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Abstract

Background: Gene Regulatory Networks (GRNs) have become a major focus of interest in recent years. Elucidating the
architecture and dynamics of large scale gene regulatory networks is an important goal in systems biology. The knowledge
of the gene regulatory networks further gives insights about gene regulatory pathways. This information leads to many
potential applications in medicine and molecular biology, examples of which are identification of metabolic pathways,
complex genetic diseases, drug discovery and toxicology analysis. High-throughput technologies allow studying various
aspects of gene regulatory networks on a genome-wide scale and we will discuss recent advances as well as limitations and
future challenges for gene network modeling. Novel approaches are needed to both infer the causal genes and generate
hypothesis on the underlying regulatory mechanisms.

Methodology: In the present article, we introduce a new method for identifying a set of optimal gene regulatory pathways
by using structural equations as a tool for modeling gene regulatory networks. The method, first of all, generates data on
reaction flows in a pathway. A set of constraints is formulated incorporating weighting coefficients. Finally the gene
regulatory pathways are obtained through optimization of an objective function with respect to these weighting
coefficients. The effectiveness of the present method is successfully tested on ten gene regulatory networks existing in the
literature. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. The results
compare favorably with earlier experimental results. The validated pathways point to a combination of previously
documented and novel findings.

Conclusions: We show that our method can correctly identify the causal genes and effectively output experimentally
verified pathways. The present method has been successful in deriving the optimal regulatory pathways for all the
regulatory networks considered. The biological significance and applicability of the optimal pathways has also been
discussed. Finally the usefulness of the present method on genetic engineering is depicted with an example.
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Introduction

Gene regulatory networks perform fundamental information

processing and control mechanisms in the cell. Regulatory genes

code for proteins that activate or inhibit the expression of other

genes, thereby forming a complex web of interactions. Such

networks perhaps form the most important organizational level in

the cell, where signals from the cell state and the outside environment

are integrated in terms of activation and inhibition of genes. Genetic

network analysis [1] is expected to help experimental biology in

many ways. Practical applications may have a strong impact on

biotech and pharmaceutical industries, and in genetic engineering,

potentially setting the stage for rational redesign of living systems and

predictive model-based drug design [2].

Owing to the high connectivity of the different regulatory

interactions within the gene regulatory network, there has been

considerable interest in exploiting tools from functional genomics

for mapping of global regulatory structures or using high

throughput experimental techniques for determining how regula-

tory flows through different branches of the gene regulatory

network are controlled. Regulatory flows through a given

interaction can be controlled by transcription, translation or

posttranslational modifications, i.e. modification of the active

enzyme concentration. The activity of genes in genomes of higher

eukaryotic organisms is regulated mainly by the means of huge

class of regulatory proteins (transcription factors, TF), through

specific regulatory sequences - TF binding sites that are located

usually in a proximity of the genes.

Pathway analysis is becoming increasingly important for

assessing inherent network properties of biochemical reaction

networks [3,4]. Of the two most promising concepts for pathway

analysis, one relies on elementary flux modes [5] and the other on

extreme pathways. Flux balance analysis (FBA) [6] is based on the

fundamental law of mass conservation and the application of
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optimization principles to determine the optimal distribution of

resources within a network. Due to the presence of the inequality

constraints on various fluxes, linear algebra can no longer handle

such a mathematical system of equalities/inequalities, forcing the

use of convex analysis [7,8] to study the properties of the solution

space. The mathematical foundations and unique features of these

pathways enable one to evaluate pathway/network properties such

as product yield, network robustness. Thus elementary modes and

extreme pathways play a growing role in the analysis of complex

biochemical reaction networks [9].

Flux balance analysis (FBA) has been useful for large scale

analysis of metabolic networks, and methods have been developed

to extend this approach for transcriptional regulation [10,11]. Here

we develop a method incorporating the principle of regularization

for identification of an optimal pathway in gene regulatory networks

starting from a given gene to a target gene. The method, first of all,

generates the possible flow vectors in the pathway. We consider only

those flow vectors which, by taking convex combination of the basis

vectors spanning the null space of the given node-edge incidence

matrix, satisfy the quasi-steady state condition along with other

inequality constraints. Then a set of weighting coefficients

representing concentration of various transcription factors is

incorporated. A set of constraints involving these weighting

coefficients is formulated. An objective function, in terms of these

weighting coefficients, is formed, and then minimized under

regularization method. The weighting coefficients corresponding

to a minimum value of the objective function represent an optimal

pathway. These optimal pathways determine the gene regulatory

routes leading from the transcription of a given gene to the

transcription of another gene, and represent the structural and

functional properties of the network as a whole. The methodology

can be viewed as flow of some information (or some approximation

thereof) in a regulatory network, and an optimal path means the

pathway where disruption has the largest effect. The effectiveness of

the present method is demonstrated on ten gene regulatory

networks. The results are compared with those obtained from the

existing extreme pathway analysis [12,13]. Results have been

validated appropriately from biological point of view.

