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Unraveling the Complexity of 
Wildland Urban Interface Fires
Hussam Mahmoud & Akshat Chulahwat

Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these 
events and have called for an urgent need to address the problem. The Wildfire paradox reinforces 
the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to 
be shifted towards minimizing potential losses to communities. This requires the development of 
vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this 
study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by 
applying concepts of graph theory. A directed graph for community in question is developed to model 
wildfire inside a community by incorporating different fire propagation modes. The model accounts for 
relevant community-specific characteristics including wind conditions, community layout, individual 
structural features, and the surrounding wildland vegetation. We calibrate the framework to study 
the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use 
traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire 
mitigation strategies. Unlike current practice, the results are shown to be community-specific with 
substantial dependency of risk on meteorological conditions, environmental factors, and community 
characteristics and layout.

Wildfire intensity and occurrence rate have risen alarmingly in recent years1. The consequences of these wildfires, 
particularly when interacting with communities, have been dire and have resulted in substantial socio-economic 
losses all over the world2,3. In North America, most notably was the 2016 Mcmurray fire in which the fire burned 
through 1,500,000 acres, causing destruction of approximately 2,400 homes and forcing an excess of 88,000 people 
to flee. Classified as the costliest disaster in Canadian history, the corresponding economic losses reached approx-
imately C$9 billion. In the U.S., especially in the west, not only the intensity of wildfires are on the rise4–6, but 
the fire season is elongating as well7,8. In 2017, the North Bay fire, which included 14 wildfires across California, 
burned over 245,000 acres, torched 8,800 homes and claimed the lives of 42 people, making it one of the most 
deadly wildfires in the history of the state.

As of now, the yearly federal expenditures on managing wildfires easily exceeds US$1 billion per year1, and 
is only expected to rise given the prevalent trend. Current approaches to managing wildfires focus on fire sup-
pression and managing fuel build-up in wildlands. However, reliance on these strategies alone has proven inad-
equate9–12. Currently, wildfire suppression has led to reduction in controlled small-scale fires. This has aided 
in reducing wildland density and providing an ecological balance. However, in the absence of any large natu-
ral reduction mechanism and given the limited fuel management strategies, rapid growth in wildland fuel has 
resulted in significant increase in high intensity wildfires10,13. Wildfires are a part of nature, both inevitable and 
necessary, pointing to only one foregone conclusion - Wildfire management needs to be driven by regulating 
vulnerability of communities10,14. This includes, but not necessarily limited to, selective wildland fuel treatment 
at the community interface, reduction of stray vegetation in the house ignition zone, reinforcing households with 
fire proof methodologies and sustainable urban planning geared towards reduction of fire risk.

There exist several wildfire propagation models that are currently being used by fire management agencies 
and researchers all over the world. These models encompass different types ranging from empirical to completely 
analytical. Some prominent examples include - Rothermel’s wildland fuel model15, National bushfire model16, 
BehavePlus17, FlamMap18,19, FARSITE20, FSPro21, WIFIRE22 and others23,24. These models are widely accepted 
and entail several aspects of wildfires; however, the models either entirely focus on wildlands or pertain to a local-
ized aspect of fire propagation in communities. While robust computational fluid dynamic (CFD) models exist 
for simulating structure-fire interactions on a community scale25, their complexity and computational demand 
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prevent their widespread application. The lack of requisite data for wildfires further prevents better understanding 
and modeling of wildfires let alone their interaction with communities. With advances in computational infra-
structure, in the near future, the use of CFD models will become a reality. However, with the risk of WUI fires 
on an astronomic rise each year, we cannot afford to wait for the technology to match the research requirements. 
With this in mind, the pressing need lies in exploring alternative directions for quantifying and studying WUI 
risk of communities. We suggest that a model based on the concept of graph theory would be able to bridge this 
gap, not only for quantifying the risk but also for unraveling the complexity of these events. Computationally 
efficient models for fire propagation have been explored in the past using concepts of graph theory, both for wild-
lands26–28 and urban settings29,30. These models on urban and wildland fire simulation were based on the concept 
of minimum travel time. While it is a suitable performance metric, and even necessary for on-site managers, the 
rate of spread of a wildfire may not necessarily represent its true damage potential. There are other performance 
metrics, such as community vulnerability, that need to be deliberated especially when considering sustainable 
urban planning, which have not been previously explored.

For wildfires, researchers have developed detailed frameworks to quantify the potential of fire spread in wild-
lands; however, there is currently no standardized method of risk assessment that can be applied to WUI com-
munities nationwide31. The propagation behavior of WUI fires inside a community can be considered similar to 
that of systemic transmission of diseases in a social network. Graph theory has been widely utilized to understand 
disease transmission32–38, which has provided unparalleled advances in the field. Similarly, the use of graph theory 
may be able to provide a better understanding of WUI fire behavior in communities. In this study, a graph model 
is proposed to evaluate vulnerability of communities to wildfires. The model is first tested on a sample commu-
nity from California to observe the effect of wind conditions on fire propagation. Followed by tests on Oakland 
(California), which was ground zero for the infamous 1991 Tunnel Fire. The model is calibrated to conditions 
similar to the historic Oakland fire and tested to identify the underlying factors affecting community vulnerability 
to wildfires.

