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ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-
associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously
synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethal-
ity. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasiz-
ing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of mi-
crobial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford
an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbi-
ology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbi-
osis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of
the origin of species.

In 1998, Carl Woese referred to the microbial world as the “sleep-
ing giant” of biology (1). Almost two decades later, unprece-

dented attention to our microbial world has turned the fields of
zoology (2) and botany (3) inward—toward an increased aware-
ness and understanding of individual animals and plants as holo-
bionts (4–6). The term “holobiont” denotes a host plus all of its
microbial symbionts, including inconstant and constant members
that are either vertically or horizontally transmitted or environ-
mentally acquired; it was first coined in 1991 by Lynn Margulis
(reviewed in reference 5). The ubiquity and importance of mi-
crobes in and on holobionts, including humans, are evident in
studies of host development (7), immunity (8), metabolism (9–
12), behavior (13, 14), speciation (15, 16), and numerous other
processes. Host-microbe interactions provide the holobiont with
disadvantages (17–19), such as increasing the risk of cancer (20),
and advantages (7, 21–23), such as driving the evolution of resis-
tance to parasites and pathogens (24–26), and among other things
producing signal components (i.e., metabolites) used to recognize
differences in potential mates (27, 28).

The newfound importance of diverse microbial communities
in and on animals and plants led to the development of the holog-
enome theory of evolution (4, 29). The “hologenome” refers to all
of the genomes of the host and its microbial symbionts, and the
theory emphasizes that holobionts are a level of phenotypic selec-
tion in which many phenotypes are produced by the host and
microbial members of the holobiont. This developing scientific
framework distinguishes itself by placing importance not only on
well-studied primary microbial symbionts and vertical microbial
transmission but also on the vast diversity of host-associated mi-
crobes and horizontal microbial transmission. The key reason for
aligning these different transmission modes and levels of com-
plexity into an ecoevolutionary framework is that the community-
level parameters among host and symbionts in the holobiont (e.g.,
community heritability, selection, and coinheritance) can be an-
alyzed under a common set of concepts to the parameters that
occur in the nuclear genome (6, 30).

As natural selection operates on variation in phenotypes, the
hologenome theory’s most significant utility is that it reclassifies
the target of “individual” selection for many animal and plant
traits to the holobiont community. This claim is straightforward

given the overwhelming influence of microbes on host traits (31–
34). The question going forward is whether the response to this
community-level selection is relevant to the biology of holobionts.
In other words, can host-associated microbial communities be
selected such that shifts in the microbial consortia over multiple
generations are a response to selection on holobiont traits? Com-
munity selection at the holobiont level is shaped by genetic varia-
tion in the host and microbial species and covariance between
hosts and their microbial consortia, the latter of which can be
driven by (i) inheritance of the microbial community from par-
ents to offspring (35, 36) and/or (ii) community heritability H2

C

(30, 37). We recently summarized 10 foundational principles of
the holobiont and hologenome concepts, aligned them with pre-
existing theories and frameworks in biology, and discussed cri-
tiques and questions to be answered by future research (6).

In the context of the widely accepted biological species concept
(38, 39), the principles of holobionts and hologenomes offer an
integrated paradigm for the study of the origin of species. The
biological species concept operationally defines species as popu-
lations no longer capable of interbreeding. Reproductive isolation
mechanisms that prevent interbreeding between holobiont pop-
ulations are either prezygotic (occurring before fertilization) or
postzygotic (occurring after fertilization). In the absence of repro-
ductive isolation and population structure, unrestricted inter-
breeding between holobiont populations will homogenize popu-
lations of their genetic and microbial differences (6). While
postzygotic isolation mechanisms include hybrid sterility or invi-
ability, prezygotic isolation mechanisms can include biochemical
mismatches between gametes and behavior mismatches between
potential partners.