The exploration of optimal regulatory pathways helps in

understanding the extent of regulatory relationships among the

genes. Through this study, it is possible to compare optimal

regulatory pathways over various stages of development, and a

variety of other cellular phenotypes over diseases [14,15]. Inferring

the genes on the optimal regulatory path is challenging and very

important in disease studies [16]. These regulatory pathways have

been widely found in multiple biological processes and are

considered to be one of the most fundamental gene expression

regulatory mechanisms in biological systems [17]. This method

might be successful in identifying important genes that are

responsible for ceratin diseases [18,19]. Genes on the optimal

regulatory pathway have immediate and widespread interest as

markers for diseases [15]. Precise knowledge of optimal gene

regulatory pathways can provide an understanding of the time-

dependent enhancement and suppression of gene activity and drug

effectiveness [20–22].

Results

Here we demonstrate the effectiveness of the present method

using various gene regulatory networks. For this purpose, we

consider ten gene regulatory networks as shown in Fig. 1 [13],

Fig. 2 [23], Fig. 3 [24], Fig. 4 [25] and Fig. S1 [13], Fig. S2 [26],

Figs. S3, S4, S5 [27] and Fig. S6 [28]. The results have been

compared with that of the existing extreme pathway analysis

[12,13]. Biological validation of the results is also included.

It may be mentioned here that the present method involves a

parameter l, called Lagrange’s multiplier or regularizing param-

eter. We vary the value of l from 0.1 to 1.0. Initially, we should

always give the stress on the maximal expression of the target gene

which is our ultimate objective. That is, as it is seen from equation

(4), initially l should be kept small. As we go from l = 0.1 to

l = 1.0, it implies that we are increasing the stress on the

constraint, and finally both the amount of yield (z) and the

constraint are treated equally. For each value of l, we minimize

the objective function of equation (4) where z is given by equation

(1) to obtain a proper set of values for ci’s for which y attains a

minimum value. We consider that set of ci-values corresponding to

l as the final solution, for which y becomes minimum. Indeed it

can be seen that l can be legitimately be called the regularizing

parameter.

Figure 1. Path diagram for apoptotic genetic network. Two optimal regulatory pathways obtained by the present method are shown by bold
black arrows, and one extreme regulatory pathway obtained by the extreme pathway analysis is shown by white arrows.
doi:10.1371/journal.pone.0012475.g001

Gene Regulatory Pathways
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The regulatory network can be formulated by representing it as

reactions in the stoichiometric matrix and then the integrated

network can be analyzed by using extreme pathway analysis. The

main difference to this work is that modeling based on the

stoichiometric matrix requires a flux through the regulatory

network. This approach is valuable for identifying underlying

regulatory pathways in a regulatory network. Models such as

regulatory FBA attempt to explicitly model regulation by switching

Figure 2. Path diagram for the subnetwork indicating the main interactions between GAD and GABA-receptors during the development of
rat cervical spinal cord. The optimal regulatory pathway is shown by bold black arrows and the extreme regulatory pathway is shown by white arrows.
doi:10.1371/journal.pone.0012475.g002

Figure 3. Path diagram for the Th regulatory network that controls the differentiation of Th cells in human. The optimal regulatory
pathway is shown by bold black arrows and the extreme regulatory pathway is shown by white arrows.
doi:10.1371/journal.pone.0012475.g003

Gene Regulatory Pathways
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fluxes on and off, based on the experimental data of enzyme

expression in various growth conditions.

A complete picture of cellular regulation must take into account

metabolic reactions and their interplay with the regulatory layer.

Regulated flux balance analysis (rFBA) is a modeling approach that

aims to integrate regulation and metabolism. A major problem in

using ordinary differential equations (ODEs) for describing biochem-

ical reactions is the scarcity of experimental data on rate constants.

rFBA addresses this problem by assuming that the network is in a

steady state and therefore that the total concentration of each

substance does not change under this assumption, a system of ODEs

is transformed into a system of linear equations, and its rates can be

obtained by solving a linear programming problem that optimizes a

certain objective function. Such optimization problems can be solved

efficiently. Further constraints are added to narrow the solution

space. For example, the rate constants are restricted according to the

catalytic capacities of transcription factors. The method has been

successfully used to model large regulatory networks covering the

near complete regulation of several species.

A major difficulty of modeling regulatory networks is the context-

specific nature of gene regulation. The total space of possible

transcriptional regulatory interactions for an organism is the number

of transcription factors multiplied by the number of genes multiplied by

the number of environmental contexts in which the cell might find itself.

Here we have explored a framework for modeling transcrip-

tional regulatory networks in which experimental design and

validation are central features. This framework is based on

computational analysis suggesting a high-throughput strategy for

mapping gene-regulatory pathways.

Apoptotic Genetic network
The genetic network in Fig. 1 represents a part of apoptosis

regulation [13]. Apoptosis is one of the main types of programmed

cell death, which involves a series of biochemical events leading to

specific cell morphology, characteristics and ultimately death of

cells. A family of proteins known as caspases is activated in the

early stages of apoptosis [29]. Induction of apoptosis via death

receptors typically results in the activation of an initiator caspase

such as CASP 8 or CASP 10. These caspases can then activate

other caspases in a cascade. This cascade eventually leads to the

activation of the effector caspases, such as CASP 3 and CASP 6.

These caspases are responsible for the cleavage of the key cellular

proteins, such as cytoskeletal proteins, that leads to the typical

morphological changes observed in cells undergoing apoptosis.

