
Genome analysis

Population-scale detection of non-reference sequence

variants using colored de Bruijn graphs

Thomas Krannich 1,*, W. Timothy J. White2, Sebastian Niehus3, Guillaume Holley4,

Bjarni V. Halldórsson4,5 and Birte Kehr 1,3,6,*

1Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany, 2Google Inc., 8002 Zürich,

Switzerland, 3Regensburg Center for Interventional Immunology (RCI), 93053 Regensburg, Germany, 4deCODE Genetics, Reykjavı́k 102,

Iceland, 5Department of Engineering, School of Technology, Reykjavı́k University, Reykjavı́k 102, Iceland and 6Universität Regensburg,

93053 Regensburg, Germany

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on April 12, 2021; revised on September 27, 2021; editorial decision on October 22, 2021; accepted on October 28, 2021

Abstract

Motivation: With the increasing throughput of sequencing technologies, structural variant (SV) detection has be-
come possible across tens of thousands of genomes. Non-reference sequence (NRS) variants have drawn less atten-
tion compared with other types of SVs due to the computational complexity of detecting them. When using short-
read data, the detection of NRS variants inevitably involves a de novo assembly which requires high-quality
sequence data at high coverage. Previous studies have demonstrated how sequence data of multiple genomes can
be combined for the reliable detection of NRS variants. However, the algorithms proposed in these studies have
limited scalability to larger sets of genomes.

Results: We introduce PopIns2, a tool to discover and characterize NRS variants in many genomes, which scales to
considerably larger numbers of genomes than its predecessor PopIns. In this article, we briefly outline the PopIns2
workflow and highlight our novel algorithmic contributions. We developed an entirely new approach for merging
contig assemblies of unaligned reads from many genomes into a single set of NRS using a colored de Bruijn graph.
Our tests on simulated data indicate that the new merging algorithm ranks among the best approaches in terms of
quality and reliability and that PopIns2 shows the best precision for a growing number of genomes processed.
Results on the Polaris Diversity Cohort and a set of 1000 Icelandic human genomes demonstrate unmatched scal-
ability for the application on population-scale datasets.

Availability and implementation: The source code of PopIns2 is available from https://github.com/kehrlab/PopIns2.

Contact: thomas.krannich@bih-charite.de or birte.kehr@klinik.uni-regensburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The genome of every person contains sequence that is not present in
the current reference genome (Faber-Hammond and Brown, 2016).
This additional sequence differs between people and contributes to
genetic diversity. It can disrupt exons or regulatory elements (Wong
et al., 2020) and associate with diseases (Kehr et al., 2017) analo-
gous to single-nucleotide variants, small insertion-deletion (indel)
variants and larger copy-number, inversion and translocation var-
iants. The vast majority of sequence missing in the reference genome
is repetitive (Delage et al., 2020; Manni and Zdobnov, 2020).
Owing to collaborative efforts such as the Telomere-to-Telomere
(T2T) consortium (Logsdon et al., 2021; Miga et al., 2020), we can
expect that the major sequence content of even highly repetitive

centromere and telomere regions in the human genome will be
known soon. Possibly, we will discover variants of highly repetitive
regions in the future, for example copy number variants, but the spe-
cific sequence of consecutive base pairs that constitute repeat regions
will be near complete.

A smaller portion of sequence missing from the reference genome
is present only in a subset of the population, the Non-reference se-
quence (NRS) variants. Others refer to NRS variants as insertions
(Delage et al., 2020; Wong et al., 2020) because the variants de-
scribe novel sequence with respect to the reference genome.
However, the majority of NRS appears to be ancestral rather than
novel because they can be found in other primate genomes (Kehr
et al., 2017; Lee et al., 2020). A convincing explanation for the

VC The Author(s) 2021. Published by Oxford University Press. 604

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(3), 2022, 604–611

https://doi.org/10.1093/bioinformatics/btab749

Advance Access Publication Date: 2 November 2021

Original Paper

https://orcid.org/0000-0002-5525-1849
https://orcid.org/0000-0002-3417-7504
https://github.com/kehrlab/PopIns2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/

existence of NRS is that the genomes used to construct the reference
genome lacked these sequences. In light of this, it may be misleading
to refer to NRS variants as insertions or novel sequences.

Compared with other types of structural variation, NRS variants
are less well studied because their detection is algorithmically more
challenging. While deletions, duplications, inversions and transloca-
tions can be characterized by breakpoints in the reference sequence,
NRS variant detection additionally involves determining unknown
sequence. If the NRS is longer than the read length, a sequence as-
sembly is inevitable. Sequence reads consisting only of NRS do not
align to the reference genome and, therefore, they do not indicate
the candidate variant positions. As a result, NRS variant detection
comprises assembling unaligned reads into candidate NRS, deter-
mining the positions of NRS variants in the reference genome based
on partially aligned reads, and genotyping the detected NRS
variants.

Early NRS detection methods, such as Pindel (Ye et al., 2009) or
SOAPindel (Li et al., 2013), relied on the alignment of one read in a
read pair. They were therefore limited to short NRS variants. The
first methods that included fully unaligned read pairs required sub-
stantial computational resources and were very limited in scalability.
For example, Cortex (Iqbal et al., 2012) introduced the colored de
Bruijn graph (CDBG) data structure to assemble several genomes
simultaneously. In the resulting de novo whole genome assemblies,
NRS variants can be traced just like any other type of structural
variant (SV). The tool Cortex itself is very limited in terms of scal-
ability and cannot handle more than a dozen genomes simultaneous-
ly. As a consequence, the scientific community has yielded
considerably improved implementations of the CDBG data structure
(Almodaresi et al., 2018; Muggli et al., 2019; Wittler, 2020) since.
Similarly, the tools MindTheGap (Rizk et al., 2014) and
Basil&Anise (Holtgrewe et al., 2015) can only handle a single gen-
ome. Both approaches first identify candidate variant end positions
in the read alignment and implement custom procedures to assemble
the NRS between two NRS variant end positions.

While the mentioned approaches present algorithmically inter-
esting solutions to the NRS detection problem, they do not scale to
large datasets. Only the development of data-focused NRS variant
calling pipelines more recently enabled the analysis of hundreds,
thousands or even tens of thousands of genomes. Early pipelines
determined NRS contigs without their positions in the reference gen-
ome, for example in 769 Dutch genomes (Hehir-Kwa et al., 2016),
10 000 genomes of several ancestries (Telenti et al., 2016) and 300
genomes from 142 diverse populations (Mallick et al., 2016). More
recently, studies of NRS variants include precise breakpoint posi-
tions and genotype estimates, for example for 15 219 Icelanders
(Kehr et al., 2017) and 910 African genomes (Sherman et al., 2019).
Some pipelines for moderate numbers of genomes create whole-
genome assemblies prior to NRS variant calling, such as the pipe-
lines that were applied to 50 Danish trios (Liu et al., 2015; Maretty
et al., 2017), 275 Han Chinese genomes (Duan et al., 2019), 1000
Swedish genomes (Eisfeldt et al., 2020) and 338 genomes from gen-
etically divergent human populations (Wong et al., 2018, 2020).
Finally, pipelines developed for the 1000 genomes project data (Lee
et al., 2020) and for the TOPMed program (Taliun et al., 2021)
search for NRS variants that match related genomes like other
primates’ genomes.