Symbionts can cause prezygotic reproductive isolation in two
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modes: broad sense and narrow sense (40). Broad-sense symbiont-
induced reproductive isolation refers to divergence in host genes
that result in a reproductive barrier because of selection on the
host to accommodate microorganisms. In this case, loss or alter-
ation of the symbiont does not have an impact on the capacity to
interbreed; instead, host genetic divergence and reproductive iso-
lation evolve in response to microbial symbiosis and cause isola-
tion regardless of whether the hosts are germfree or not. Con-
versely, narrow-sense symbiont-induced reproductive isolation
occurs when host-microbe or microbe-microbe associations re-
sult in a reproductive barrier, namely, one that can be ameliorated
or removed via elimination of the microbes. Therefore, narrow-
sense isolation can be experimentally validated if it is reversible
under microbe-free rearing conditions and inducible with the re-
introduction of microbes. Isolation barriers that require host and
microbial components underpin hologenomic speciation (6, 16).

We recently synthesized the literature and concepts of various
speciation mechanisms related to symbiosis, with notable atten-
tion to postzygotic isolation (40–42). While aspects of the micro-
biology of prezygotic isolation are less understood, seminal cases
exist (43–45), and control of behavior by symbionts is an emerg-
ing area of widespread interest (14, 46, 47). Here we emphasize the
patterns seen in these new and old analyses (Table 1) and highlight
important and tractable questions about the microbiome, behav-
ior, and speciation by symbiosis. For the purposes of this minire-
view, we refer to the microbiome as the community of microor-
ganisms in and on a host.

SIGNALING AND MICROBIOME HOMOGENIZATION

Recognizing signals of species membership (48), gender (49), ge-
netic relatedness (50), and colony or group membership (51) is
relevant to choosing a mate. Visual (48), auditory (49), and che-
mosensory (52) signals can each be used to relay this information,
with the latter being sometimes influenced by the microbiome
in either “microbe-specific” or “microbe-assisted” ways. Both
mechanisms involve the expression of chemosensory cues, but
microbe-specific processes involve bacterium-derived products
such as metabolites, while microbe-assisted mechanisms involve
bacterial modulation of host-derived odorous products (Fig. 1).

The microbiome’s capacity to provide identity information
used in mate choice may rely on products being an honest signal of
holobiont group membership, requiring that many or all mem-
bers of the group (i.e., gender, population, or species) contain
appropriate microbial members that express equivalent signal
profiles. Holobionts can be colonized by similar microbes via a
number of different mechanisms, spanning behavioral similarities
and contact with shared environmental sources (53, 54), similar
ecological niches and diets (55–57), and host genetic effects (16,
58). Each of these mechanisms may explain a portion of the vari-
ation in the microbial communities of holobionts (40, 42, 59–61).

In the context of group living, humans in the same household
(54, 62) and chimpanzees (63) or baboons (53) in the same social
group have more similar microbial communities than nongroup
members. Among several mammalian species, microbial commu-
nity composition covaries with odorous secretions, and similari-
ties are shared based on host age, sex, and reproductive status
allowing for potential signaling and recognition of these traits (27,
64). In hyenas, there is less microbial community variation within
species than between them, and clans have more-comparable mi-
crobial communities due to the marking and remarking of collec-

tive territory to signal clan ownership (64). In baboons, there is
less microbiome variation within social groups than between
them, and baboons involved in communal grooming behaviors
share even more similarities (53). Insect populations such as ter-
mites can stabilize their gut microbiomes by way of trophallaxis, a
behavior in which nestmates supply nutrients and microbes (e.g.,
cellulolytic microbes) to other colony members through fluids
they excrete from their hindgut (65). However, Tung et al. appro-
priately note that “one of the most important unanswered ques-
tions is whether social network-mediated microbiome sharing
produces net fitness benefits or costs for hosts” (53). From the
perspective of the origin of species, it will be similarly important to
determine whether fitness impacts of the microbiome in turn af-
fect the evolution of group living and reproductive isolation. On
one hand, socially shared microbiomes could drive the evolution
of population-specific mating signals and ensuing behavioral iso-
lation. On the other hand, they could fuse incipient species in
sympatry that socially share bacterial communities responsible for
mating signals.