There are 23 genes, 33 internal flows and no external flows present

in Fig. 1.

The starting genes are F asL and T N Fa, and the target gene is

D F F45 (Fig. 1). Here z is defined as z~c26v26zc27v27{c25v25.

Following the method described in Section Method, we have obtained

the 2 optimal regulatory pathways as p1 : v3?v4?v10?v20?v26,

p2 : v5?v6?v8?v10?v16?v14?v15?v18?v27 as shown by bold

black arrows. These are the two major experimentally confirmed

pathways (extrinsic and intrinsic apoptosis pathways) p1 and p2 [30]

through which apoptosis can be triggered in a cell. The extreme

regulatory pathway obtained by the extreme pathway analysis is

different from that obtained by the proposed method and is as follows

v5?v6?v8?v9?v24?v27 as shown by white arrows.

Table S1 shows a few pathways from the starting gene to the

target gene along with c-values and the average amount (z) of the

protein synthesized by the target gene D F F45. Since, we have

generated a set of flow vectors, we have considered average of

these vectors to compute the average amount of the protein

synthesized (z). For example, the pathways p1 and p2 correspond-

ing to serial number 4 and 5 in Table S1 yield the highest average

z, and hence these are the optimal regulatory pathways. It can be

inferred from Table S1 that the corresponding c-values for the

Figure 4. Path diagram for the Th regulatory network that controls the differentiation of Th cells in mouse with feedback. The
optimal regulatory pathway is shown by bold black arrows and the extreme regulatory pathway is shown by white arrows.
doi:10.1371/journal.pone.0012475.g004

Gene Regulatory Pathways
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pathways p1 and p2 are larger compared to the other c-values of

other pathways. Thus it can be inferred from the c-values and the

z-values that the present method is able to correctly identify the

optimal gene regulatory pathways.

We have varied the upper bound of the flow values to show the

variation of transcription factors (c-value) and the amount (z) of the

protein synthesized by the target gene. The results are provided in

Table S2 for some high and low upper bounds. It is clear from

Table S2 that z-value, as expected, decreases with the decrease in

upper bound. In all the cases, we have found the same optimal

path although absolute c-values differ. This shows the consistency

of the present method in determining optimal gene regulatory

paths.

Genetic network for the development of rat cervical
spinal cord

Fig. 2 is a genetic network connecting 65 mRNA species during

the development of rat cervical spinal cord. The figure represents

the interaction of GAD (glutamic acid decarboxylase) and GABA-

R (c-amino butyric acid receptors). In a rat, two forms of GAD

exist, GAD65 and GAD67, as shown in Fig. 2. GABA, synthesized

from glutamate by GAD, is a well-known fast-acting synaptic

transmitter in the mature CNS [23]. However, it is also thought to

play an important role in CNS differentiation during early CNS

development.

In Fig. 2, the starting gene is G A D65 and the target gene is

G67186. There are 17 genes and 31 interactions in the network.

The expression for z is given by z~c9v9zc13v13zc22v22zc27v27.

Here an optimal pathway has been found to be p1 : v3?v15?v22 as

shown by bold black arrows. The extreme regulatory pathway

obtained by the extreme pathway analysis is different from that

obtained by the present method and is as follows v3?v15?v20?v27

as shown by white arrows.

Th regulatory network of human
Fig. 3 represents the Th regulatory network that controls the

differentiation of T-helper (Th) cells. Here the starting gene is T C R
and the target gene is ST AT3. The immune system of our body

contains diverse cell populations such as antigen presenting cells,

natural killer cells, B and T lymphocytes. T lymphocytes are classified

as either T helper cells (Th) or T cytotoxic cells (Tc). T helper cells take

part in cell and antibody-mediated immune responses by secreting

various cytokines, and they are further sub-divided into precursor Th0

cells, and effector Th1 and Th2 cells, depending on the array of

cytokines that they secrete [31]. The network that controls the

differentiation from Th0 towards the Th1 or Th2 phenotypes is a

complex network [25]. Here we have used an updated version of the

Th network in human where there is no feedback loop. There are 33

reactions and 23 genes in the network. Here we have z~
c21v21{c33v33. An optimal pathway obtained by the present method

is v1?v4?v10?v11?v12?v22?v27?v16?v17?v19?v20?v21 as

shown by bold black arrows. The extreme regulatory pathway

obtained by the extreme pathway analysis is different from that

obtained by the present method and is as follows v1?
v4?v10?v11?v12?v30?v15?v16?v17?v19?v20?v21 as shown

by white arrows.

Regulatory networks with feedback: Th regulatory
network of mouse

The genes GATA3 and T-bet in the Th regulatory network of

mouse (Fig. 4) as considered by Mendoza in [25] include a self-

activation loop. In order to incorporate these feedback loops in our

methodology, we have considered two hypothetical nodes

GATA3-1 and T-bet-1 analogous to the nodes corresponding to

the genes GATA3 and T-bet. Thus the order of the node-edge

incidence matrix becomes (mz2)|(nz4), where m is the

number of genes and n is the number of regulatory interactions.