In contrast to the earlier algorithmic approaches for NRS variant
calling, many of the pipelines for large numbers of genomes have
not been benchmarked and released as stand-alone tools for applica-
tion to other datasets. One exception is our tool PopIns (Kehr et al.,
2016), which we used to analyze the Icelandic genomes (Kehr et al.,
2017). PopIns assembles unaligned reads into contig sequences per
genome, merges the contig sequences from all input genomes into a
single set of NRS, and determines positions and genotypes of NRS
variants. By merging contigs sequences across genomes, PopIns takes
advantage of the increased total coverage of NRS variants that occur
in more than one genome. In addition, combining data from all
genomes early in the process, eliminates the need to later heuristical-
ly combine variant calls from different individuals.

Since its publication, PopIns has been challenged by new NRS
detection tools, most importantly by Pamir (Kavak et al., 2017).
Pamir works well on small numbers of genomes and was shown to
have superior accuracy compared with PopIns on simulated data.
This led us to investigate weaknesses of PopIns, resulting in the
merging step being identified as responsible for both false-positive
and false-negative NRS variant calls, as well as for limiting the num-
ber of genomes due to high memory requirements.

PopIns’ merging step combines contigs assembled from un-
aligned reads of many genomes into a single, preferably non-
redundant set of NRS. We previously noted its similarity to a classic-
al genome assembly problem (Kehr et al., 2016). Classical genome
assembly for short read data is commonly based on de Bruijn graphs
(DBG) (Compeau et al., 2011; Pevzner et al., 2001). The tool
Cortex (Iqbal et al., 2012) augmented DBGs with colors to simul-
taneously process several genomes. Recently, a number of elaborate,
highly space efficient and versatile implementations of CDBG have
been introduced (Alanko et al., 2021; Almodaresi et al., 2017, 2018;
Holley and Melsted, 2020; Karasikov et al., 2020; Khan and Patro,
2021; Muggli et al., 2017, 2019; Mustafa et al., 2019). One such
implementation, the Bifrost API (Holley and Melsted, 2020), is used
in this work.

In this article, we introduce an NRS detection approach that
reaches high accuracy on simulated data and scales to many
genomes in practice. Specifically, we describe an alternative merging
step for PopIns, which models the task as a weighted minimum path
cover problem on a CDBG. Our heuristic solution to this NP-hard
problem defines novel rules for traversing the CDBG according to
path coverage and color information. We implemented the approach
in PopIns2 together with minor improvements in the other steps of
the original PopIns tool and show that PopIns2 outperforms PopIns
and matches the accuracy of Pamir on simulated data. Requiring
orders of magnitude less memory for the merging step, the scalabil-
ity of PopIns2 exceeds that of PopIns and Pamir by far.

2 Materials and methods

While PopIns2 introduces substantial improvements compared with
PopIns, both tools follow the same overall workflow as previously
described (Kehr et al., 2016, 2017). In the following, we first sum-
marize the individual steps in this workflow (Supplementary Fig.
S1), highlighting differences between PopIns and PopIns2.
Subsequently, we describe the newly developed algorithm for the
merging step in detail.

2.1 Overview of the PopIns2 workflow
Just like PopIns, PopIns2 takes as input a collection of short read
sequences from many genomes, which have been aligned to a refer-
ence genome, in the BAM file format. The final output is a set of
NRS and their positions in the reference genome together with geno-
types and genotype likelihoods for all genomes. The NRS are given
in the FASTA format. Precise positions may be given for one or both
endpoints of the sequences. We specify positions in the breakend no-
tation of the VCF file format.

Assembly step. The assembly step processes a single genome at a
time. It selects all reads that do not align or align only poorly to the
reference genome and passes them to a classical genome assembly
tool to compute contiguous sequences (contigs). For the process of
selecting poorly aligned reads, we identified the alignment score fac-
tor (ASF) parameter of PopIns to have a large impact on the contig
assembly. The parameter determines a threshold for the ratio be-
tween the read alignment score (AS tag) and the read length, when
filtering for poorly aligned reads. In PopIns2, we implemented the
ASF as a command line parameter (default 0.67) but kept all other
parameters as previously described (Kehr et al., 2017).

During the development of the original PopIns module, we
assessed several genome assembly tools (Bankevich et al., 2012;
Zerbino and Birney, 2008; Zimin et al., 2013) for integration into
the workflow. For PopIns2, we compared the Velvet assembler
(Zerbino and Birney, 2008) used in PopIns to the more recent Minia

PopIns2 605

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

assembler (Chikhi and Rizk, 2013) in terms of precision and recall
of the subsequent merge module. Based on an improved precision
and F1-score (Supplementary Table S2), we changed the default in-
ternal assembly tool in PopIns2 to Minia but maintain compatibility
with Velvet.

Merging step. The merging step takes as input contigs output by
the assembly step from many genomes and combines them into a
single set of candidate NRS, which we previously termed supercon-
tigs. The merging step from PopIns has been replaced by an entirely
new merging approach in PopIns2. The new approach constructs a
CDBG from the input contigs and we formulate the problem of find-
ing candidate NRS as a minimum path cover problem on the
CDBG. Below we suggest a heuristic algorithm that traverses a
CDBG and uses the colors to identify a set of candidate NRS.

Placing step. The placing step determines potential positions of
the NRS in the reference genome. It underwent no changes in
PopIns2 compared with the latest version of PopIns; details have
been described previously (Kehr et al., 2017). Briefly, we utilize the
information of read pairs, where one read is aligned to the reference
genome and the other end is not. For each such read pair, an align-
ment to an NRS is found for the unmapped read. Its corresponding
reference-aligned read provides candidate insertion positions (inter-
vals) and determines the orientation of the NRS. Some assembled
sequences comprise flanking reference sequences of considerable
length in addition to the NRS. In these cases, PopIns split aligns con-
tig ends to the interval in the reference genome for determining exact
insertion positions of those NRS. For many remaining NRS, split
alignments of reads provide exact predictions of the insertion posi-
tions at base pair resolution.