Similarities in diet can also influence microbiome homogeni-
zation, particularly in the digestive tract. For instance, Drosophila
melanogaster reared on similar food sources carry comparable mi-
crobial communities (43). Trophically similar ant species also
share microbial species (66). In humans, gut microbiome varia-
tion in taxonomy and functions correlates with dietary variation
(67), and alterations in human diet can rapidly and reproducibly
change the structure of the microbiome (68, 69). Seasonal varia-
tion in the diet of wild howler monkeys is also correlated to shifts
in the microbiome (70). Mediterranean fruit flies (71) and olive
flies (72) acquire microbes from their food that increase clutch
size and oviposition rate of females exposed to diets lacking essen-
tial amino acids (71, 72). Intriguingly, the sexual competitiveness
of male Mediterranean fruit flies increases up to twofold with diets
enriched with Klebsiella oxytoca versus a conventional diet (73).

Host genetics also affects microbial community assembly. In
mice, there are 18 candidate loci for modulation and homeostatic
maintenance of Bacteroidetes, Firmicutes, Rikenellaceae, and
Provetellaceae in the gut (58, 74). Moreover, the presence of many
rare bacterial groups in the gills of the Pacific oyster are correlated
to genetic relatedness (75). Congruently, genetic variability in hu-
man immune-related pathways are associated with microbial pro-
files on several body sites, including various locations along the
digestive tract (76), and a study of the largest twin cohort thus far
examined members of the gut microbiome and found that the
bacterial family Christensenellaceae has the highest heritability (h2

� 0.39) and associates closely with other heritable gut bacterial
families (77). Human genetic background also influences the risk
of developing gastric cancer caused by Helicobacter pylori, indicat-
ing that incompatibilities between hosts and symbionts can pro-
duce deleterious effects (20). Phylosymbiosis, characterized by
microbial community relationships that reflect host phylogeny
(30), has also been reported in several cases. For instance, closely
related Nasonia species that diverged roughly 400,000 years ago
share more similar microbial communities than species pairs that
diverged a million years ago (16, 40). Similar phylosymbiotic pat-
terns are observed in hydra (59), ants (60), and primates (61).

The overall complexity inherent in microbial community
structures and processes may be problematic for animal holo-
bionts seeking to interpret a vast array of signaling information.
However, recognition and differentiation of these microbe-
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TABLE 1 Microbe-induced traits that associate with or cause changes in behavior and barriers to interbreeding

Microbe-induced trait Host species Common name Symbiont(s)
Behavior or reproductive
outcome Reference(s)

Host signal
modification

Drosophila bifasciata Fruit fly Unknown Assortative mating based on
familiarity

149

Drosophila subobscura Fruit fly Unknown Assortative mating based on
kinship

149

Drosophila melanogaster Fruit fly Lactobacillus plantarum Assortative mating based on diet 43, 82
Mus musculus House mouse Unknown gut bacteria Species recognition 85

Bacterial metabolite
production

D. melanogaster Fruit fly Lactobacillus brevis,
L. plantarum

Assortative mating based on diet 28

Reticulitermes speratus Termite Unknown gut bacteria Exclusion of noncolony
members

51

Costelytra zealandica Grass grub Unknown bacteria in
colleterial glands

Mate attraction 91

Crocuta crocuta Spotted hyena Unknown bacteria in
anal scent glands

Clan, age, sex, and reproductive
status recognition

64

Hyaena hyaena Striped hyena Unknown bacteria in
anal scent glands

Clan, age, sex, and reproductive
status recognition

64

Meles meles European badger Unknown bacteria in
anal scent glands

Possible mate discrimination 93

Suricata suricatta Meerkat Unknown bacteria in
anal scent glands

Group, age, and sex recognition 27

Odor production M. musculus House mouse Salmonella enterica Initial avoidance of infected
males

86

Homo sapiens Human Unknown Attractiveness 101–103

Cytoplasmic
incompatibility

Drosophila paulistorum Fruit fly Wolbachia Assortment within semispecies 44
D. recens and

D. subquinaria
Fruit fly Wolbachia in D. recens Asymmetric mating isolation 112

D. melanogaster Fruit fly Wolbachia Increased mate discrimination 45
Nasonia giraulti Parasitoid wasp Wolbachia Decreased mate discrimination 117
Tetranychus urticae Two-spotted spider mite Wolbachia Uninfected females prefer

uninfected males
113

Male killing Armadallidium vulgare Pill bug Wolbachia Reduce sperm count and female
fertility