The optimal regulatory pathway obtained by our method after

incorporating these two hypothetical genes remains the same as in

the case of Fig. 3. This is due to the fact that c-values

corresponding to the edges connecting actual and hypothetical

nodes are found to be small compared to that of the other edges.

The extreme regulatory pathway also remains the same as before.

Biological relevance and validation
Here we provide relevance and validation of the results from

biological point of view. For this purpose, we have searched the

literature, and validation of the results is made based on the results

obtained by earlier investigations.

Apoptotic Genetic network
Apoptosis is a complex process that proceeds through at least

two main pathways (extrinsic and intrinsic), each of which can be

regulated at multiple levels. The extrinsic pathway consists of cell

surface receptors, their inhibitory counterparts and their associ-

ated cytoplasmic proteins. The intrinsic pathway centers on the

mitochondria, which contain key apoptogenic factors such as

cytochrome c, AIF, SMAC/DIABLO, Htra2/Omi and endoG.

In the case of apoptotic genetic network, the biological

significance of the two major experimentally confirmed pathways

(extrinsic and intrinsic apoptosis pathways) p1 and p2 [30] as

obtained by the present method in Fig. 1 is described here. The

pathway p1 has FasL as the initial gene and DFF45 as the target

gene. There are three paths emerging from the intermediate gene

FADD. The path involving the flows v9 to v28 is not followed as it

does not lead to the target gene DFF45. There are three paths

emerging from the intermediate gene CASP10. The path involving

v22 is not followed as it does not yield the target gene. Though the

other two paths involving v23 and v24 yields the target gene but they

are not followed. The other path from FADD through v11 is not

followed as it leads to the formation of the gene CASP2 which is not

the desired target gene. The occurrence of the gene FADD has been

observed in [32–34]. The optimal regulatory path leads from

FADD to CASP8 whose occurrence has been demonstrated in [35].

There are four paths emerging from the intermediate gene CASP8.

The path through v19 is not followed as it does not yield the target

gene. We reach the target gene through the flow v20. The existance

of the path through v20 and v26 to yield the target gene is established

in [36,37] in contrary to the other two paths through v16 and v21.

Moreover, the path through v21 yielding CASP3 as the intermediate

gene cannot be followed and has been explained in [38]. The

extrinsic apoptotic pathway p1 as derived by the regularization

method has been observed in [39–42].

The pathway p2 has TNFa as the initial gene and DFF45 as the

target gene. After reaching the intermediate gene TRADD the

path divides into two branches. The occurrence of the gene

TRADD in the apoptotic path has been observed in [43]. The

path through v7 is not followed as it ultimately terminates to the

gene CASP2 which is not the desired target gene DFF45. The

path through v8 is followed. From the intermediate gene FADD,

three paths emerge of which the path through v10 is followed till

we reach the intermediate gene CASP8. It has already been

explained in the previous paragraph that the other two paths

through v9 and v11 are not followed. There are four paths

emerging from CASP8. The path through v16 yielding Cytc, Apaf-

1 and CASP9 is followed. From CASP9 the path through v17 is not

followed as it terminates to the gene CASP2, which is not the

Gene Regulatory Pathways
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desired target gene. So the path through v18 yielding CASP3 as the

intermediate gene is followed. From CASP3, the path through v33

is not followed as it terminates to the gene CASP6, which is not the

target gene. So the path through v27 yielding DFF45 as the target

gene is followed. Of the remaining three paths from CASP8, the

path through v19 is not followed as it terminates to the gene

CASP2 that is not the desired target. The path through v21

yielding CASP3 as the intermediate gene cannot occur biologically

and has been explained in the previous paragraph. The path

through v20 yielding CASP7 as the intermediate gene is a subpath

of the extrinsic pathway. The intrinsic apoptotic pathway p2 as

derived by the present method has been observed in [40,41].

Starting from the gene TNFa, both the extreme pathway

analysis and the present method follow the same path till they

arrive at the intermediate gene FADD. The existance of the

optimal pathway through the genes TNFa, TNFR1, TRADD and

FADD has been observed in [44–46]. From FADD, the path

obtained by our present method coincides with the intrinsic and

the extrinsic pathway and not the path obtained by extreme

pathway analysis. The intrinsic path that leads from FADD to the

target gene DFF45 through the intermediate path as obtained by

the present method can be found in [47–49].

The acquired biological knowledge of the apoptosis regulatory

network can be translated into mathematical models, in particular

focusing on the regulatory events. Two distinct modeling

approaches i) Modeling by deterministic ODEs and ii) stochastic

CA-based (cellular automation) models that determines regulatory

pathways from experiments exist in the literature. The pathways

obtained by our method coincide with those pathways determined

by both ODE and CA-based models for the apoptosis regulatory

network [50].

Genetic network for the development of rat cervical
spinal cord

In Fig. 2, there are 11 paths emerging from the starting gene

GAD65 of the genetic network for the development of rat cervical

spinal cord. The paths through v1, v2 and v10 are not followed as

they terminate to the intermediate genes GAD67, GRg2 and

GRb3 respectively, which are not the desired targets. The paths

through v8 and v9 do not lead to the optimal path. The path

following v11 terminates to the intermediate gene GRa4. From

GRa4, we can reach the target gene G67186 through v27 but this

path is not followed. The other path through v28 from GRa4 is not

followed as it terminates to another intermediate gene GRg3 that

is not the required target. Another path through v12 reaches the

intermediate gene preGAD67. From preGAD67, the paths

leading through v19, v21, v23, v24 and v26 are not followed as they

terminate to some intermediary genes and are not the target gene.