Genotyping step. The final genotyping module of PopIns2 com-
putes genotypes and genotype likelihoods for every NRS variant in
every individual using the NRS, its position in the reference genome
and the individual’s set R of sequencing reads. Details about this
module have been described previously (Kehr et al., 2016, 2017)
and underwent no algorithmic changes in PopIns2 since the latest
version of PopIns. Briefly, the algorithm constructs the sequence of
the alternative allele with the NRS inserted and extracts the refer-
ence sequence without the NRS around an insertion position (refer-
ence allele), aligns the reads in R to both alleles and computes the
likelihoods for an NRS to be present on 0, 1 or 2 of the individual’s
chromosomal copies.

2.2 Merging NRS of many genomes using a CDBG
This section describes the new merging step of PopIns2 starting with
all necessary definitions, followed by the problem formulation and,
finally, our heuristic solution.

2.2.1 Definitions

Genomic sequences. Let s 2 Rm be a genomic sequence of length m
over the DNA alphabet R ¼ fA;C;G;Tg. We denote the reverse
complement of s as s. A substring of s is defined by a starting pos-
ition and a length l. A prefix of s is a substring that starts at the first
position of s and a suffix is a substring that ends at the last position
of s. Because a prefix (suffix) of s is defined by its length l, we refer
to it as an l-prefix (l-suffix) of s. A k-mer is a sequence of length k.

Directed graphs. In a directed graph G ¼ ðV;EÞ, which consists
of a set of vertices V and a set of edges E ¼ V �V, an edge e is an
ordered pair (u, v) of vertices u; v 2 V. We call v a successor of u
and u a predecessor of v. The in-degree (out-degree) of a vertex v
denotes the number of its predecessors (successors). A walk p ¼
v1; . . . ; vn through the graph is a sequence of vertices such that viþ1

is a successor of vi for 1 � i < n. A path is a walk without circuits,
i.e. in which all vertices are distinct. A path p ¼ v1; . . . ; vn is non-
branching if vertex v1 has out-degree 1, vertex vn has in-degree 1
and all other vertices v2; . . . ; vn � 1 have both in-degree 1 and out-
degree 1. A non-branching path p ¼ v1; . . . ; vn is maximal if the in-
degree of v1 and the out-degree of vn are both unequal to 1. Let Vp

be the set of vertices forming the path p. A set of paths P ¼
fp1; p2; . . . ;pmg for graph G ¼ ðV;EÞ forms a path cover of G if
each vertex v 2 V is part of at least one path in P, i.e. V ¼ [p2P Vp.

de Bruijn graphs. A DBG for a given k over a set of input sequen-
ces S is a directed graph G ¼ ðV;EÞ, such that each k-mer that is a
substring of either s or s with s 2 S corresponds to a vertex v 2 V.
An edge e ¼ ðu; vÞ 2 E exists if the ðk� 1Þ-suffix of the k-mer corre-
sponding to u equals the ðk� 1Þ-prefix of the k-mer corresponding
to v. A walk or path p of n vertices in a DBG corresponds to a gen-
omic sequence xðpÞ of length nþ k� 1. Genomic sequences that
correspond to maximal non-branching paths in a DBG are called
unitigs.

In a compacted DBG G0 ¼ ðV 0;E0Þ, all maximal non-branching
paths of the original DBG are represented by a single vertex. Thus,
vertices u; v 2 V 0 correspond to unitigs and an edge e ¼ ðu; vÞ 2 E0

exists if the ðk� 1Þ-suffix of the unitig corresponding to u equals the
ðk� 1Þ-prefix of the unitig corresponding to v. A maximal unitig
path p ¼ v1; v2; . . . ; vm is a path through a compacted DBG where
the in-degree of v1 and the out-degree of vn are both equal to 0.

To better represent double-stranded DNA, many implementa-
tions of DBGs are bidirected. In a bidirected DBG, a single vertex
represents both a k-mer (or unitig) and its reverse complement.
Furthermore, edges have two types of orientation (Medvedev et al.,
2007). That is, edges connect to either orientation of the k-mer (uni-
tig). For simplicity and clarity, we describe our method using simple
DBGs below while our implementation is based on the Bifrost API
(Holley and Melsted, 2020), which uses bidirected DBGs.

Colored de Bruijn graphs. While DBGs represent a single sequence
set, a CDBG can represent a set of several sequence sets. In a CDBG
G ¼ ðV;E;CÞ over a set of sequence sets S ¼ fS1; S2; . . . ; Sng, vertices
are additionally labeled with bitvectors of length n that store informa-
tion about the presence of k-mers in each sequence set Si 2 S. Each
bit in the bitvector represents a sequence set Si 2 S and is thought of
as a color. The ith bit in the bitvector is set to 1 if and only if the corre-
sponding k-mer occurs at least once in Si. In a colored compacted
DBG, a vertex corresponding to a unitig of length l is labeled with l �
kþ 1 bitvectors, one per k-mer of the unitig. Typically, the bitvectors
of all k-mers are stored in a matrix C ¼ ðcijÞ, where each entry cij indi-
cates the presence of k-mer j in sequence set Si. The matrix is called
the color matrix of the (compacted) CDBG.

Jaccard index. The Jaccard index is a measure for the similarity
of sets (Jaccard, 1912). It is defined as the ratio of the intersection
and the union of two sets. Analogously, the definition of the Jaccard
index on two bitvectors x and y is

Jðx; yÞ ¼
P

i xi ^ yiP
i xi _ yi

:

2.2.2 Problem formulation

Given the sets of contigs created in the assembly step for all input
genomes, our goal in the new merging step is to extract NRS from a
compacted CDBG built from the set of contig sets. While whole gen-
ome assembly aims to minimize the number of contig sequences and
maximize contiguity, we are looking for many comparably short
genomic sequences. NRS assembly is in fact more related to tran-
script assembly (Trapnell et al., 2010; Xing et al., 2004) than whole-
genome assembly with the difference that transcript assembly typic-
ally operates on a relatively small DAG and we are given a CDBG
with cycles. Similar to transcript assembly, we observe that the paths
corresponding to the sought NRS form a path cover of the CDBG
when assuming that all k-mers in the CDBG are part of at least one
NRS in the solution. A naive solution for finding a path cover is to
enumerate all possible paths in the graph. This naive solution, how-
ever, leads to unwanted redundancy and many of the paths will not
correspond to actual NRS.

Therefore, we formulate our problem as a minimum path cover
problem, which is to find the smallest number of paths that form a
path cover in a given graph. This problem is NP-complete (Garey
and Johnson, 1990) on graphs other than directed acyclic graphs
(DAGs) (Lawler, 2001), since determining whether a single path suf-
fices is equivalent to determining whether the graph has a
Hamiltonian path (Rizzi et al., 2014). Note that, some of the

606 T.Krannich et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

vertices can be part of several paths in a minimal path cover, which
corresponds to shared sequences in biology, e.g. mobile elements.