Graph Theory Model: AGNI-NAR
When a wildfire enters a community it undergoes discontinuous propagation due to discretization of its prop-
agation space. A community comprises of ignitable, as well as, non-ignitable regions, unlike wildlands. Once a 
wildland fire reaches an urban interface it spreads into the community, propagating from one ignitable source 
to another (mostly in parallel). The discrete movement of wildfire can be modeled as a flow problem in graph 
theory. In this study, a quasi-physics-based graph model is presented (AGNI-NAR: ‘Asynchronous Graph Nexus 
Infrastructure for Network Assessment of WUI Risk’), which takes into account the different modes of heat transfer 
to evaluate propagation probabilities between ignitable components, and subsequently, the vulnerability of a com-
munity. Once ignitable areas of the community in question are identified, a suitable directed graph is developed. 
Each area/structure of a community is defined by multiple nodes that form a boundary, referred to in this study as 
a‘way’. Even though parts of the area inside a way are ignitable, only the boundary of each way is defined by nodes. 
Each node does not represent a particular component, but rather a specific area within a way. A node is consid-
ered ignitable if even a small part of the area it covers is ignitable. Ideally, a high number of nodes can be used 
to model different components within a way, however that would increase the computational cost substantially.

The ignitable ways are utilized to form a directed graph, defined as G V E= ( , ), where = …v v{ , , }n1  defines 
the node set and ⊆ ×E V V  defines the edge set. The adjacency matrix of the respected graph is defined as 
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transfer from ignitable node i to ignitable node j. Nodes i and j are part of ways (same or different), as the boundary 
of each way is described by node set  m( ) such that V W∪= =m
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w , where N  is the total number of ways. A 
sample graph formulation is shown in Fig. 1 for a segment of the city of Fort Collins (Colorado). GIS data acquisi-
tion and classification is discussed in section 1 of the SI text. Fire propagation between nodes is classified into two 
types, based on the nature of source and target nodes, as - (1) Internal and (2) External propagation (Fig. 1). The 
former involves propagation within a particular ignitable way and the latter includes propagation from one ignita-
ble way to another. The cumulative fire transfer probability along each edge from node i (under ignition) to node j 
is given by Eq. 1, such that internal propagation is governed dominantly by conduction mode39, whereas, external 
propagation is controlled by multiple modes40. When nodes i and j belong to the same way, the ignition transfer 
probability is given by conduction probability only - ∈P {0, 1}cond

i j( , ) . The dependence of conduction propagation on 
material properties is not considered, hence =P 1cond

i j( , )  for all cases. In case of external propagation, 3 modes of heat 

transfer are considered - (1) Convection - ∈P {0, 1}conv
i j( , )  (2) Thermal radiation - ∈P [0, 1]rad

i j( , )  and (3) Ember spot-

ting - ∈P [0, 1]ember
i j( , ) , which account for majority of fire propagation in WUI fires41. The total probability of external 

propagation is defined as the union of individual mode probabilities (Eq. 2), which are evaluated based on their 
respective formulated models (see Material and Methods and sections 2–4 of the SI text).
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Vulnerability of Ways
Framework.  The problem of wildfire propagation constitutes a parallel replication flow problem. Depending 
on the conditions, wildfire propagates both short- and long-range distances at the same time. Given the depend-
ence of both modes on probability of propagation, the vulnerability of any way in the community is defined as the 
probability of wildfire reaching it. The vulnerability of the destination way is calculated by identifying the Most 
Probable Paths (MPP) from source to target way (section 5 of the SI text), following the principle of least resistance. 
Therefore, the total probability of propagation along a MPP is defined as the product of the edge weights (Eq. 3), 
such that  x( ) is the adjacency list of x MPP given by 

 
= → … →−n n n n{( ), , ( )}x N N( ) (1) (2) ( 1) ( )x x( ) ( )
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Following the concept of Flow Centrality, multiple surrogate paths are expected to reach a target way; hence, 
the total probability is defined as the mean probability of K MPPs Pm

s( ) (Eq. 4). K paths are chosen to account for 
the closeness amongst the parallel path probabilities. Due to computational limitations, K = 10 is used for all 
analysis in this study. By increasing the number of parallel paths, accuracy of the model can be improved at the 
cost of increased computation time. Details of the computational cost incurred in this formulation is discussed in 
section 6 of the SI text. A community layout with high density would require a low K value, and vice-versa. It 
would be the designer’s decision to balance this trade-off.
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A wildfire entering a community has multiple source nodes (initial point of fire origin in the community) at 
the wildland-urban interface, or some even inside the community, due to ember spotting from wildlands40,42,43. 
To account for this source variability, Eq. 5 is used to calculate the total vulnerability (V(z)) of destination node 