128

D. melanogaster Fruit fly Spiroplasma poulsonii Evolved suppressors to prevent
male killing

125

Acraea encedon Common Acraea butterfly Wolbachia Male mate choice 127
A. encedon Common Acraea butterfly Wolbachia Populations with high infection

rates are not discriminatory
123

Hypolimnas bolina Great eggfly butterfly Wolbachia Reduced female fertility 126, 129
H. bolina Great eggfly butterfly Wolbachia Evolved suppressor gene to

prevent male killing
25

Feminization A. vulgare Pill bug Wolbachia Males reproductively female but
masculine males prefer true
females

133

Eurema hecabe Grass yellow butterfly Wolbachia Males reproductively female 130, 131
Zyginidia pullula Leafhopper Wolbachia Males reproductively female 132

Parthenogenesis Apoanagyrus
diversicornis

Mealybug parasite Wolbachia Females less attractive to males 145

Asobara japonica Parasitoid wasp Wolbachia Females less attractive to males 144
Leptopilina clavipes Parasitoid wasp Wolbachia Reduction in male and female

sexual traits and fertility
143, 147

Muscidifurax uniraptor Parasitoid wasp Wolbachia Reduction in sexual traits 142
Neochrysocharis formosa Parasitoid wasp Wolbachia Female-biased sex ratio 139
Galeopsomyia fausta Parasitoid wasp Unknown Females not receptive 150
Franklinothrips

vespiformis
Thrips Wolbachia Male sperm presumably do not

fertilize female eggs
137
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induced signals may be possible if a subset of the microbiome
affects the production of the particular signal. Furthermore, it
may also be challenging to disentangle social, environmental, and
diet effects on microbial assemblages in natural populations (53).
Nonetheless, the important theme among all of these cases is that
there often appears to be less microbial community variation
within holobiont groups/species than between them. This pattern,
if sustained in natural populations, could facilitate the evolution
of microbe-specific and/or microbe-assisted mating signals that
promote recognition within populations or species and discrimi-
nation between them. Once this critical point is passed, speciation
has commenced. There are parallels here with inclusive fitness
theory, which posits that individuals can influence their own re-
productive success or the reproductive success of other individu-
als with which they share genes (78, 79). If one follows the conti-
nuity from genes to microbial symbionts, then the inclusive fitness
framework may also apply to holobionts in which specific micro-
bial symbionts may influence their reproductive success by in-
creasing the reproductive success of their hosts through microbe-
specific and/or microbe-assisted mating. A case-by-case analysis
of the reliance of the symbiont on the host for transmission (e.g.,
maternal, social, environmental transmission) will augment the
relevance of this framework.

MICROBE-ASSISTED MODIFICATION OF MATING SIGNALS

A common, microbe-assisted modification involves manipula-
tion of host signals (Fig. 1A). One seminal study found that D.
melanogaster acquires more Lactobacillus when reared on starch
than on a cornmeal-molasses-yeast mixture (43, 80). The in-
creased Lactobacillus colonization correlates with an upregulation
of 7,11-heptacosadiene, a cuticular hydrocarbon sex pheromone
in the female fly, resulting in an ability to distinguish fly holo-
bionts raised in the starch environment from those reared on the
cornmeal-molasses-yeast substrate (43, 81). This microbe-
assisted positive assortative mating is reproducible, reversible, and

maintained for several dozen generations after diet homogeniza-
tion (43, 82). Moreover, this diet-dependent homogamy appears
to be directly mediated by different gut bacteria, as inoculation of
germfree flies with Lactobacillus causes a significant increase in
mating between flies reared on the different diets (43). Replication
of these experiments found that inbred strains specifically fol-
lowed this mating pattern (82). Moreover, another D. melano-
gaster study involving male mate choice and antibiotics revealed
that female attractiveness is mediated by commensal microbes
(83). These laboratory studies provide a critical model for how
microbe-assisted modifications in a signaling pathway, ensuing
behavioral changes, and mating assortment can potentiate behav-
ioral isolation. Indeed, natural populations of D. melanogaster ex-
press positive assortative mating and differential signal produc-
tion based on food sources (84), and a bacterial role in these
instances should be explored.