The path through v20 from preGAD67 ultimately leads to the

target gene by the flow v27 but is not followed. The path through

v22 does not lead to the optimal path. The paths through v15, v5

and v4 do not reach the desired target and hence are not the

optimal paths. The path leading through v3 is followed till we

reach the intermediate gene GRa3. Of the 3 paths emerging from

GRa3, the paths through v14 ends up at an intermediate gene

GRb1 and the other path through v13 is not the optimal path. So

the only remaining path from GRa3 through v15 is followed which

ultimately leads to the target gene G67186 by the flow v22, and this

sequence of steps forms the desired optimal regulatory pathway.

The importance of the starting gene GAD65 and the intermediate

gene GRa3 in the optimal regulatory pathway has been observed

in [51,52]. The pathway obtained by the present method follows

[53], in contrary to the path obtained by the extreme pathway

analysis.

Th regulatory network
The Th regulatory network in Fig. 3 has TCR as the starting

gene and STAT3 as the target gene. The biological significance of

the path that we have derived by our algorithm is described here.

The path follows from TCR through NFAT, IFN-c, IFN-cR,

JAK1 till we reach the intermediate gene STAT1. The path gets

divided into three branches at the intermediate gene STAT1. The

path through v14 is not followed as the path from another

intermediate gene SOCS1 through v28 follows a self loop. So the

path through v22 is followed through SOCS1, IL-4R, STAT6,

which is the same as obtained from our method till we arrive at

another intermediate gene GATA3. There are three paths

emerging from GATA3. The paths through v18 and v32 are not

followed as they end up in a loop structure. So the path through

v19 is followed to reach the target gene which is the same as

obtained from our present method and is found in [54,55].

Selective activation of T helper (Th) cell subsets plays an

important role in the pathogenesis of human allergy and

inflammatory diseases. Dissecting pathways and regulatory

networks leading to the development of Th1 or Th2 cells will be

crucial to understand the pathogenesis of allergy and inflammatory

diseases. Improved understanding may lead to better strategies for

developing diagnostics and effective therapies for these diseases.

The recent results have led to novel hypotheses on the

transcription factors involved in human Th cell differentiation.

Effort has been given at elucidating the function of the novel genes

and pathways identified from literature with primary human

CD4+ T cells. Detailed analysis of upstream T cell Receptor

(TCR)/key cytokine receptor induced regualtory pathways

includes repeated rounds of mathematical modelling and exper-

imental verification. The signalling and transcriptional protein

complexes are analyzed with mass spectrometry and cell imaging

techniques to build a model of T cell activation and differentiation.

Prostate genetic network, Multiple-myeloma (MM) tissue
genetic network and SOS genetic network

The target gene CAV1 on the optimal regulatory path in Fig.

S3 (in the Prostate genetic network in Text S1) was involved in

breast cancer [56] and ovarian carcinoma [57]. It was reported

that the gene DF on the optimal regulatory path in Fig. S5 (in the

(MM) tissue genetic network in Text S1) was a novel serine

protease [58] and was involved in myeloid cell differentiation [59].

The gene AX1 on the optimal regulatory path was a tyrosine

kinase receptor and was recently found down regulated in mature

bone marrow-derived dendritic cells [60].

The SOS pathway in Fig. S6 (in the SOS genetic network in

Text S1), which regulates cell survival and repair after DNA

damage, involves the lexA and recA genes [1]. There are 3 paths

emerging from the starting gene lexA in Fig. S6. The paths leading

through v1 and v3 are not followed as they terminate to the

intermediate genes umuDC and dinI which are not the required

targets. The only remaining path through v4 is followed till the

intermediate gene ssb is reached. There is a single path from ssb

leading to the target gene rpoD through v12, which is the desired

optimal regulatory pathway. The importance of the starting gene

lexA, the intermediate gene ssb and the target gene rpoD has been

observed in [28,61,62].

Discussions on the present method: Impact on genetic
engineering

The computational prediction of all biologically relevant or

novel alternative routes in regulatory networks has numerous

applications in systems biology. The present method can be

Gene Regulatory Pathways
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applied to maximize/minimize the amount of a target product by

expressing/inhibiting optimal pathways, under the framework of

genetic engineering. Here we describe briefly such a problem on

the production of fermentative hydrogen and show how the

present method may be applicable to this problem.

Microorganisms produce hydrogen via two main pathways:

photosynthesis and fermentation. Here we consider microbial

production of hydrogen by fermentation (more advantageous than

the photosynthetic hydrogen production) and provide an overview

to enhance fermentative hydrogen production through genetic

engineering. We have chosen to genetically engineer E. coli [63] for

hydrogen production as this is the best-characterized bacterium

(i.e. has well-established metabolic pathways) and it is one of the

easiest strains to manipulate genetically. The fermentative route of

hydrogen production in E. coli (Fig. 5) starts with the conversion of

glucose to pyruvate, which is then converted to acetyl-CoA and

formate, which is catalysed by pyruvate formate lyase (PFL).