We further extend the problem formulation by the color infor-
mation. Our idea is that all k-mers along a path that corresponds to
an actual NRS should be labeled with a similar set of colors, i.e.
with those colors corresponding to the genomes that carry the NRS.
We define a color weight function / : p! R that assigns a weight
to each path p ¼ v1; . . . ; vn through a compacted CDBG as

/ðpÞ ¼ 1� min
1< i< n�1

JðlastðviÞ; firstðviþ1ÞÞ

where firstðvÞ and lastðvÞ are the bitvectors corresponding to the
first and last k-mer of vertex v. Using this weight function, the
weighted minimum path cover problem is to find a path cover P ¼
fp1; . . . ; png of G that minimizes the weight

P
p2P /ðpÞ. An optimal

solution to the weighted minimum path cover problem then corre-
sponds to a set of candidate NRS merged from contig sets of many
genomes.

2.2.3 A greedy heuristic

As a practical solution, we suggest a greedy heuristic to solve the
weighted minimum path cover problem on a compacted CDBG built
from contig sets Si assembled from unaligned and poorly aligned
reads of many genomes. The key idea is to start a greedy depth first
search (DFS) from the sources of the graph, i.e. vertices that have
only successors but no predecessors. During the DFS traversal, verti-
ces are prioritized based on the Jaccard index of color vectors. The
recursion of the traversal continues until the search reaches a sink,
i.e. a vertex without successors, or aborts due to local substructures
that cannot be resolved. In case it reaches a sink, the sequence of ver-
tices is returned if the sequence comprises a minimum number of not
yet covered k-mers. The output of our heuristic is a set of sequences
corresponding to a set of maximal unitig paths in the CDBG.

More formally, let G ¼ ðV;E;CÞ be a compacted CDBG for the
set of sequence sets S ¼ fS1; S2; . . . ; Sng and the positive integer k.
We label each vertex (unitig) u 2 V with a traversal state which is ei-
ther seen or unseen. Initially, all vertices are unseen. In addition, we
store a set D of covered vertices that is initially empty. Note that,
each vertex u can have at most four predecessors and at most four
successors since we use the DNA alphabet.

In the initialization step, we check every vertex u 2 V for the
presence of predecessors or successors. We distinguish three possible
outcomes of this check: (i) u has no predecessors and no successors
(u is a singleton), (ii) u has predecessors and (iii) u has only succes-
sors (u is a source). If u is a singleton, we return its sequence and
continue with the next vertex. If u has predecessors, we just continue
with the next vertex. If u is a source, we pass it to our recursion
step.

The recursion step marks the current vertex uc as seen and checks
whether there are unseen successors. If the current vertex uc is a
sink, we count the number of k-mers along path p from source to
sink that are not part of a vertex in D. If p contains more than s
novel k-mers, then we add all vertices in p to D and return the NRS
xðpÞ.

If uc has a non-empty set of unseen successors N � V, we need
to decide how to continue the traversal of the CDBG. This decision
is a crucial design choice of the algorithm since the traversal order of
the vertices determines the resulting contigs. We here utilize the
DBG colors. We compute a weight for each edge from uc to each
successor v 2 N using the bitvectors lastðucÞ corresponding to the
last k-mer of uc and firstðvÞ corresponding to the first k-mer of v.
We define the edge weight as 1� JðlastðucÞ; firstðvÞÞ. We continue
the traversal with the unseen successor that has the edge with the
lowest weight

arg min
v2N

f1� JðlastðucÞ; lastðvÞÞg

If uc has successors but all of them are seen, the DFS recursion
steps back and continues along the next best edge. The traversal step
is recursively repeated until it reaches a sink. In this case, we reset all
traversal states in G to unseen and continue with the next source

vertex. Intuitively, this traversal scheme favors paths in the graph
that have a high color identity among consecutive vertices.

3 Results

We implemented the methods described in Section 2 in PopIns2
using the Bifrost (Holley and Melsted, 2020) and SeqAn (Reinert
et al., 2017) Cþþ libraries. The program comprises successively
executable submodules for the assembly, merging, placing and geno-
typing steps. We assess PopIns2 on simulated data and compare its
results to PopIns and Pamir (Kavak et al., 2017) as they are, to the
best of our knowledge, the only other programs that are specifically
tailored to identifying NRS sequences on many genomes simultan-
eously. We further demonstrate the feasibility of running PopIns2
on 150 samples from the Polaris Diversity Cohort (BioProject acces-
sion PRJEB20654) and assess the predicted NRS variant genotypes
based on inheritance patterns using the Polaris Kids Cohort. Finally,
we applied the new merge algorithm to whole-genome sequencing
data of 1000 Icelanders.

3.1 Detecting NRS in simulated data
We implemented a workflow to simulate short-read sequencing data
from human chromosome 21 (downloaded from http://ftp://ftp.ncbi.
nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_
alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_
alt_analysis_set.fna.gz on November 8, 2016). In this workflow, a
set Isim of 500 sequences (length mean¼1455.17, SD¼1526.08,
min¼41, max¼9190, non-overlapping and in a distance of at
least 1000 bp from N-sequence) is cut from chromosome 21 and
the modified chromosome (chr21�) is further used for generating
data of diploid individuals. The data is generated in two steps.
First, two new haplotypes h1, h2 are created by inserting sequence
subsets Ih1

; Ih2
� Isim into two copies of chr21�. Second, short-reads

are simulated (Huang et al., 2012) from both h1, h2 and mapped (Li,
2013) to chr21� as the reference. The sequences Ih ¼ Ih1

[Ih2
are

NRS with respect to chr21�. This simulation workflow does not
introduce artificially generated sequences but only real human
sequences that originated from human chromosome 21.

We simulated data for 100 diploid individuals at 30� coverage
using this workflow and applied PopIns, PopIns2 and Pamir to the
data. All three tools yield a FASTA file containing the NRS found
across all individuals (NRS sets). We compare each NRS set to the
truthset T , which is defined as

T ¼ [
h

Ih

To assess a NRS set C with respect to T , we performed an all-
versus-all sequence alignment with minimum alignment length of 50
base pairs using STELLAR (Kehr et al., 2011), i.e. we align every se-
quence in T with every sequence in C. We use a bipartite matching
procedure (Supplementary Fig. S2) to compute precision and recall.
Every t 2 T that is at least 90% covered by at least one individual
alignment with a sequence c 2 C is counted as a true positive (TP).
Every other t 2 T is counted as false negative (FN). The number of
false positives (FP) is the difference of the set cardinality jCj minus
TP. This implies that, as opposed to less stringent prior analysis
(Kehr et al., 2016; Rizk et al., 2014), we count redundant align-
ments as FP. The number of redundant alignments is calculated as
the difference of all c 2 C that cover 90% of a t with an alignment
minus TP. The F1 score is the harmonic mean of precision and
recall.

