role in circadian excitabil-
ity patterns (Whitt et al., 2016) is a novel link between 
channel function and epilepsies with strong diurnal 
clinical phenotypes.

At the circuit level, large multineuronal in silico net-
works are being explored in a model motor pattern 
neuronal generator to understand the general problem 
of homeostatic control of network excitability (O’Leary 
et al., 2014). This pursuit initially revealed the seminal 
principle of degenerate solutions among multiplex cur-
rents contributing to rhythmicity. A translational corol-
lary of this rhythmic network current “redundancy” as 
applied to synchronous cortical activity is that it multi-
plies potential therapeutic options for seizure control. 
Although substantial biological nonlinearities stand in 
the way of building realistic models (Gjorgjieva et al., 
2016), the quest for ever larger in silico network mod-

Figure 6.  Secondary channelopathy 
resulting from mutation of nonsubunit 
interacting gene. ADAM11 is critical for 
retention of Kv1.1/Kv1.2/Kvβ2 subunits 
at the presynaptic terminal (arrows) 
and "pinceaux" (arrowheads) of basket 
cells onto Purkinje cells (asterisks). Teth-
ered channel subunit proteins such as 
ADAM11, a member of the large mem-
brane disintegrin and metalloprotein-
ase family, play a key role in selective 
targeting and retention of Kv1.x chan-
nels to wild-type presynaptic terminals, 
as shown by their absence at cerebellar 
inhibitory basket cell terminals (yellow 
boxes) in the epileptic ADAM11Δ12–18 (a 
truncation removing the domain con-
taining the integrin-binding site) mutant 
mouse. HCN1, another channel located 
at the basket cell presynaptic terminal, 
is not altered. Bars: (left) 50 μm; (insets) 
10 μm. (Bottom) The same heteromeric 
K1.x channel α subunits are spared at 
mutant peripheral nodes of Ranvier, 
which depend on ADAM22 (modified 
with permission from Kole et al., 2015).
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els to simulate combinatorial channel gene variant 
patterns may one day speed our ability to analyze com-
plex personal ion channel profiles for optimal treat-
ment strategies.

Conclusion
Ion channel subunits comprise the single largest gene 
family underlying disorders of heart, muscle, and brain 
and the most frequently tested for precision clinical 
diagnosis of a broad phenotypic spectrum of central 
nervous system disease. These disorders collectively 
constitute an enormous public health burden, with a 
greater number of life years diminished than cancer. 
The significance of each variant, which may spell the 
difference between lifelong disability or sudden death, 
requires the most accurate functional interpretation to 
assign causality, stimulate drug discovery, and guide the 
use of gene variant–specific therapies.

Despite rapid technological innovation, we face a 
profound lack of functional information regarding the 
majority of ion channel genes and their myriad splice 
forms, interactomes, and the unexpected complex-
ity of their coordinate regulation within cells. Clinical 
exomes point to recurring mysteries, including bioin-
formatically “benign” variants with seemingly slight or 
no change in gating kinetics that lead to devastating 
disease, or functionally damaging yet clinically silent 
mutations, implicating the involvement of unknown 
non-pore functions and epistatic compensation.

Genetic testing has permanently expanded the ion 
channel basic research mandate, and focused studies of 
the functional biology of human channel mutations are 
now essential to the success of precision medicine. New 
collaborative and computational approaches are re-
quired to uncover, validate, and simulate variant patho-
gens in complex combinations. Fortunately, rather 
than distracting from the fundamental goal of refining 
canonical protein structure–function relationships, ge-
netic testing will accelerate discovery of unsuspected as-
pects of channel biophysics and biology in developing 
brain circuitry and optimize the selection of therapeu-
tic targets. Their profound clinical impact and transla-
tional potential illustrate why ion channel mutations 
represent some of the most intriguing and medically 
essential molecular lesions to understand and treat.
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