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Abstract
The focus of this review is to provide an overview of the field of organocatalysed photoredox chemistry relevant to synthetic me-

dicinal chemistry. Photoredox transformations have been shown to enable key transformations that are important to the pharmaceu-

tical industry. This type of chemistry has also demonstrated a high degree of sustainability, especially when organic dyes can be

employed in place of often toxic and environmentally damaging transition metals. The sections are arranged according to the

general class of the presented reactions and the value of these methods to medicinal chemistry is considered. An overview of the

general characteristics of the photocatalysts as well as some electrochemical data is presented. In addition, the general reaction

mechanisms for organocatalysed photoredox transformations are discussed and some individual mechanistic considerations are

highlighted in the text when appropriate.
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1 Introduction
1.1 Main advantages of organocatalysed
photoredox chemistry
Photoredox catalysis is an emerging field in organic synthesis

and has been the subject of many reviews in recent years [1-9].

Some cover the manipulation or installation of various func-

tional groups [10-17], the synthesis of particular bonds (C–C or

C–N etc.) [18-21] or the synthesis of natural products or hetero-

cycles [22-27]. Others provide an overview of catalysts and the
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Figure 1: Depiction of the energy levels of a typical organic molecule and the photophysical processes it can undergo. A – absorption and emission,
F – fluorescence, IC – internal conversion (non-radiative), ISC – intersystem crossing, P – phosphorescence.

transformations they enable [28-33]. The most relevant review

that links photoredox synthesis and medicinal chemistry is that

of Stephenson [34].

Organocatalysis in general offers several advantages over tran-

sition metal-mediated catalysis. For example, removal of the

catalyst during purification is much more straightforward.

Furthermore, the organic molecules employed are typically

much less environmentally damaging and toxic to various life

forms.

Photochemistry also offers benefits compared to conventional

thermally driven processes. Several transformation processes

that utilise sunlight as the energy source to drive a particular

reaction have been reported and some reactions presented in

this review achieve this as well. This is the most energetically

sustainable way possible to carry out a chemical transformation.

A result of this use of the energy of photons is that photochemi-

cal transformations often require fewer and/or less reactive

(which correlates to toxicity and environmental impact) compo-

nents than traditional reactions.

Organocatalysed photoredox catalysis combines the advantages

of both these fields. Thus, it is not only a new field filled with

exciting discoveries, but also is sustainable and beneficial in the

long term.

1.2 General characteristics of photocatalysts
1.2.1 Brief photophysical overview. There are several factors

that affect the ability of an organic molecule to act as a photo-

catalyst. In a typical organocatalysed photoredox reaction, the

photocatalyst transitions from a singlet ground state (S0) to a

long-lived and relatively stable excited state, either a singlet

excited state (S1) or a triplet excited state (T1), by absorption of

a photon with energy hν, which then undergoes photoinduced

electron transfer (PET). Following this, the photocatalyst is

reduced or oxidised accordingly, such that it returns to its

ground state and native oxidation state (Figure 1 and Figure 2).

Figure 2: General catalytic cycle of a photocatalyst in a photoredox
organocatalysed reaction. [cat] – photocatalyst, [cat]*x – photocatalyst
in x (x = S0, S1, T1) state, ox – oxidised, red – reduced. ISC does not
always occur.

It is ideal if a photocatalyst has a local absorbance maximum

(λmax) at a relatively long wavelength. Lower energy photons

avoid exciting other reactants and prevent competing photo-

chemistry from occurring, cf. ultraviolet light. However, the

energy of the absorbed photon also determines the energy of the

excited state of the catalyst. Catalysts with a λmax at a longer

wavelength have excited states at relatively low energy and

therefore do not have very strong oxidising or reducing capabil-

ities. A good balance is achieved by molecules which have λmax

in the visible region. Many organic molecules have some

UV absorbance, but little or no absorbance in the visible part of

the spectrum, hence excitation of other reactants is unlikely.

Visible light photons are high enough in energy to produce

excited states of sufficient reactivity to undergo PET.

Once a molecule is electronically excited, there are multiple

pathways through which it can decay back to S0. The excited



Beilstein J. Org. Chem. 2018, 14, 2035–2064.

2037

state can decay via non-radiative processes, such as vibrational

relaxation. It can also return to S0 via fluorescence or non-radia-

tive emission. While in S1 (or T1) Förster resonance electron

transfer (FRET) can occur, a process through which energy is

transferred between chromophores via non-radiative

dipole–dipole coupling.

It is generally assumed that the non-radiative processes occur at

a much slower rate than radiative processes. As such, the life-

time of S1 (τs1) is roughly equal to the lifetime of fluorescence

(τf). In general, if a molecule is to participate in a reaction in the

S1 state, its τf must be greater than 1 ns; N.B. the diffusion rate

constant (kdiff) is ≈1–2 × 1010 s−1.