For every simulated sample, we used the PopIns2 assemble mod-
ule to create contigs from unmapped reads as it offers more flexibil-
ity than the previous assemble module in PopIns. It was used with
Minia (Drezen et al., 2014) as internal assembler (default) and with
Velvet to mimic the PopIns assemble module.

Impact of the ASF parameter on the assembly step. We noticed
that the ASF parameter of the assemble module plays a key role for
the amount of reads being classified as unmapped and evaluated dif-
ferent settings of the ASF parameter in Supplementary Table S1.

PopIns2 607

http://ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

Setting a higher ASF value causes a less stringent selection of un-
mapped reads, i.e. fewer base pairs of a mapped read in relation to
its read length have to be classified as unmapped for the read to be
classified as unmapped. Interestingly, within the range of tested val-
ues, more unmapped reads resulted in fewer contigs per sample.

Evaluation of the merging step. We used the PopIns and PopIns2
merge modules with the different contig assemblies and Pamir to
generate sets of NRS and evaluate their precision and recall with re-
spect to T . The NRS detected by Pamir (called events) are written
with 1000 bp flanking regions of the genome. To not penalize the
alignments for the flanking regions of the NRS we trimmed the
flanking regions prior to the computation of recall and precision.

Supplementary Tables S2 and S3 summarize the results of the
different merging approaches for 50 and 100 simulated samples.
The combination of PopIns2 and contigs assembled with Minia3
shows the highest precision among all tested setups while Pamir has
the highest recall. Velvet combined with the PopIns2 merge module
was not tested extensively since early results indicated that Minia3
outperforms Velvet for our purpose of NRS assembly. We tested
three different setups for the ASF parameter of the PopIns2 assemble
module: 0.5 (PopIns default), 0.67 (PopIns2 default) and 0.75 (very
soft read filtering). With an increasing ASF and using 50 simulated
samples, PopIns and PopIns2 showed a total gain in F1 scores of 16
percentage points and 18.7 percentage points, respectively. Among
all three tested approaches the best performing setups show a differ-
ence in F1 scores of 5.5 (n¼50 samples) and 4.8 (n¼100 samples)
percentage points.

We also investigated the NRS sets for different numbers of sam-
ples (Fig. 1). We used a maximum of 100 samples and tested the de-
fault parameters of every NRS variant caller as well as PopIns2 with
an increased ASF value. PopIns2 has the best recall for sample num-
bers up to 10–20. Then Pamir outperforms the best PopIns2 setup
(by 2.2–4.7 percentage point). The recall value of PopIns2 is virtual-
ly constant at 0.68–0.73 depending on the setup. Pamir reveals a
substantial increase in recall from 0.29 to 0.77 within the first 20
samples. The precision of PopIns2 is again relatively constant at
0.77–0.86 depending on the setup with the exception of a slight
drop (about 4 percentage points) at around 20 samples. Moreover,
PopIns2 shows the highest precision in all ranges over 40 samples.
The precision of Pamir is the highest among all approaches until ap-
proximately 40 samples (precision at 0.87), then PopIns2 performs
the best until the maximum tested amount of 100 samples (up to 6.6
percentage points over Pamir). From its peak with very few individu-
als the precision graph of Pamir shows a slow linear decline with
increasing sample numbers. We attribute this decline in precision
primarily to the rapid increase of redundant sequences in the callsets
of Pamir (see Supplementary Table S3).

Furthermore, we separated the true positives of PopIns2 and
Pamir by the length of the NRS (Supplementary Fig. S3) to investi-
gate whether there exists a detection bias toward certain sequence
lengths. In this experiment, all tested approaches reveal a length dis-
tribution approximately proportional to the truthset. Pamir showed

slightly more true positives in the length categories up to 1000 bp
while PopIns2 showed a few more in the categories from 1000 to
5000 bp. Note that PopIns2 cannot generate NRS sequences smaller
than the k-mer size k. Due to the graph simplifications of the
CDBG, even NRS sequences smaller than 2k� 1 bp might not being
detected. PopIns2 was executed with the default k¼63.

3.2 Detecting NRS in the Polaris Diversity Cohort
To assess the new merging algorithm on real population-scale
sequencing data we applied PopIns2 and PopIns to the Polaris
Diversity Cohort (PDC). The PDC comprises the genomes of 150
individuals from three continental groups (AFR, EAS, EUR) short-
read sequenced on an Illumina HiSeqX sequencer with a target
whole genome coverage of 30�. We aligned the short-read data of
every individual to the human reference genome (hg38) using BWA
(Li, 2013). We did not compare to Pamir on the PDC data as Pamir
exceeded the maximum running time of 28 days on our compute
cluster using 16 threads. Pamir takes the BAM files as input and
runs the entire NRS variant calling at once.

Assembly step. The alignment files (BAM files) are used as input
for the PopIns2 assemble module. PopIns2 assemble with default
parameters produces an average of 8049 contigs per genome from
an average of 7 194 710 unaligned or poorly aligned reads. For a
fair comparison of the merging algorithms, we used the same contig
assemblies for use with PopIns and PopIns2. The contig assembly
reduced the average disc memory requirement per individual from
1595 megabytes for the selected reads to six megabytes for the
contigs.

Individual instances of PopIns2 assemble can be distributed
across a high-performance compute cluster and support multi-
threading of the most computation-intensive tasks (alignments and
assembly). The 150 PDC instances of PopIns2 assemble were distrib-
uted across 16 compute nodes supporting the same CPU instruction
set (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz) and took ap-
proximately 80 min of wall clock time per instance using 16 CPU
threads.

Merging step. On the contigs of the PDC, PopIns2 merge gener-
ated 15306 NRS in 50 min of CPU time using a single thread. A
breakdown of the running time of merging can be found in
Supplementary Table S6. Building the CDBG and traversing the ver-
tices are the dominating factors for the running time. By compari-
son, PopIns merge generated 13456 NRS in 94 min of CPU time
using a single thread. The right panel of Figure 2 shows a monotonic
increase in the number of NRS detected by each tool for growing
numbers of genomes.