∈z m( ), where m is the node set for way m, Pi
s( ) is the ignition probability of source node s and   is the node 

set of all sources. The wildfire is required to reach the target from only one of the sources for pilot ignition; hence, 
the vulnerability is defined by maximum probability from all source nodes. Since probability of ignition for each 
source is correlated to wind conditions and wildland vegetation in the vicinity of the community (Fig. 2), these 
conditions need to be considered while evaluating ignition probability for each source.
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Effect of wind direction and speed.  To assess the effect of wind speed and direction, a part of Hacienda 
Heights (HH) in Los Angeles (California) is tested. The layout is chosen to represent a typical medium density 
community. Fire pathways are identified for a target way from a source way for different wind directions (Fig. 3).  
For wind direction parallel to the line segment joining source and target ways, a high vulnerability is to be 

Internal Propagation

External 
Propagation

Way

Sample Graph

Figure 1.  A sample representation of actual community layout (Fort Collins, Colorado, USA) as a graph 
network. The nodes of each way define its specific boundary and the edges represent the potential fire 
propagation paths (©OpenStreetMap contributors55).
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expected (V = 0.90 for θ = 300o and vw = 15 m/s). However, a relatively high vulnerability is observed for other 
wind directions as well (Fig. 3(c)). Wind direction is measured anticlockwise from the positive x-axis, such that a 
N-S wind would be represented by θ = 270o and S-N wind by θ = 90o. The fire utilized inherent path redundancy 
present in the community layout to its advantage. The effect of wind direction on vulnerability is seen to be negli-
gible for wind speeds 15 m/s and 5 m/s. In these cases, ember and radiation modes, both, played a dominant role, 
thereby providing sufficient buffer to each other. A strong dependency of wildfire propagation on community lay-
out is known to exist42,43. For low wind speed (vw = 2 m/s), wind direction governs vulnerability to a great extent, 
since the effect of ember and convection modes are reduced. As a result, for wind directions not parallel to line 
segment connecting the source and target ways, the fire has to rely only on radiation mode. Discontinuities in the 
community layout inversely affects radiative propagation43,44, thereby reducing the vulnerability.

Community Vulnerability: The Oakland Hills 1991 Wildfire
Background and modeling details.  To identify and understand the underlying sources of community 
vulnerabilities for wildfire, the 1991 Oakland Hills wildfire is considered as a case study. The infamous wildfire, 
also known as the ‘Tunnel Fire’, resulted in 25 fatalities, 150 casualties and approximately US$ 1.5 billion in eco-
nomic losses, making it one of the most destructive wildfires in history45. Figure 4 shows the origin of the wildfire 
and the affected region. The fire started as an incompletely extinguished grass fire. However, it quickly escalated 
to a firestorm when seasonal northerly winds, commonly referred to as ‘Diablo’ winds, entered Oakland hills (at a 
speed > 100 km/hr) and reignited the brush fire. The winds propelled the wildfire rapidly in the south-west direc-
tion. By noon, the wildfire had crossed two highways and reached Piedmont (South of Oakland hills), after which 
the winds shifted towards south-east46,47. The graph model is tested on Oakland first to understand the level of 
vulnerability posed to the community in case of a similar event. Second, the model is utilized to identify vulner-
ability factors of communities to WUI fires. For the tests, conditions similar to that of the 1991 wildfire are simu-
lated. The analysis is performed in two steps by dividing the regions (Fig. 4) into - (a) OI and (b) OII, for which the 
wind directions are chosen to be θ = 225o and θ = 300o, and the wind speed to be vw = 29.058 m/s(104.42 km/h), 
respectively46,47.

Community inherent vulnerability.  The respective vulnerability maps obtained for both regions of 
Oakland are shown in Fig. 4. The total vulnerability, which is calculated as the mean vulnerability of all ignitable 

Figure 2.  Procedure for evaluating probability of ignition for any source node s inside the community due to 
the wildlands (Ω) (©OpenStreetMap contributors55).
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ways in the community, for region OI is observed to be V = 0.9772 and for region OII to be V = 0.9815. Without 
any form of fire mitigation, internal or external, the vulnerability of wildfire propagation is found to be sufficiently 
high for both regions of Oakland. This can be attributed to high path redundancy present in the communities 
due to significant clustering of ways and absence of discontinuities. The vulnerability of HH for θ = 300o (max-
imum effect seen for this direction) and vw = 29.058 m/s is calculated to be V = 0.9326. Even though the fuel 
density I (section 1 of the SI text) of region OI is lower than HH (Table S2), the vulnerability for OI is relatively 
the highest. The layout structure of communities, indeed, plays a role in determining the level of vulnerability of 
communities48.