The fluorescence quantum yield (Φf) is another key parameter

to consider when determining whether the S1 state of a mole-

cule is likely to be involved in PET. A molecule with a low Φf

will be unlikely to be found in the S1 state, as this state will be

highly susceptible to other decay pathways in the timescale of

PET.

For a molecule to undergo PET when in the T1 state, the inter-

system crossing quantum yield (ΦISC) must be comparable to or

larger than the Φf and, more importantly, the rate constant for

ISC (kISC) must be similar to the rate constant for fluorescence

(kf). The lifetime of the T1 state (τT1) is generally orders of

magnitude longer than the timescale of electron transfer (ET),

meaning that τT1 does not alter the efficiency of the PET

process.

The decay of T1 is negligible as the processes which bring this

about (phosphorescence mainly) are symmetry forbidden and

hence very slow. Therefore, if a molecule can reach the T1 state

through excitation with visible light then it is one which can be

considered as a photoredox catalyst, as it will likely be able to

participate in ET.

1.2.2 Brief electrochemical overview. In this review, the nota-

tion proposed by Nicewicz in his comprehensive review is

adopted [35]. Therefore, all reduction potentials will be re-

ferred to using notation of the form Ex (Ox/Red) where

x = “red” or “ox” and the species in the brackets refer to the

reactant and product of the half reaction (Equation 1).

(1)

where Ox = oxidised form and Red = reduced form of the

species in question.

The half reaction is always assumed to be written in the direc-

tion where reduction occurs.

(2)

So, for example in half reaction (2) the redox potential is re-

ferred to by the notation Ered (Eosin Y/Eosin Y•−). The symbol

“*” serves to denote when a species is in an excited electronic

state, which then leads the general format adopted in this review

to describe redox potentials of photocatalysts to become E*
x

(Ox/Red).

The electrochemical data of a photocatalyst and a substrate

which is to undergo PET allow for the estimation of the feasi-

bility of the PET.

The following equations can be used to estimate whether PET

from a substrate to an excited state photocatalyst is possible:

Conversely, the following equations can be used for predicting

whether PET from an excited state photocatalyst to a substrate

is spontaneous:

In both cases ΔGPET is the free energy change during PET, F is

the Faraday constant and E0,0 is the energy of the excited state.

From these equations one can conclude that for PET to take

place such that the excited catalyst is reduced, E*
red (cat*/cat•−)

must be greater (more positive) than Eox (sub•+/sub). Converse-

ly, for PET to occur from the excited photocatalyst (oxidation)

to the substrate, E*
ox (cat•+/cat*) must be more negative than

Ered (sub/sub•−).

Where comments or suggestions are made about the reducing or

oxidising power of a photocatalyst, comparisons of relevant

data and these electrochemical considerations have been under-

taken.

1.3 Most common catalysts employed
The following photocatalysts are frequently encountered in the

literature presented in this review. Here some basic data of

these photocatalysts are presented, to serve as an easy reference

to the reader, with respect to their structure, electrochemical and

photophysical properties.

Figure 3 shows the structures of the various compounds that are

used on multiple occasions as photocatalysts in the reactions

presented in this review. In cases where photocatalysts other
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Table 1: Electrochemical data for the four catalysts (I to IV) most commonly encountered in the reaction reported herein [33,35-37]. All values are with
respect to the saturated calomel electrode (SCE).

catalyst
ground state redox potential excited state redox potential

excited state absorbance
maximum (λmax)Ered (cat/cat•−) Eox (cat•+/cat) E*

red (cat*/cat•−) E*
ox (cat•+/cat*)

Eosin Y (I) −1.08 V +0.76 V +0.83 V −1.15 V triplet 520 nm
methylene blue (II) −0.30 V +1.13 V +1.14 V −0.33 V triplet 650 nm
Rose Bengal (III) −0.99 V +.84 V +0.81 V −0.96 V triplet 549 nm
MesAcr (IV) −0.46 V to −0.79 V – +2.32 V – singlet 425 nm

than these are used, their structure will be given in the reaction

scheme.

Figure 3: Structures and names of the most common photocatalysts
encountered in the reviewed literature.

In Table 1 the redox potentials for the ground and excited states

of these catalysts are shown.

Examination of these data reveals how excitation of these com-

pounds changes their properties and makes them capable of

redox chemistry. In some cases, e.g., MesAcr, the produced

excited state is only strongly oxidising, in others the excited

state is a molecule which can both reduce and oxidise different

species, depending on their relative redox potentials.