Next, we examined the scalability of the PopIns and PopIns2
merge algorithms by comparing required computing resources for
growing numbers of genomes (Fig. 2). For PopIns merge we observed
a fast increase in memory consumption with increasing number of
genomes. Merging the contigs for 150 genomes of the PDC required
almost 100 gigabytes of main memory. In contrast, PopIns2 merge

Fig. 1. Precision, recall and F1 score of NRS callers on simulated data. NRS were assembled using a range of sample numbers (n ¼ 1; 2; 3; 4; 5; 10; 20; 30; 40; 50; 75; 100)

608 T.Krannich et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

used a maximum of 342 megabytes of main memory for the same
genomes and the CDBG fits into a 154 megabytes GFA file when
written to disc. Both merge algorithms show a running time that is
increasing linearly with the number of genomes. However, the run-
ning time of the merge algorithm of PopIns2 is increasing substantial-
ly slower than that of PopIns. Supplementary Figure S6 illustrates
how the resource requirements of PopIns2 merge depend on its
parameters. We chose the set of default parameters (k¼63, g¼49)
for a fast-running time and reasonably low memory consumption.

3.3 Genotype assessments using the Polaris Kids

Cohort
In addition to the PDC, the Polaris project data includes whole-
genome sequencing data for the Polaris Kids Cohort (PKC), a set of
50 individuals that are the F1 offspring of 100 parent pairs in the
PDC. We use the 49 family trios (as of March 22, 2021, the se-
quence data of one kid could not be downloaded from the archive)
to detect and genotype NRS variants and assess genotype concord-
ance with Mendelian Inheritance rules and expected transmission
rate.

Running PopIns and PopIns2 on the 49 trios. Analogously to the
PDC, we first aligned the reads of 49 individuals in the PKC to the
reference genome and used the resulting BAM files as input for
PopIns2 assemble. PopIns2 assemble produced an average of 8187
contigs per individual.

We used the contigs from the previous step and the contigs of the
98 related individuals from the PDC for the PopIns and PopIns2
merge module. PopIns and PopIns2 generated 12 889 and 15 450
NRS, respectively, processing all 147 samples at once. In
Supplementary Figure S7 and Supplementary Note S4 we explain an
approach to compute set overlaps of the two joint NRS callsets of
PopIns and PopIns2. The NRS sets overlap by 19–65% depending
on the setup.

We also applied the place and genotype modules to the NRS of
PopIns and PopIns2 and wrote the genotype predictions of all 147
individuals into one multi-sample VCF file using VCFtools
(Danecek et al., 2011).

Running Pamir on the 49 trios. As the trio data comprises the
same number of genomes as the PDC, we did not expect Pamir to
finish the NRS variant calling within the maximum run time on our
compute cluster. Therefore, we ran Pamir separately with the
genomes of one family trio at a time, i.e. we started 49 runs with
three genomes each.

Variant counts and principal component analysis. We observed a
median of 2256, 2463 and 1873.5 NRS variants per sample for
PopIns, PopIns2 and Pamir, respectively. In Supplementary Figure
S8 we provide NRS variant counts separated by the continental
groups. Consistent with previous studies (Abel et al., 2020; Wong
et al., 2020), the African (AFR) genomes exhibit the highest average
number of NRS variants. Since we could not compute a joined

callset of 147 individuals with Pamir we computed callset intersec-
tions for each trio separately (Supplementary Fig. S9). Among the
three pairwise intersections of NRS callsets PopIns and PopIns2
show the largest intersection.

In addition, we performed a principal component analysis
(Supplementary Fig. S12) as a sanity check that our variant calls can
be used to clearly distinguish samples from different continental
groups. Analogously to previous call set evaluations (Niehus et al.,
2021), we converted the genotypes into a variant-sample matrix
containing NRS variant allele counts and filtered uninformative
NRS variants and those in linkage disequilibrium. As a result, the
principal component analysis was calculated on 1787 variants. The
first and second principal component successfully cluster the contin-
ental groups with 5.138% and 2.217% explained variance,
respectively.

Mendelian inheritance error rate and transmission rate. We fur-
ther examined the genotype predictions and the inheritance patterns
of NRS variants in the 49 trios by utilizing the pedigree information.
We did not include Pamir’s results into this analysis as Pamir does
not report genotype qualities or likelihoods for the predicted
genotypes.

For both PopIns and PopIns2, we calculated the Mendelian in-
heritance error rate and transmission rate as in Niehus et al. (2021).
The Mendelian inheritance error rate is a measure to assess the
plausibility of variant genotypes in related individuals. It is the frac-
tion of offspring genotypes that cannot be explained using
Mendelian inheritance rules from the parental genotypes. The trans-
mission rate is used as a measure to assess how often a variant allele
is transmitted from parent to child. In the diploid human genome,
we expect a heterozygous carrier of a variant to transmit the variant
by chance in 50% of the cases. We examined the transmission rate
only in the cases where one parent was genotyped as heterozygous
carrier and the second parent as a non-carrier. As heterozygous var-
iants with low quality scores are particularly overabundant in both
datasets, we additionally created variant subsets without variants
that are not in Hardy-Weinberg Equilibrium (HWE) in the original
callset.

Our analysis of Mendelian inheritance error rate and transmis-
sion rate (Supplementary Fig. S10) shows that the NRS variant call-
sets of both PopIns and PopIns2 can be filtered to a Mendelian
inheritance error rate below 1%. The amount of NRS variants per
trio consistent with Mendelian inheritance rules is virtually identical
for both methods under both HWE filter conditions. Under the con-
dition of HWE filtered callsets PopIns shows a marginally better
(�0.25 percentage points) Mendelian inheritance error rate than
PopIns2 at equal genotype quality thresholds. Under the same condi-
tions PopIns2 maintains a marginally lower absolute deviation from
the targeted 50% transmission rate than PopIns at equal genotype
quality thresholds. The Mendelian inheritance error rates measured
for Pamir have a median value of over 8.5%. We explain the data
generated for Pamir in Supplementary Note S6.

Fig. 2. Benchmarks of the PopIns and PopIns2 merging modules on a growing subset of individuals from the Polaris Diversity Cohort. The left panel shows the CPU Time in

minutes, the middle panel shows the memory consumption in gigabytes and the right panel shows the number of NRS

PopIns2 609

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

3.4 Detecting NRS in 1000 Icelandic genomes
To further test the scalability of the new merging algorithm with a
previously prohibitive number of genomes (Kehr et al., 2017) we
applied the PopIns2 merge module to a set of 1000 Icelandic WGS
samples (Gudbjartsson et al., 2015; Jónsson et al., 2017).

The sets of unaligned and poorly aligned reads of each sample
were previously generated with PopIns assemble. For each sample
we reused these sets of reads and manually finalized the assembly
step using Minia with the internal setup of PopIns2 assemble. The
final assemblies contain 6301 contigs on average per genome.

The Minia contigs were input to the PopIns2 merge module and
generated 61 515 NRS. Supplementary Figure S5 shows the length
distribution of the NRS. The merging took 4 h and 45 min wall clock
time (3 days, 18 h and 1 min CPU Time) using 24 CPU cores and
used a maximum of 2.47 gigabytes of main memory during the com-
putation. A breakdown of the wall clock time of merging can be
found in Supplementary Table S6.