Microbe-assisted signaling also occurs in laboratory mice (Mus
musculus), in which bacterial conversion of dietary choline into
trimethylamine (TMA) leads to attraction of mice while also re-
pelling rats (85). Antibiotic treatment decreases TMA production,
and genetic knockout of the mouse receptor for TMA leads to
decreased attraction in mice (85). Antibiotic treatment and sub-
sequent depletion of TMA in mice could in turn result in a de-
crease in repellence of rats (85), though this possibility has not yet
been tested in vivo. Another study found that female mice are
more attracted to males not infected with Salmonella enterica than
to those that are, yet females mated multiply and equally in mating
choice tests with the two types of males (86).

Mate preference based on infection status fits well with the
Hamilton-Zuk hypothesis of parasite-mediated sexual selection,
which posits that traits related to infection status can influence
mating success (87). One seminal study showed that male jungle
fowl infected with a parasitic roundworm produce less developed
ornamentation and are less attractive to females (87). In house
finches, male plumage brightness indicates their quality of brood-

FIG 1 Microbe-assisted and microbe-specific signaling. (A) Microbe-assisted processes denote the production of a host signal with input from the microbiome.
It occurs in two possible scenarios. On the left, the host and microbial symbionts produce products that interact or combine to form a signaling compound; on
the right, microbial symbionts modify host signal expression, but they do not make a specific product directly involved in the signal itself. (B) Microbe-specific
processes denote the production of a microbial signal without input from the host. It occurs in two possible scenarios. On the left, the host and microbial
symbionts produce products that are both required to elicit a response; on the right, microbial symbionts produce compounds used by the host for signaling.
Mouse image source: Wikimedia Commons, Angelus (https://commons.wikimedia.org/wiki/File:Rat_2.svg).
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care and is associated with resistance to the bacterial pathogen
Mycoplasma gallisepticum (88). The Hamilton-Zuk hypothesis has
been reviewed in detail (89).

MICROBE-SPECIFIC SIGNALS

Microbe-specific signals frequently involve the release of volatile
microbial metabolites, often through excretions from specialized
glands on the host’s body (Fig. 1B). Microbial volatiles can trans-
mit information utilized for social signaling (13, 90) and intra- or
interspecies mate recognition (85, 91). For example, beetles (91),
termites (51), nematodes (92), hyenas (64), meerkats (27), and
badgers (93) produce and recognize bacterial metabolites in com-
munication that can modulate their behavior. In termites, fecal
metabolites produced by intestinal bacteria (51) coat the termite
body and hive walls to signal colony membership. Termite holo-
bionts lacking colony-specific metabolite profiles are attacked and
killed by the hive (51). In contrast, some beetles and mammal
species excrete bacterial metabolites from colleterial and anal
scent glands, respectively (27, 64, 91). For example, female grass
grub beetles house bacteria within their colleterial glands periph-
eral to the vagina that are used to attract males to mate (91).

An exciting area of research regarding microbe-specific bacte-
rial signaling involves mammalian fermentation. The mammalian
fermentation hypothesis (27, 64) states that fermentative bacteria
within mammalian scent glands produce odorous metabolites in-
volved in recognition. For example, hyena subcaudal scent
pouches store bacteria that are mostly fermentative (64). When
marking territory, hyenas deposit species-specific, bacterium-
derived volatile fatty acids from this gland onto grass stalks (64).
Bacterial metabolite secretions are more variable in the social hy-
ena species, presumably because the complexity of signals from
social species improves intraspecies identification (64). Alterna-
tively, social hyenas may permissively transmit more diverse bac-
teria leading to different metabolite profiles. Hyena microbiomes
also covary with group membership, sex, and reproductive state
(64). Similarly, bacterial communities in meerkat anal scent secre-
tions vary with host sex, age, and group membership (27). In both
cases, the signal diversity may allow animal holobionts to recog-
nize diverse biotic characteristics.