Influence of individual ways.  To better understand the effect of layout characteristics of a community on 
fire propagation, the importance of individual ways is classified. Primarily, ways which assert global influence on 
the wildfire network are identified using Eigenvector centrality (section 7 of the SI text). The most influential ways 
are observed at the wildland-urban interface (Fig. S2(a)) and the position of these ways changed in correlation 
to the wind direction (Fig. S2(b) and (c)). This can be explained by high wind speed conditions that allow the 
ways at the interface to connect to maximum ways by dispersing embers in the direction of wind. Due to high 
directionality in the graph, the edge nodes have the highest contribution to the network. For the 1991 Oakland 
wildfire, the location of origin of fire (Fig. 4) coincided with the highest centrality ways (Fig. S2(a)) that probably 
maximized the spread capacity of the wildfire. The global ways ignite other ways, which further distribute the fire 
throughout the community. This transition is observed by evaluating Bonacich centrality49 (Fig. S3) for different 
values of attenuation factor β ∈ [0, 1], such that β = 1 corresponds to eigenvector centrality and β = 0 corresponds 

Figure 3.  Calculation of vulnerability of destination way D due to source way S for a part of an actual 
community Hacienda Heights, Los Angeles, CA. (a) Fire pathways shown for wind direction θ = 300o (b) Fire 
pathway shown for wind direction θ = 60o (c) Fragility curve to represent variation in vulnerability of way D for 
different wind directions (θ) and wind speed vw (©OpenStreetMap contributors55).

Figure 4.  Region of Oakland affected by the 1991 wildfire along with the point of fire origin. Two regions 
are selected for analysis (a) Region OI with wind direction θ = 225o and (b) Region OII with wind direction 
θ = 300o. For both regions, vulnerability for each way is calculated from the source in their respective layouts. 
Significantly high vulnerability of all ways is observed in both layouts in the absence of any fire mitigation 
(©OpenStreetMap contributors55).
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to degree centrality. A uniform spread pattern is seen for OII, which is to be expected due to high ember dispersal 
capacity of all ways under high speed winds and homogeneous density of the community.

To better realize the participation role of each way, total degree centrality50 is calculated (section 8 of the SI 
text). The effect of ember mode dominates over the short range modes (convection and radiation) due to high 
wind speed and a large number of ways contributes equally to ember dispersion (Figs S4(a) and S5(a)). Most 
houses in Oakland during the 1991 fire comprised of wooden shingle roof, which were identified as the main 
factor that led to significant increase in ember generation51. As a result, the embers completely overwhelmed 
all suppressive actions and spread rapidly. Therefore, degree centrality is clearly related to wind speed. The total 
degree centrality is observed to decline with decrease in wind speed and the centrality of ways also shifts (Figs 
S4 and S5). The correlation (Kendall rank) of degree centrality is observed to reduce for region OI (Table S8) and 
OII (Table S9) as the difference in wind speed increases. This highlights the fact that ways which contribute more 
for a particular mode might not be significant contributors with respect to other modes. To develop effective fire 
mitigation strategies, the ways would need to be classified for each mode separately.

The transitivity (section 9 of the SI text), also commonly know as clustering coefficient, is a measure of the 
ability of the nodes to form triplets. When transitivity is applied to both regions of Oakland no clear pattern is 
observed (Figs S6(a) and S7(a)). At high wind speeds, since the ember mode is dominant, each way is able to 
form triplets easily. As a result, a uniform distribution of centrality is observed. When transitivity is applied to 
both regions without the effect of wind (Figs S6(b) and S7(b)), an interesting pattern is observed. That is, ways 
with high volume and situated in high density regions exhibited high transitivity, which is to be expected as they 
have higher capacity to spread fire. However, in region OII, ways with significantly low area situated close to other 
larger ways also showed high transitivity (Fig. S7(b)). It has already been well established that low intensity expo-
sure from easily ignitable objects, such as garbage, mulch and vegetation, in the vicinity of households tend to 
maximize the probability of ignition10,14,42,52. The ordered set of ways with area smaller than 10th percentile yields 
mean transitivity of 0.3620 for region OI and 0.3928 for region OII, which corresponds to 86th and 90th percentile 
of the transitivity distributions observed, indicating high transmission capacity of low area ways.