4 Discussion

PopIns2 implements a scalable approach for generating a NRS vari-
ant call set from population-scale short-read whole-genome se-
quence data. We demonstrate on simulated data that the accuracy of
PopIns2 meets that of previous tools while our new merging ap-
proach scales to orders of magnitude more input data.

The definition of poorly aligned reads is crucial for the assembly
of NRS. We show that by raising the ASF in PopIns2 we can increase
both recall and precision of NRS assembly on simulated data.
However, we noticed in real data that a high ASF value leads to the
selection of a large number of reads that may distort NRS assembly.
Therefore, we chose a moderate ASF value of 0.67 as default value.

Our new approach for merging NRS from many genomes allows
simultaneous processing of many genomes together. The approach
is based on a CDBG and heavily relies on the color information.
Processing only few genomes together (few colors) may lead to arbi-
trary traversal decisions while processing many genomes together
leads to greater graph complexity. Still, we observe that the accuracy
is robust across the tested range of sample numbers on simulated
data suggesting that color-based traversal decisions counteract
graph complexity.

The new approach leaves room for future extensions. For ex-
ample, the paths through the graph have weights that may be used
to compute a confidence score for each NRS. Furthermore, the tra-
versal of the graph is trivially parallelizable on connected compo-
nents of the graph. Analogously to other assembly approaches
(Turner et al., 2018), read pairs could be used to annotate long-
range information in the graph. Finally, the greedy heuristic can be
supplemented with further traversal rules and requirements for the
sequences eventually output.

With the new merging approach, we addressed the scalability to
large numbers of genomes. Future research may address other
aspects of NRS variant detection, for example the accuracy of geno-
typing. In our evaluation on the Polaris data, two thirds of the var-
iants were discarded by the HWE filter indicating an overabundance
of heterozygous genotype predictions. We previously addressed this
by introducing an alternative genotyping scheme (Kehr et al., 2017)
that assumes the NRS to be flanked by repeats. Incorporating both
cases into one genotyping framework is a promising idea to obtain
better genotype predictions for NRS variants. Also, recently it was
shown (Chen et al., 2019; Eggertsson et al., 2019) that sequence
graphs have tremendous potential to improve the genotyping accur-
acy for SVs. We investigate those data structures for future versions
of PopIns.

In the assessment on simulated data, we used more stringent
evaluation criteria than in previous studies in order to reveal differ-
ences between the tools on comparably simple simulated datasets.
An alternative possibility for future work is to simulate data with
more challenging NRS variants, e.g. NRS variants flanked by dupli-
cated or inverted sequence as frequently observed in real data or
NRS variants previously detected in real data. Further evaluations

could also include the effect of the allele frequency and sequencing
depth on NRS detection.

Short read data is still the most prevalent type of sequencing
data. There is no doubt that long read and linked read data can re-
solve NRS variants even better (Meleshko et al., 2019; Ebert et al.,
2021). Combining the data from many genomes sequenced with the
long read or linked read technologies will be a promising future re-
search direction as more and more datasets become available
(Beyter et al., 2021).

While the largest number of sequenced genomes are human
genomes and all our tests were performed on human data, our meth-
ods are not human-specific. We encourage application of PopIns2 to
datasets of genomes from another species, in particular from other
animals or plants.

Acknowledgements

The authors thank Brian Caffrey and Kedi Cao for their feedback on instal-

ling and running the software. Computation has been performed on the HPC

for Research cluster of the Berlin Institute of Health.

Funding

The project was supported by the Federal Ministry of Education and

Research (BMBF) [FKZ 031L0180] and the German Research Foundation

(DFG) through subproject A6 of the CRC 1404 ‘FONDA’.

Conflict of Interest: G.H. and B.V.H. are employees of deCODE genetics/

Amgen, Inc. W.T.J.W. is an employee of Google, Inc. The other authors de-

clare no competing interest.

References

Abel,H.J. et al.; NHGRI Centers for Common Disease Genomics. (2020)

Mapping and characterization of structural variation in 17,795 human

genomes. Nature, 583, 83–89.

Alanko,J. et al. (2021) Buffering updates enables efficient dynamic de Bruijn

Graphs. Comput. Struct. Biotechnol. J, 9, 4067–4078.

Almodaresi,F. et al. (2017) Rainbowfish: a succinct colored de Bruijn Graph

representation. In: Schwartz,R. and Reinert,K. (eds.) 17th International

Workshop on Algorithms in Bioinformatics (WABI 2017), vol. 88, of

Leibniz International Proceedings in Informatics (LIPIcs). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 18:

1–18:15.

Almodaresi,F. et al. (2018) A space and time-efficient index for the compacted

colored de Bruijn graph. Bioinformatics, 34, i169–i177.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Beyter,D. et al. (2021) Long-read sequencing of 3,622 Icelanders provides in-

sight into the role of structural variants in human diseases and other traits.

Nat. Genet., 53, 779–778.

Chen,S. et al. (2019) Paragraph: a graph-based structural variant genotyper

for short-read sequence data. Genome Biol., 20, 291.

Chikhi,R. and Rizk,G. (2013) Space-efficient and exact de Bruijn graph repre-

sentation based on a Bloom filter. Algorithms Mol. Biol., 8, 22.

Compeau,P.E.C. et al. (2011) How to apply de Bruijn graphs to genome as-

sembly. Nat. Biotechnol., 29, 987–991.

Danecek,P. et al.; 1000 Genomes Project Analysis Group. (2011) The variant

call format and VCFtools. Bioinformatics, 27, 2156–2158.

Delage,W.J. et al. (2020) Towards a better understanding of the low recall of

insertion variants with short-read based variant callers. BMC Genomics,

21, 762.

Drezen,E. et al. (2014) GATB: Genome Assembly & Analysis Tool Box.

Bioinformatics, 30, 2959–2961.

Duan,Z. et al. (2019) HUPAN: a pan-genome analysis pipeline for human

genomes. Genome Biol., 20, 149.

Ebert,P. et al. (2021) Haplotype-resolved diverse human genomes and inte-

grated analysis of structural variation. Science, 372, eabf7117.

Eggertsson,H.P. et al. (2019) GraphTyper2 enables population-scale genotyp-

ing of structural variation using pangenome graphs. Nat. Commun., 10,

5402.

610 T.Krannich et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab749#supplementary-data

Eisfeldt,J. et al. (2020) Discovery of novel sequences in 1,000 Swedish

genomes. Mol. Biol. Evol., 37, 18–30.