Humans also carry bacteria related to odor production. Breath
(94, 95), foot (96), and underarm (97) odor covary with oral and
skin microbiomes, respectively. Many diseases (e.g., smallpox,
bacterial vaginosis, syphilis, etc.) are associated with distinct
odors, which have historically been used by physicians in diagno-
sis (98). Clothing made from different materials even carry differ-
ent odor profiles based on material-specific bacterial colonization
(99, 100). Male odor has been associated with women’s interpre-
tation of a male’s attractiveness (101–103), possibly influencing
their choice in a mate.

The salient theme among the aforementioned cases is that
host-associated microbes frequently emit odors, and sometimes
this microbe-specific chemosensory information can affect mate
choice. Reciprocally, ample evidence shows that chemical signals
mediate sexual isolation (104), and a full understanding of
whether these signals are traceable to host-associated microbes is
worthy of serious attention. Germfree experiments and microbial
inoculations should be a prerequisite for such studies; otherwise,
they risk missing the significance of microbes in chemosensory
speciation (104). Additional behaviors involved in speciation,
such as habitat choice and pollinator attraction, are also likely to

be influenced by microbe-specific products. Indeed, classic model
systems of speciation await further experimentation in this light.
For example, food-specific odors on apples and hawthorn trans-
late directly into premating isolation of incipient host races of
fruit flies of the genus Rhagoletis (105). Furthermore, the fruit fly
Drosophila sechellia exclusively reproduces on the ripe fruit of
Morinda citrifolia, which is toxic to other phylogenetically related
Drosophila species, including D. melanogaster and D. simulans.
Some of the volatile compounds involved in these interactions,
such as isoamyl acetate, have been associated with fermentative
bacteria like Lactobacillus plantarum (106), suggesting that food-
based premating isolation may be related to bacterial associations
with the food source, though this requires further study.

In summary, new challenges necessitate the concerted effort of
scientists of diverse backgrounds to explore questions at the
boundaries of many biological disciplines and to develop the tools
to untangle and interpret this intricate web of interactions. Criti-
cal topics to be explored in the future include determining the
microbial role in animal mate choice, quantifying the extent to
which microbe-induced mating assortment impacts the origin of
species, and identifying the mechanisms involved in these inter-
actions.

ENDOSYMBIONTS AND MATE CHOICE

Wolbachia, Spiroplasma, Rickettsia, Cardinium, and several other
endosymbiotic bacteria can change animal sex ratios and sex de-
termination mechanisms to increase their maternal transmission
and thus frequency in the host population from one generation to
the next. Notably, these reproductive alterations affect mate
choice (107), and here we highlight a few prominent examples and
discuss how endosymbiotic bacteria can influence behavioral iso-
lation and the origin of species.

Cytoplasmic incompatibility. Wolbachia bacteria are the most
well-studied reproductive distorters (108, 109) and are estimated
to infect approximately 40% of all arthropod species (110). Across
the major insect orders, Wolbachia cause cytoplasmic incompati-
bility (CI), a phenomenon in which Wolbachia-modified sperm
from infected males leads to postfertilization embryonic lethality
in eggs from uninfected females or from females infected with a
different strain of Wolbachia, but not in eggs from infected females
(111).

In this context, Wolbachia-induced CI can promote the evolu-
tion of mate discrimination between populations or species be-
cause females can be selected to avoid males that they are not
compatible with (Fig. 2C). Among closely related species of
mushroom-feeding flies, Wolbachia-infected Drosophila recens
and uninfected Drosophila subquinaria contact each other and in-
terspecifically mate in their sympatric range in eastern Canada.
However, gene flow between them in either cross direction is se-
verely reduced due to the complementary action of CI and behav-
ioral isolation. Wolbachia-induced CI appears to be the agent for
evolution of behavioral isolation, as asymmetric mate discrimina-
tion occurs in flies from the zones of sympatry but not in flies
from the allopatric ranges (112). A similar pattern of Wolbachia-
induced mate discrimination occurs among strains of the two-
spotted spider mite, Tetranychus urticae (113) and D. melanogaster
cage populations (45). Moreover, discrimination between partic-
ular semispecies of Drosophila paulistorum is associated with their
Wolbachia infections (44). In cases where host populations or spe-
cies harbor different Wolbachia infections that are bidirectionally
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incompatible, for example in different Nasonia species that exist
sympatrically (114, 115), reciprocal mate discrimination has
evolved (114, 116). In contrast to these examples, interspecific
mate discrimination in Nasonia giraulti is diminished when non-
native transfections of Wolbachia spread throughout the whole
body, including to the brain, suggesting that Wolbachia can also
inhibit preexisting mate discrimination (117).