Effect of fire intervention.  Fire intervention (mitigation) is characterized by two components - (1) 
Intervention strength (μ), which is related to number of ways under the effect of some form of fire mitigation, and 
(2) Strategy efficiency (η), which is related to the change in vulnerability as the location of ways under fire miti-
gation are altered. To observe the effect of these factors, the graph model is extended to include a static fire inter-
vention framework (section 10 of the SI text). The inflow (indegree) and outflow (outdegree) of randomly selected 
ways are altered to induce the effect of fire intervention factors, including but not limited to, action of firefight-
ers, individual structural properties and passive fire mitigation approaches. The framework is implemented on 
both regions of Oakland OI and OII for N = 100 iterations and μ ∈ [0, 100%] under original wind conditions 
(vw = 29.058 m/s), to obtain respective vulnerability distributions (Fig. S8(a) and S8(b)). Intervention strength has 
a direct impact on vulnerability, which reaffirms the theory that management of WUI fires is only possible by reg-
ulating fire at the individual structural level5,10,43,48,53. The mean vulnerability for different μ values is observed to 
be in range [0.089, 0.977] for region OI and [0.049, 0982] for region OII. Fire intervention is observed to be more 
effective for region OI than region OII, which can be attributed to the difference in topographic features of the 
region layouts. Region OI has a relatively constricted layout (less redundant paths), whereas, the layout of region 
OII is more spread out (more redundant paths). For each intervention strength μ, some strategies (iterations) 
provide better resistance from wildfire than others, suggesting the importance of strategy efficiency. Depending 
on the location of ways chosen for intervention, a spread in vulnerability (η) is observed. Therefore, given a 
particular community layout, optimal fire intervention configurations can be evaluated to minimize the effect of 
wildfires on communities.

During the Oakland fire, all suppressive actions taken by firefighters proved ineffective throughout the day. 
It was not until the evening, where wind speed gradually reduced and at some point stopped completely, when 
firefighters were able to stop the fire46,47. The intervention framework is applied to both regions at different wind 
speeds for μ = 50% (Fig. 5). At high wind speeds (vw = [15, 30] m/s), the effect of intervention is nearly constant 
for both regions, followed by improvement for medium wind speeds. For low wind speeds, the effect is quite 
significant to the point that some of the configurations result in near zero vulnerabilities. This explains how 
firefighters were ultimately able to control the 1991 Oakland fire. Strong correlation between wind speed and 
intervention strength (Fig. S8(a) and (b)) is to be expected. Interestingly, the effect of strategy, which is measured 
as the standard deviation of vulnerability distribution (η), is observed to be maximum for specific range of wind 
speeds (Fig. 5).

Effect of source location.  All analysis conducted to this point only considered sources at the wildland 
urban interface (Fig. 4). During the 1991 fire, high speed winds resulted in ignition of several structures inside 
the community by embers generated from the wildlands, which is a familiar observation in high intensity WUI 
fires42,51. To observe the effects of these internal sources, a framework is developed and implemented (Section 11 
of the SI text). For both regions of Oakland, the framework is applied for certain iterations, such that the increase 
in vulnerability is reduced to less than 1% for further iterations. Specific configurations for fire intervention 
strength μ = 50% are selected for both regions, such that the initial corresponding vulnerabilities (before applying 
the framework) are calculated to be V = 0.541 for region OI and V = 0.610 for region OII. The maximum vulner-
ability (after 5 iterations) is evaluated to be V = 0.774 for region OI and V = 0.733 for region OII. Even though the 
effect of fire intervention is evaluated to be higher for region OI than region OII, the effect of additional sources 
result in higher vulnerability for the former region. Region OI has a higher percentage of wildland vegetation 
surrounding it than region OII, as a result, the wildlands are able to generate internal sources further deep into the 
community. During the first hour of the Oakland fire, a similar pattern of internal sources was observed (Fig. S9)  
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and the vulnerability for this configuration is calculated to be V = 0.7933. Two of the actual observed internal 
source locations coincide with the optimal internal source locations calculated from the framework (Fig. S10(e)). 
The internal source framework shows that just by igniting five critical ways in the community, the vulnerability 
can be increased significantly even after considering 50% intervention strength. Wildlands surrounding commu-
nities exasperate the problem by creating additional internal sources and these need to be accounted for proper 
community risk assessment48.

Identifying flow paths.  The flow paths of radiation and convection modes are strictly dependent on com-
munity layout, unlike ember paths, which are more or less independent of community layout at high wind speeds. 
Instead, they are function of individual way properties. Betweenness centrality is used to identify most probable 
paths (MPP) within the communities for short range propagation modes (radiation and convection) (section 12 
of the SI text). The identified paths for both regions of Oakland and region of Hacienda Heights (for θ = 300o) are 
shown in Fig. S12. These are identified by selecting ways with centrality above a certain threshold ( > .∗C 0 075b

w ). 
The betweenness values are highest for HH, followed by Oakland region OI, and finally region OII. High centrality 
values for HH ( ∈ .∗C [0, 0 84]b

w ) suggest higher use of flow paths, which coincide with the fact that the interven-
tion framework has the most impact on HH (V(μ = 50%) = 0.403 for θ = 300o) among the 3 test regions. On the 
other hand, region OII shows lowest centrality values ( ∈ .∗C [0, 0 73]b

w ), which implies that the wildfire spread 
throughout the community via multiple paths in the region. This indicates a closeness among path probabilities; 
hence, intervention had the least effect, as the fire is able to find surrogate paths much easily. Identification of high 
probability paths can aid in improving the efficiency of fire mitigation strategies.