Faber-Hammond,J.J. and Brown,K.H. (2016) Anchored pseudo-de novo as-

sembly of human genomes identifies extensive sequence variation from un-

mapped sequence reads. Hum. Genet., 135, 727–740.

Garey,M.R. and Johnson,D.S. (1990) Computers and Intractability; a Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Gudbjartsson,D.F. et al. (2015) Large-scale whole-genome sequencing of the

Icelandic population. Nat. Genet., 47, 435–444.

Hehir-Kwa,J.Y. et al.; Genome of the Netherlands Consortium. (2016) A

high-quality human reference panel reveals the complexity and distribution

of genomic structural variants. Nat. Commun., 7, 12989.

Holley,G. and Melsted,P. (2020) Bifrost: highly parallel construction and

indexing of colored and compacted de Bruijn graphs. Genome Biol., 21,

249.

Holtgrewe,M. et al. (2015) Methods for the detection and assembly of novel

sequence in high-throughput sequencing data. Bioinformatics, 31,

1904–1912.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Jaccard,P. (1912) The distribution of the Flora in the Alpine zone. N. Phytol.,

11, 37–50.

Jónsson,H. et al. (2017) Whole genome characterization of sequence diversity

of 15,220 Icelanders. Sci. Data, 4, 170115.

Karasikov,M. et al. (2020) MetaGraph: indexing and analysing nucleotide

archives at petabase-scale. bioRxiv, 0, 2020.10.01.322164. 10.1101/2020.

10.01.322164.

Kavak,P. et al. (2017) Discovery and genotyping of novel sequence insertions

in many sequenced individuals. Bioinformatics, 33, i161–i169.

Kehr,B. et al. (2017) Diversity in non-repetitive human sequences not found in

the reference genome. Nat. Genet., 49, 588–593.

Kehr,B. et al. (2016) PopIns: population-scale detection of novel sequence

insertions. Bioinformatics, 32, 961–967.

Kehr,B. et al. (2011) STELLAR: fast and exact local alignments. BMC

Bioinformatics, 12, S15.

Khan,J. and Patro,R. (2021) Cuttlefish: fast, parallel and low-memory compac-

tion of de Bruijn graphs from large-scale genome collections. Bioinformatics,

37, i177–i186.

Lawler,E. (2001) Combinatorial Optimization: Networks and Matroids.

Dover Publications Inc., Mineola, New York.

Lee,Yg. et al. (2020) Insertion variants missing in the human reference genome

are widespread among human populations. BMC Biology, 18, 167.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv:1303.3997 [q-bio], 0. https://arxiv.org/abs/1303.

3997v2.

Li,S. et al. (2013) SOAPindel: efficient identification of indels from short

paired reads. Genome Res., 23, 195–200.

Liu,S. et al.; The Genome Denmark Consortium. (2015) Discovery, genotyp-

ing and characterization of structural variation and novel sequence at single

nucleotide resolution from de novo genome assemblies on a population

scale. GigaScience, 4, 64.

Logsdon,G.A. et al. (2021) The structure, function and evolution of a com-

plete human chromosome 8. Nature, 593, 101–107.

Mallick,S. et al. (2016) The Simons Genome Diversity Project: 300 genomes

from 142 diverse populations. Nature, 538, 201–206.

Manni,M. and Zdobnov,E. (2020) Microbial contaminants cataloged as novel

human sequences in recent human pan-genomes. bioRxiv, 0,

2020.03.16.994376. 10.1101/2020.03.16.994376.

Maretty,L. et al. (2017) Sequencing and de novo assembly of 150 genomes

from Denmark as a population reference. Nature, 548, 87–91.

Medvedev,P. et al. (2007) Computability of models for sequence assembly. In:

Giancarlo,R. and Hannenhalli,S. (eds.) Algorithms in Bioinformatics, vol. 0, of

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 289–301.

Meleshko,D. et al. (2019) Detection and assembly of novel sequence insertions

using Linked-Read technology. bioRxiv, 0, 551028. 10.1101/551028.

Miga,K.H. et al. (2020) Telomere-to-telomere assembly of a complete human

X chromosome. Nature, 585, 79–84.

Muggli,M.D. et al. (2019) Building large updatable colored de Bruijn graphs

via merging. Bioinformatics, 35, i51–i60.

Muggli,M.D. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics

(Oxford, England), 33, 3181–3187.

Mustafa,H. et al. (2019) Dynamic compression schemes for graph coloring.

Bioinformatics, 35, 407–414.

Niehus,S. et al. (2021) PopDel identifies medium-size deletions simultaneously

in tens of thousands of genomes. Nat. Commun., 12, 730.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Reinert,K. et al. (2017) The SeqAn Cþþ template library for efficient sequence

analysis: a resource for programmers. J. Biotechnol., 261, 157–168.

Rizk,G. et al. (2014) MindTheGap: integrated detection and assembly of short

and long insertions. Bioinformatics, 30, 3451–3457.

Rizzi,R. et al. (2014) On the complexity of Minimum Path Cover with

Subpath Constraints for multi-assembly. BMC Bioinformatics, 15, S5.

Sherman,R.M. et al. (2019) Assembly of a pan-genome from deep sequencing

of 910 humans of African descent. Nat. Genet., 51, 30–35.

Taliun,D. et al.; NHLBI Trans-Omics for Precision Medicine (TOPMed)

Consortium. (2021) Sequencing of 53,831 diverse genomes from the

NHLBI TOPMed Program. Nature, 590, 290–299.

Telenti,A. et al. (2016) Deep sequencing of 10,000 human genomes. Proc.

Natl. Acad. Sci. USA, 113, 11901–11906.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

Turner,I. et al. (2018) Integrating long-range connectivity information into de

Bruijn graphs. Bioinformatics, 34, 2556–2565.

Wittler,R. (2020) Alignment- and reference-free phylogenomics with colored

de Bruijn graphs. Algorithms Mol. Biol., 15, 4.

Wong,K.H.Y. et al. (2018) De novo human genome assemblies reveal spectrum of

alternative haplotypes in diverse populations. Nat. Commun., 9, 3040.

Wong,K.H.Y. et al. (2020) Towards a reference genome that captures global

genetic diversity. Nat. Commun., 11, 5482.

Xing,Y. et al. (2004) The multiassembly problem: reconstructing multiple

transcript isoforms from EST fragment mixtures. Genome Res., 14,

426–441.

Ye,K. et al. (2009) Pindel: a pattern growth approach to detect break points of

large deletions and medium sized insertions from paired-end short reads.

Bioinformatics, 25, 2865–2871.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zimin,A.V. et al. (2013) The MaSuRCA genome assembler. Bioinformatics,

29, 2669–2677.

PopIns2 611

https://arxiv.org/abs/1303.3997v2
https://arxiv.org/abs/1303.3997v2