These cases reveal, to various degrees, that Wolbachia can be
causal to the evolution of assortative mating within and between
species. Indeed, population genetic theory demonstrates that
mate choice alleles spread quicker in populations or species with
CI than those with nuclear incompatibilities (118). This is primar-
ily due to the dominance of these Wolbachia-induced incompati-
bilities, since CI causes F1 inviability, while nuclear incompatibil-
ities are typically expressed in the F2 hybrids due to the recessive
nature of hybrid incompatibility alleles.

Male killing. Male killing is the most common form of
endosymbiont-induced sex ratio manipulation and can occur
during embryonic (119, 120) or larval (121, 122) development.
The effect of male killing is to increase the number of female hosts

in a population, thereby increasing endosymbiont transmission
rates. To prevent complete fixation of females and population
extinction (123), selection can favor hosts to (i) suppress male
killing via genes that reduce Wolbachia densities or functions (25,
124–126) or (ii) electively choose mates whereby uninfected males
preferentially mate with uninfected females (127, 128). If mate
choice evolves as a behavioral adaptation to avoid male killing, it
could begin to splinter infected and uninfected populations and
initiate the first steps of the speciation process (Fig. 2A). One
significant caveat in this conceptual model is that the infected
population will go extinct without uninfected males to mate with.
Thus, if mate preference based on infection status was complete, it
would cause speciation between the infected and uninfected pop-
ulations, resulting in the immediate extinction of the infected
population that requires uninfected males to reproduce. We term
this phenomena “behavioral extinction” (Fig. 2).

Wolbachia-induced male killing can reach a state of equilib-
rium, as suggested by their long-term maintenance in natural
populations of butterflies (129). Discriminatory males occasion-
ally mate with infected females, allowing the infection to remain in

FIG 2 Endosymbiont-induced behavioral isolation and extinction. U (blue) and I (pink) represent the uninfected and infected populations, respectively.
Horizontal solid arrows represent the direction of gene flow (from males to females), and vertical dashed arrows represent divergence time. Different subscript
numbers for U and I represent evolutionary change in traits involved in behavioral extinction and behavioral isolation. (A and B) Behavioral changes induced by
male killing (MK) (A) and feminization (FM) (B) evolve in response to selection on uninfected males to mate preferentially with uninfected females. If male
preference is completely penetrant, then total loss of mating between the uninfected and infected population ensues, effectively leading the infected population
to extinction, since infected females rely on (the now discriminating) uninfected males to reproduce. We term this model “behavioral extinction.” (C and D) In
contrast, behavioral changes induced by cytoplasmic incompatibility (CI) (C) and parthenogenesis induction (PI) (D) can result in reduced or no gene flow
between the infected and uninfected populations. CI-assisted reproductive isolation can be enhanced by the evolution of mate discrimination and specifically
uninfected female mate choice for uninfected males. While this model does not sever gene flow in reciprocal cross directions, asymmetric isolation barriers can
act as an initial step in speciation. PI-assisted reproductive isolation is mediated by two possible mechanisms: (i) sexual degeneration which involves the
degeneration of sexual traits in the infected population that ultimately lock the populations into uninfected sexual and infected parthenogenetic species, and (ii)
relaxed sexual selection which involves the evolution of new sexual characteristics in the uninfected sexual population that prevent mating with the infected
parthenogenetic population. Wolbachia image source: Tamara Clark, Encyclopedia of Life, Wolbachia page (http://eol.org/data_objects/466412).
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the population (127), and eventually, an equilibrium is reached
(129). However, in some cases, the infection rate is high (�95%),
and male preference for uninfected females has not been identified
(123). It is not known what mechanisms are involved in prevent-
ing male killing from reaching fixation in these situations.