Discussion
In this study, we presented a quasi-physics based graph theory model to assess vulnerability of communities to 
wildfire, using four key modes of heat transfer. Sub-models for each mode were established based on previous lit-
erature on wildfire models. Each mode has certain complexity associated with their mechanism. As a result, cer-
tain assumptions had to be adopted for each sub-model, which have been discussed in their subsequent sections 
in the SI text. Given the preliminary nature of the current study, the sub-models proved sufficient. However, each 
of them could be either improved or suitably replaced as desired. Lack of data on certain input parameters could 
further hinder wide spread application of the proposed model; however the model can still be utilized for general 
theoretical investigations of WUI fires. For instance, sensitivity of parameters to global community behavior var-
ies significantly, thus, some are more dominant than others. An extensive sensitivity analysis can provide an idea 
of the prominent variables, which would aid in effective dimensionality reduction of the model.

The graph model was tested on two communities - Hacienda Heights and Oakland (California, USA). One of 
the primary reasons for choosing communities in California was the availability of data (albeit limited) for these 
regions. The first test was conducted to investigate the correlation between vulnerability of ways, community 
layout and wind conditions. The second test was conducted to simulate the infamous 1991 Oakland wildfire 
to identify underlying factors governing fire propagation within a community. Vulnerability of the community 
was first calculated without the effect of any form of fire intervention to observe the effect of community layout. 
The next test focused on the effect of individual ways on community vulnerability, which involved the use of 
centrality measures from graph theory. To simulate the effect of fire intervention strategies a framework was 
implemented. The analysis conducted was static in nature. As a result, time-dependent behavior of firefighters was 
not included. While the static model provides a good estimation of effect of passive fire intervention strategies, a 
dynamic model would be required to accurately capture the behavior of firefighters (active fire intervention). The 

Figure 5.  Effect of fire intervention (mitigation) showed for (a) region OI and (b) region OII of Oakland at 
intervention strength μ = 50% for different wind speeds to highlight significance of intervention strategy. 
Vulnerability distributions are calculated for N = 100 iterations at each wind speed and the efficiency of strategy 
η is measured as the standard deviation for each distribution.
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implemented intervention framework assumed an unreasonably high efficiency of firefighters. The intervention 
analysis was conducted under varying intervention strength and wind speed to observe their respective correla-
tion with vulnerability. The next analysis focused on the effect of wildlands on community vulnerability. Critical 
locations in the community were identified, such that when ignited, the vulnerability of a community would be 
maximized.

There are both, epistemic and aleatoric uncertainties, associated with the current model. The former relates to 
the simplifications considered in the model and the latter to the absence of relevant data required to calibrate the 
necessary variables. Both aspects require sufficient work before widespread application of the proposed model 
can be realized without prejudice. However, the model provides a direction in fire research that might open 
opportunities to better understand the mechanics of wildland urban interface fires.

Conclusions
The observations from the analysis conducted in this study reaffirmed some of the long stated findings from 
previous studies. We were able to quantify and understand the effects of intrinsic factors, which relate to features 
that are naturally present in a community, and mitigation factors, which can be altered to regulate vulnerability 
of the community. The intrinsic factors were primarily identified as - (1) Wind speed (2) Wind direction (3) 
Community layout and (4) Wildland vegetation in the vicinity of the communities. High speed winds were found 
to strongly affect the generation of embers, which allowed the fire to spread easily. The discontinuities in the 
community layouts adversely affected fire propagation; however, the effect was minimal for high wind speeds. The 
wildlands surrounding the communities led to the creation of additional sources in the interior of communities, 
which caused significant increase in vulnerability. This increase was, however, a function of which structures the 
embers ignited. By igniting certain structures in the community, the probability of wildfire propagation can be 
substantially increased. Certain structures have higher geographical contribution to fire spread than others. Thus, 
by reverse engineering we can determine the boundary limits of wildland vegetation that would minimize this 
effect. Given the limited resources, a selective fuel treatment approach would both be practical and economical.