Biological hydrogen production from formate is catalyzed by the

formate hydrogen lyase (FHL) complex. The FHL complex of E. coli

has been the most extensively characterized at both the physiolog-

ical and genetic levels.

Hydrogen is produced from glucose by fermentation with the

simultaneous release of carbondioxide which is not hydrogen

hogging, instead of water which is released during photosynthesis.

As we proceed along the hydrogen producing pathway the

intermediate steps leading to production of succinate, lactate,

acetate and ethanol involve hydrogen. As our ultimate goal is to

maximize the target product hydrogen we have to disrupt/block

the hydrogen hogging pathways and enhance the pathways that

produce hydrogen. It has been observed from our methodology

that the values of the flux vectors along the path that yields

hydrogen from glucose via pyruvate gradually increases in

contrary to the values of the fluxes that gradually decreases along

the intermediate hydrogen hogging pathways (Table 1). This

ultimately leads to maximal production of hydrogen from glucose

via pyruvate simultaneously blocking other intermediate steps that

produce succinate, lactate, ethanol and acetate. Thus we can

conclude that our proposed methodology has been successful in

deriving the optimal path from glucose to generate maximum

amount of hydrogen.

The fermentative hydrogen metabolism in E. coli is determined

by 50 genes distributed across 20 distinct genetic loci [64]. The

modification of transcriptional regulators and enzymes are needed

for the coordinated engineering of genes and operons that perform

distinct biochemical functions related to the production of

hydrogen. Here Fan et. al. have described a method for achieving

increased molar yield of hydrogen by modifying certain genes

involved in the pathway that produces hydrogen from glucose

under anaerobic conditions and globally regulate the fermentative

hydrogen production in E. coli.

There are two possible ways through which improved hydrogen

yields from glucose can be achieved. The first involves directing

glucose metabolism toward pyruvate formate lyase (PFL) by

disrupting the succinate-producing and lactate-producing path-

ways. The second encompasses enhanced downstream pathways

of PFL through overexpression of the formate hydrogen lyase

(FHL) complex. Since the genes fhlA and hycA control the

transcription of the FHL complex, it is theoretically possible to

control the specific FHL activity and the specific hydrogen

production rate by manipulating these genes or their genetic

controls. The fermentative biohydrogen production from formate

can be increased by overexpressing the FHL activator encoded by

the fhlA and by inactivating the FHL repressor encoded by the

hycA in E. coli K-12 strain W3110. The present method becomes

useful if we can increase the transcription factor and hence

increase the expression level of the gene fhlA and decrease the

transcription factor for the gene hycA for the corresponding

optimal regulatory path. Moreover, it has been experimentally

observed in [65,66] that the hydrogen production rate was 2.8-fold

higher with both fhlA overexpressed and hycA inactivated in E. coli

K-12 strain W3110.

Enhanced hydrogen yield from glucose can also be obtained by

blocking the competing lactate (via deleting the gene ldhA) and

succinate (via deleting the gene frdBC) production pathways. Our

method becomes effective for this case if we can decrease ldhA and

frdBC, and/or their transcription activators for ldhA and frdBC.

Thus it can be concluded that blocking some pathways (decreasing

the expression levels of the genes and/or their transcription

activators in the path) through mutagenesis results in enhanced

hydrogen production from glucose.

If the transcription factors affect the target gene(s) positively,

then the expression level(s) of the target gene(s) increase and vice

versa. Our method becomes useful if we can increase the

Figure 5. Fermentative hydrogen production pathway from
glucose by E. coli. The bold white arrows are the pathways inactivated
by disrupting ldhA and frdBC, and the bold black arrows are the
pathways enhanced by disrupting hycA and over expressing fhlA.
doi:10.1371/journal.pone.0012475.g005

Table 1. Values of flux vectors for the system in Fig. 5.

Serial
Number

Intermediate steps
in the pathway

Flux
vector v

1 Glucose?Phosphoenolpyruvate 19.57

2 Phosphoenolpyruvate?Pyruvate 26.73

3 Phosphoenolpyruvate?Succinate 8.75

4 Pyruvate?Lactate 7.34

5 Pyruvate?Acetyl-CoA 6.92

6 Acetyl-CoA?Ethanol 5.22

7 Acetyl-CoA?Acetate 5.06

8 Pyruvate?Formate 30.45

9 Formate?Hydrogen 35.29

doi:10.1371/journal.pone.0012475.t001
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transcription factor and hence increase the expression level of the

gene(s) to make that pathway active. If we want to switch off any

pathway we have to reduce the gene expression level and hence

decrease the transcription factor for that corresponding path.

However, the present method can be useful for this example to

determine an optimal regulatory pathway through which the

amount of hydrogen is maximum. We can apply the method to

this problem for determining the optimal gene regulatory pathway

and finally express this optimal path. Discovering novel optimal

gene regulatory pathways through genetic engineering may also

help to make biological hydrogen production more favorable,

practical and commercially competitive.

Discussion

Here we have developed a network based algorithm for

exploring gene regulatory networks in which the underlying

optimal regulatory pathways from a starting gene to a target gene

can be determined in terms of concentration of various

transcription factors regulating the genes in the network. In other

words, the method determines an optimal set of transcription

factors that need to be expressed to get an optimal gene regulatory

pathway from starting gene(s) to target gene(s).