Feminization. Feminization, or the conversion of genetic
males to morphological and functional females, has similar evo-
lutionary consequences to male killing (Fig. 2B). This process oc-
curs in many different arthropod species, including butterflies
(130, 131), leafhoppers (132), and wood louse (133). Resistance to
these effects in the pill bug Armadillidium vulgare has evolved in
the form of feminization suppressors and male preference for un-
infected females. Males that mate with infected females produce
feminized males (24, 134). Ultimately, a female-biased sex ratio in
feminized wood louse populations results in an increase in male
mate choice, male mating multiplicity, and sperm depletion. In
the context of sperm depletion, initial mating encounters are nor-
mal, but upon increased mating frequency, males provide less
sperm to subsequent females. Moreover, infected females are cu-
riously less fertile at lower sperm densities, possibly because they
are less efficient at utilizing small quantities of sperm (128). Insuf-
ficient sperm utilization and slight differences in infected female
courtship behaviors can result in male preference for uninfected
females within the population (133). Just as with male killing,
assortative mating within infected and uninfected populations
may initiate the early stages of speciation and lead to behavioral
extinction (Fig. 2).

Parthenogenesis. Microbe-induced parthenogenesis is com-
mon among haplodiploid arthropods such as wasps, mites, and
thrips (135–137), wherein unfertilized eggs become females (138,
139). As we previously discussed (140), parthenogenesis-induced
speciation by endosymbiotic bacteria falls neatly with the biolog-
ical species concept because parthenogenesis can sever gene flow
and cause the evolution of reproductive isolation between sexual
and asexual populations. Microbe-induced parthenogenesis does
not necessarily exclude the sexual capability of parthenogenetic
females, but instead it removes the necessity of sexual reproduc-
tion and can potentially drive divergence in sexual behaviors and
mate choice (141). Speciation therefore commences between sex-
ual and asexual populations under two models: (i) sexual degen-
eration and (ii) relaxed sexual selection (140) (Fig. 2D).

The sexual degeneration model posits that the asexual popula-
tion becomes incompetent to engage in sexual interactions due to
mutational accumulation and thus trait degeneration, while the
sexual population remains otherwise the same (140). In this case,
parthenogenetic lineages accumulate mutations in genes involved
in sexual reproduction. Traits subject to mutational meltdown
may span secondary sexual characteristics, fertilization, mating
behavior, and signal production, among other traits (142–144).
For instance, long-term Wolbachia-induced parthenogenesis in
mealybugs and some parasitoid wasps prevents females from at-
tracting mates or properly expressing sexual behaviors (144, 145).
Similarly, in primarily asexual populations, male courtship behav-
ior and sexual functionality are often impaired (142, 146, 147).
The accrual of these mutations prevents sexual reproduction, thus
causing the parthenogenetic population to become “locked in” to
an asexual lifestyle. While this model is an attractive hypothesis for
the onset of reproductive isolation between asexual and sexual
populations, it is not always easily distinguishable from the alter-
native relaxed sexual selection model (140). In this model, the

sexual population diverges by evolving new or altered mating fac-
tors (e.g., courtship sequence, signals, etc.), while the asexual pop-
ulation does not degrade, but rather stays the same and thus can
no longer mate with individuals from the diverging sexual popu-
lation (140).

CONCLUSIONS

Over the past decade, biology has stood vis-a-vis with what Carl
Woese referred to as the “sleeping giant” of biology—the micro-
bial world (1). During this period of groundbreaking research, a
new vision for the increasing importance of microbiology in many
subdisciplines of the life sciences has emerged. As such, studies of
animal and plant speciation that do not account for the microbial
world are incomplete. We currently know that microbes are in-
volved in a multitude of host processes spanning behavior, metab-
olite production, reproduction, and immunity. Each of these pro-
cesses can in theory or in practice cause mating assortment and
commence population divergence, the evolution of reproductive
isolation, and thus speciation. Understanding the contributions of
microbes to behavior and speciation will require concerted efforts
and exchanges among these biological disciplines, namely, ones
that embrace the recent “unified microbiome” proposal to merge
disciplinary boundaries (148).
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