To further manage community vulnerability, mitigation factors such as presence of stray vegetation inside 
communities, layout and material properties of individual structures, and resources available for fire suppression, 
are critical. The effect of these factors was quantified in terms of mitigation strength, which was measured as the 
number of houses under some form of fire mitigation, and strategy efficiency, which was related to the selection of 
such houses. Both components were found to be strongly correlated to vulnerability; however, the effect of strat-
egy was restricted to low to mid-range wind speeds only. Furthermore, depending on the wind conditions during 
a WUI fire, the community needs to have a certain level of resilience at the individual structural level, in order 
to have a fighting chance. These measures could include integration of fire-proof materials in household design, 
adoption of automatic sprinkler systems and/or management of stray vegetation in the household ignition zone. 
Essentially, a major responsibility of fire management lies within the hands of home owners; therefore, programs 
such as Fire Adapted Communities, Fire Adapted Communities Learning Network, Firewise Communities USA, 
and FireSmart Canada need to be implemented rigorously, which is going to require a paradigm shift in current 
fire management policies.

This study was an attempt to start a dialogue in a new direction of quantifying wildfire risk to communities. 
Even though the presented graph model is in its stage of infancy, it is our expectation that application of graph 
theory can be further extended to study other aspects of fire management, including but not limited to, sustain-
able urban planning, optimal firefighter mitigation strategies and optimal reinforcement of individual structures 
against fires. By quantifying these aspects, changes in fire policies can be approached in a systematic fashion as it 
will allow policy makers, planners, and resource managers to develop long-term solutions to make communities 
more adaptable to wildfires. Specific design guidelines can be established, similar to design philosophies for other 
hazards, that are exclusive to each community and account for the mentioned critical variables.

Material and Methods
There are four primary modes of heat transfer from one ignitable way to another that are observed during WUI 
fires. The four modes are incorporated using repertoire of information from previous research studies on wildfire. 
The scope of this study is to understand wildfire propagation on a community scale. It is observed from prelim-
inary tests of the case study considered that the effect of internal propagation of ways on the global vulnerability 
of the community is minimal; hence, conduction mode is modeled in a simplified manner (Eq. 1). The details for 
the other three models are discussed below.

Convection.  Convection is the transfer of heat from one location to another by movement of fluids. In this 
study, heat transfer by convection corresponds to ignition of an object due to direct influence of flames. The prob-
ability of convection is defined by Eq. 6, which is unity if the distance between nodes i and j (d(i,j)) is within the 
convection threshold distance (dconv

i j( , )), and zero otherwise. It is reasonable to assume that if the flames touch an 
ignitable object the probability of ignition would be unity.

=








≤

>
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d d

d d

1 if

0 if (6)
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i j
i j
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i j
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( , ) ( , )
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The threshold convection distance is defined as function of flame height, hf
i( ), flame angle, θf ∈ [0, 90o], and 

wind direction θ ∈ [0, 360o]. Equation 7 defines the convection distance model, which includes the effect of uncer-
tainty in wind direction in the form of a wind correlation coefficient ∈F [0, 1]cc

i j( , ) , given by Eq. 8. The coefficient 
attains a maximum value of unity when there is perfect correlation between the wind direction and the direction 
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of edge from node i to j (φ(i, j)). The wind correlation coefficient is a measure of the uncertainty associated with 
local changes in wind direction. Details on flame length and the parameters for the model are described in Section 
2 of SI text.

θ= . .d F h tan( ) (7)conv
i j
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i j
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f
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φ θ φ θ

φ θ
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( , )
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Radiation.  In this study, the effect of shape of each way on thermal radiation transmitted is considered and 
each source-target way pair interactions are evaluated individually. Thermal radiation incident flux on a surface 

∈ = … …l l N{1, , , , }n l( )  of a way due to a burning surface ∈ = … …k k N{1, , , , }m k( )  is calculated by the 
Stefan-Boltzmann law, where the sets m( )  and  n( ) represent the surfaces of ways m and n, Nk and Nl are the total 
number of surfaces of respective ways. The incident thermal radiation flux (q k l

m n
( , )
( , )) is defined by Eq. 9, where A k

m
( )
( ) 

is the radiative area of a surface, vf k l
m n

( , )
( , ) is the view factor from the source to target surface, σ is the Boltzmann 

constant, ε k
m

( )
( ) is the emissivity of source surface, Tf is the flame temperature and Ta is the temperature of the sur-

roundings. For all analysis in the study, all households are assumed to be made entirely of wood, and thus, com-
pletely ignitable. A k

m
( )
( ) is assumed as the total area of surface k. In the presence of windows, this might not be the 

case since once the interior of a structure starts burning the only way for the heat flux to escape would be the 
window openings on the surfaces of structure. Specific radiative area of each surface would have to be calculated 
separately, depending on the nature of the way. In real life scenarios, each structure cannot be assumed a single 
homogeneous source of thermal radiation. Each surface of an ignited structure is a potential source of radiation 
with different properties, such as surface area and inclination. To better understand the radiation heat transfer 
between different ways, the boundary of each way is discretized into multiple surfaces, which generate independ-
ent heat flux on individual surfaces of the target way. Thus, the cumulative incident heat radiation for each target 
surface is function of the inclination of the source surface (Θ k