The effectiveness of the regularization method has been

demonstrated on ten gene regulatory networks to infer optimal

regulatory pathways which has practical applications in the field of

genetic engineering. The significance of the optimal pathways has

been biologically validated through extensive literature survey.

Finally we have shown with an example how the method can be

effectively used in the field of genetic engineering. As regulatory

networks are reconstructed with a matrix formalism as presented

herein, these analysis tools can be used to characterize funda-

mental features of such systems.

Information about gene regulatory pathways can be used to

infer topological features and regulatory interactions of the

network. However, it is known that regulatory pathways do not

persist over all time. An important recent finding in which the

above is seen to be true is following examination of regulatory

networks during the yeast cell cycle, wherein topologies change

depending on underlying (endogeneous or exogeneous) cell

condition.

In order to describe the knowledge on regulatory pathways for

simulation, a considerable amount of attention have been paid to

Petri net for details. Petri net is a network consisting of place,

transition, arc, and token. The conventional Petri net can be used

to model only the discrete features in biological pathways, e.g.

logical regulatory relationships between genes. But biological

pathway modeling requires some continuous features with enzyme

reactions represented with differential equations.

Cancer is a heterogeneous disease often requiring a complexity

of alterations to drive a normal cell to a malignancy and ultimately

to a metastatic state. In cancer research, microarray technology

measures the gene expressions of cancer and normal tissues and

identifies genes that are differentially expressed between cancerous

and normal cells. The set of individual differentially expressed

genes can only tell us which genes are altered by biological

differences between different cell types and/or states. It cannot

explain the reasons for the significant alterations in gene

expression levels and the effects of such changes on other gene

activities. In a biological system genes interact with each other

forming various regulatory pathways in order to carry out a

multitude of biological processes. To better understand the roles of

these differentially expressed genes and their interactions in a

complex biological system, a comprehensive pathway analysis is

needed. Since the identification of regulatory pathways is

significantly influenced by those differentially expressed genes

from different datasets or different statistical methods, an

integration of multiple cancer microarray datasets and identifica-

tion of the most common pathways from these data would reveal

key relationships between crucial genes in carcinogenesis.

Methods

A gene regulatory network can be represented as a directed

graph where the nodes represent genes and the directed edge

represents the regulatory relationship between two connected

genes. Let �gi be the expression level of gene i associated with node

i in the graph. There is a flow, associated with each directed edge

(i, j) from node i to node j, which indicates the flow of mRNA and

thereby protein obtained from gene i transported through the edge

(i, j). This protein now binds to gene j and regulates its expression

level. It is to be mentioned here that we are using the flow of

mRNA and proteins interchangeably. That is, we are considering

only those fractions of mRNAs that are not degraded by any other

factors, and form proteins through translation.

Here we present a method for identifying an optimal gene

regulatory pathway from a starting gene to a target gene through

which the expression level of the target gene becomes maximum.

The genes on such an optimal pathway need to be expressed along

with other transcription factors regulating them. Transcription

factors bind to specific parts of DNA in the promoter region of a

gene and, thus, affect the transcription of the gene. They can

activate, enhance, or inhibit the transcription. Changes of

abundances of transcription factors cause changes in the amount

of transcripts of their target genes. This process is highly complex

and interactions among transcription factors result in a more

interwoven regulatory network.

The interactions among the genes describing their transcrip-

tional regulation are considered as a matrix, called a node edge

incidence matrix, B. The order of the matrix is m|n with m as the

number of genes and n as the total number of regulatory

interactions within a gene regulatory network. That is, the total

number of edges is n. An element eik of matrix B is 21 (+1) if k-th

edge (interaction) exits (enters) the node corresponding to gene �gi.

Otherwise, eik = 0. A system boundary is drawn around a gene

regulatory network which consists of both internal and exchange

flows. The internal flows are constrained to be positive and the

exchange flows can be either positive if the flow enters the

network, negative if the flow exits the network, or bidirectional.

There are n flows and m genes in the network. Let nI be the

number of internal flows and nE be that of exchange flows, and

then n~nIznE . The k-th internal flow is denoted by vk and the

l-th exchange flow is denoted by bl . So there are v1, . . . , vnI

internal flows and vnI z1, . . . , vn exchange flows where vnI zl~bl .

The target gene �g(t) can be reached through various paths from

the starting gene �g(i) (Fig. 6). There are s biochemical reactions/

conversions R1, R2, . . . Rs in the network involving the target

gene �g(t).

We take the algebraic sum of the weighted flows of reactions

R1, R2, . . . Rs to reach the target gene �g(t), and it is given by

z~
Xs

k~1

ckvk ð1Þ

which needs to be maximized for yielding maximum expression

level of the target gene. The term ck denotes the weighting factor,

representing concentration of other transcription factors (not

shown in the diagram) to get the corresponding flow vk. The
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proposed method involves three steps: (i) Generation of some flow

vectors; (ii) Formulation of a new constraint; and (iii) Estimation of

weighting coefficients ci.