m
( )
( )), target surface (Θ l

n
( )
( )) and the distance between 

the surfaces (d k l
m n

( , )
( , )). This is reflected by the view factors (vf k l

m n
( , )
( , )) calculated using Eq. 10. The view factors are 

calculated for each source-target surface pairs exclusively using the procedure discussed in Section 3.1 of SI text.
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Figure 6 shows the thermal radiation interaction between two ways, where way 1 is considered as the ignited 
source and way 2 as the target. The difference in view angles between the ways generate varied cumulative heat 
flux on each target way surface. To quantify the effects of radiation between two ways m and n, a local radiation 
matrix is defined (Rad[(m, n)]) of size [k × l] such that each entry represents the net thermal flux exchange 
between each possible source-target surface combination. The total radiation on the lth surface of the target way is 
obtained as the summation along the rows of the lth column of the radiation matrix. Eq. 11 describes the total 
incident thermal radiation on surface l of way n due to way m for all k surfaces. In case, the roles of ways 1 and 2 
are reversed, the modified radiation matrix is directly calculated as Rad[1, 2] = Rad[1, 2]T. This result is derived 
based on the reciprocity rule of heat radiation between 2 surfaces, given as . = .A vf A vfk k l

m n
l l k

n m
( ) ( , )

( , )
( ) ( , )

( , ). The 
detailed procedure for formulating the radiation matrix is discussed in Section 3.2 of SI text.
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The total incident radiation for surface l is utilized to obtain the minimum residence time for flames (t l
m n

( )
( , )) 

required for ignition. The residence time is defined as the time for which the flames continue to emit heat flux. 
Depending on the incident radiation heat flux, the flame is required to burn for a minimum residence time before 
it can cause ignition, and this time is given by Eq. 12 39, where FTP(n) is the flux time product of the material of 
target way n, Q l

m n
( )
( , ) is the total incident radiation on surface l (as calculated above), Qcr

n( ) is the critical flux required 
for ignition as a function of target way and c(n) is a constant derived based on material properties of the target way. 
The total incident flux is required to be higher than the critical flux for pilot ignition to occur. The parameter 
values for the model are discussed in Section 3.3 of SI text.
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Based on the minimum ignition time, probability of ignition due to radiation for surface l (p l
m n

( )
( , )) is calculated 

using Eq. 13, where tr
m( ) is the residence time of each surface of source way m and .  F( ): {0,1} represents a 

cumulative density function (CDF) of a normal distribution μ σ( , )2 . The CDF is used to account for uncertain-
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ties associated with residence time of the source way. Eq. 14 gives the radiation ignition probability (Prad
m n( , )) 

between ways m and n as the maximum of all surface probabilities of target way. The effects of radiation within a 
community are restricted to a specific distance, as seen from wildfire studies39,40,43. A threshold radiation distance 
(dth) is introduced to ensure ways at a greater distance than the threshold distance are not affected by radiation. 
The distance dmin

m n( , ) is the minimum distance between all possible node combinations of ways m and n, as given by 
Eq. 15. The functions max(.) and min(.) correspond to the highest and lowest values in a set/matrix. The mean 
residence time is calculated as μ = (tr,min + tr,max)/2.
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Embers.  One of the most prominent modes of propagation are those generated by embers during a wildfire. 
The embers provide significant amount of complexity to understanding wildfires, as they tend to travel farther 
downstream than the actual fire front, thereby resulting in multiple fire fronts. The unpredictability and capacity 

Figure 6.  Procedure shown for calculating net radiative heat flux exchange between two ways such that way m 
is ignited. Heat flux exchange between all possible surface pair interactions of ways m and n are calculated to 
formulate a radiation matrix that is further used to calculate the net flux received by each surface of way n.
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of embers for destruction is a major concern. Ember-driven fire ignitions are heavily influenced by a number of 
factors such as wind direction (θ), wind speed (vw), ember size and shape, among others, which are difficult to 
account for deterministically. In this study, the effect of embers in regards to possible ignition is modeled using 
Eq. 16, where Pacc

i j( , ) is the relative probability of access for embers and . g ( ): [0, 1]i j( , )  is the probability distri-
bution function between nodes i and j, given by a distribution function S (Eq. 17). The distribution is uniquely 
defined for each (i,j) node pair interaction as a function of volume of source node i (Vn

i( )), the distance between 
nodes i and j (d(i,j)), and wind speed (vw). Details on the ember distribution function are discussed in Section 4 of 
the SI text.

= . .P P F g (16)ember
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The probability of access (Pacc
i j( , )) is an indication of the ease with which an ember can ignite a way based on its 

design, which may include material properties of way52, layout design54 and other factors. Relative probabilities 
are assigned to ways based on their functional classification (Table S5).
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