There exists a well established methodology, called flux balance

analysis, in the context of metabolic pathway analysis. In such

analysis, a stoichiometric matrix is formed with the number of

rows as the number of metabolites and the number of columns as

the number of reactions (fluxes). The fluxes represent the rate of

mass flow from one metabolite to the other through a reaction. We

have extended this methodology to the analysis of gene regulatory

networks. Here we consider node-edge incidence matrix B, similar

to stoichiometric matrix in case of metabolic pathways. The flux

vectors are replaced by flow vectors where a component vij

represents the flow of mRNA and thereby the protein produced

from gene i to gene j. This protein becomes a transcription factor

of gene j for its regulation. Thus, flow of mRNA and thereby

proteins obtained from a gene and binding these proteins into

another gene is considered as a chemical reaction as in the case of

metabolic pathways.

Generation of gene flow vectors
In this step, we generate some possible flow vectors for a gene

regulatory network. The flow vectors satisfy approximately the

quasi-steady state condition. That is, we generate those v which

satisfies

Bv&0 ð2Þ

where B is the m|n node-edge incidence matrix that describes the

regulatory interactions among genes. B is computed from a given

gene regulatory network. As n w m, equation (2) is under

determined. So we proceed in the following way:

a): Generate basis vectors vb that span the null space of the

node-edge incidence matrix B. Let the number of such basis

vectors be p. (This is done by standard functions available in

MATLAB).

b): Generate p random numbers aj , j~1, 2, . . . , p. Then

generate a vector v as a linear combination of the basis vectors

using ap i.e., v~
Pp

j~1 ajvbj . We consider those v for which certain

boundary conditions are satisfied for each of its components [12].

That is, vk (kth component of v) is an internal flow, vk§0. For vk

to be an exchange flow, vk§0 (ƒ0), if the flow enters (exits) the

network. If the exchange flow is bidirectional, {?ƒvkƒ?.

Incorporating feedback
A gene regulatory network often contains one or more

feedback loop(s). In order to incorporate the effect of feedback

possessed by a gene �g, we consider a hypothetical node �g1, in

addition to the node corresponding to gene �g (Fig. 7), as it is not

possible to put an entry corresponding to a feedback in the node-

edge incidence matrix B. Then flows are made from �g to �g1
and �g1 to �g. Thus the number of rows of B is increased by 1,

and the number of columns of B and the number of components

of the flow vector are increased by 2 due to a single feedback.

Now both B and the flow vectors v are generated by the above

steps.

Formulation of a new constraint
All the transcription factors that are not shown in a system may

not be expressed at the required level so that the corresponding

target genes may not be expressed/inhibited fully. This imposes

further restrictions on the system and leads to variation in the

concentration of other transcription factors. Thus we define a new

constraint as

B(Cv)~0 ð3Þ

where C is an n|n diagonal matrix, whose diagonal elements are

the components of the vector c. That is, if C~½cij �n|n, then

cij~dijci, where dij is the Kronecker delta. Thus the problem of

determining an optimal regulatory pathway from a starting gene to

a target gene boils down to an optimization problem, where z has

to be maximized with respect to c, such that the aforesaid

inequality constraints and the new constraint are satisfied.

Estimation of weighting coefficients ci

Combining equations (1) and (3), we can reformulate the

objective function as

y~1=zzLT (B(Cv)) ð4Þ

that needs to be minimized with respect to the weighting factors ci

for all i. The term L~½l1, l2, . . . , lm�T is called Lagrange’s

multiplier or regularizing parameter. For the sake of simplicity, we

have considered here l1~ . . . ~lm~l (say). Initially, a set of

random values in ½0, 1� corresponding to ci’s are generated. Then

ci’s are modified iteratively using gradient descent technique,

Figure 7. Incorporation of feedback loop. The feedback loop
around the node corresponding to gene �g is replaced by considering a
hypothetical node �g1, and edges (�g, �g1) and (�g1, �g).
doi:10.1371/journal.pone.0012475.g007

Figure 6. A hypothetical reaction network. The three dots
indicates the continuation of the biochemical reactions from R1 to Rs

involving s different paths to reach the target gene. The reactions R1 ,
R2 and Rs, involving the target gene, are shown in the diagram.
doi:10.1371/journal.pone.0012475.g006
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where the amount of modification for ci in each iteration is defined

as

Dci~{g
Ly

Lci

ð5Þ

The term g is a small positive quantity indicating the rate of

modification. Thus the modified value of ci is ci(tz1)~
ci(t)zDci, Vi, t~0, 1, 2, . . . ci(tz1) is the value of ci at

iteration (tz1), which is computed based on the ci-value at the

iteration t.

Regularization parameter l is chosen empirically from 0.1 to

1.0 in steps of 0.1. Using the above mentioned method, for each

value of l, we finally get ci-values for which y attains a minimum

value. We choose a specific l for which the y-value is the

minimum over all the minima attained for different values of l.

The concentration vector ci attains values between 0 to 1 as

mentioned previously corresponding to some values of vk and is

negligible for other values of vk. We take into account the values of

ci’s that are close to 1, corresponding to the minimum value of y.

This enables us to identify the optimal regulatory pathway yielding

the maximal expression of the target gene g(t) starting from the

initial gene g(i).
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