1.4 General mechanism for organophotoredox-
catalysed reactions
The general catalytic cycle of a photocatalyst in any given

organocatalysed photoredox reaction (Figure 2) can be cate-

gorised based on the direction of ET involving the excited cata-

lyst. If ET occurs such that the catalyst is reduced, the cycle is

classed as a reductive quenching cycle (Figure 4). In a reduc-

tive quenching catalytic cycle, a species must act as an oxidant

to return the photocatalyst to its native oxidation state.

Figure 4: General example of a reductive quenching catalytic cycle.
[cat] – photocatalyst, [cat]* – photocatalyst in excited state,
[sub] – substrate, [red] – reductant, [ox] – oxidant.

If ET occurs such that the catalyst is oxidised, the cycle is

classed as an oxidative quenching cycle (Figure 5). In an oxida-

tive quenching catalytic cycle, a species must act as a reductant

to return the photocatalyst to its native oxidation state.
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Figure 5: General example of an oxidative quenching catalytic cycle.
[cat] – photocatalyst, [cat]* – photocatalyst in excited state,
[sub] – substrate, [red] – reductant, [ox] – oxidant.

The reducing and oxidising species can be the substrate or an

additive, since the classification of a catalytic cycle as either re-

ductive or oxidative quenching considers only the ET with

respect to the excited photocatalyst.

Photoredox reactions can also be classified with respect to the

substrate. Depending on the change in oxidation state of the

substrate, a photoredox reaction can be classified as either net

oxidative, net reductive or redox neutral. The net result of the

reaction is not dependent on the catalytic cycle characterisation

– either reductive or oxidative quenching.

Net oxidative reactions require the presence of an oxidising

agent. The advantage of photoredox net oxidative reactions,

compared to conventional oxidation reactions, is that much

milder oxidants are employed. For example, the oxidation of

alcohols to carbonyls traditionally requires strong oxidants

(Cr(VI) species, IBX, DMP), whereas similar reactions using

photochemical methods can utilise oxygen (O2) as the oxidising

agent. The oxidising agent can accept electrons either from the

excited photocatalyst or the radical anion catalyst in the cata-

lyst turnover step. Irrespective of its role, the reaction is still

classed as net oxidative.

Similarly, net reductive transformations require a reducing

agent as an additive. As with net oxidative reactions, the reduc-

tant can act at any point in the catalytic cycle, which itself can

be classed either as reductively or oxidatively quenched.

Net redox neutral processes see the substrate remain at the same

oxidation state overall. These transformations are generally

more complex, and the additives required as well as their mode

of action vary in each case.

1.5 Scope, aim and selection criteria for presented
publications
Unless otherwise stated, control experiments were completed to

prove the necessity of the light source, photocatalyst and all ad-

ditives in the reported reactions. In addition, unless otherwise

stated, optimisation of the reaction conditions was carried out

for all components of the reactions presented.

Only selected mechanisms are reported, as the focus is on the

applications of the presented reactions in the synthesis of mole-

cules for the purposes of medicinal chemistry. For the sake of

brevity, most mechanisms are omitted completely, as they can

be correctly inferred by the reagents, conditions and general

mechanisms described previously (section 1.4). If the mecha-

nism contains information vital to the understanding of various

results, the key steps which contain this information will be

presented and discussed.

This review aims to function as a kind of synthetic medicinal

chemists’ guide to organocatalysed visible light photoredox

chemistry. For this reason, the review is structured such

that reactions that fall under a broad category are grouped

together. The main text is separated into three sections,

which correspond to reactions frequently used in medicinal

chemistry.

The existing literature on the topic is extensive. The papers

reviewed were selected on the following criteria:

• The reactions described must not be extremely common,

easy to undertake using more traditional methods or

overly simplistic, e.g., simple functional group transfor-

mations.

• The publication presents a new idea or breakthrough that

can potentially significantly impact the field of medici-

nal chemistry or synthetic organophotoredox catalysis.

• The conditions reported offer a distinct, unique or signif-

icant advantage over non-photocatalytic or transition

metal photocatalysed processes.

• The reported chemistry has no precedent in the literature

and is only possible using organophotoredox chemistry.

• The products presented must always be somehow impor-

tant in medicinal chemistry.

• A combination of some of the above conditions.

As such, the number of research papers reviewed and presented

is by no means exhaustive but is an attempt to present the

content which is most relevant.
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Scheme 1: Oxidative coupling of aldehydes and amines to amides using acridinium salt photocatalysis.

2 Coupling reactions
In this section, the bonds formed during the reactions are high-

lighted in red, as they are not always immediately and easily

identifiable.

2.1 Peptide-type linkages
Medicinal chemists often draw inspiration from nature for the

design of their molecules. With the exception of certain natural

products, most naturally occurring biologically active mole-

cules contain amides. The formation of the amide functional

group is the most utilised reaction in medicinal chemistry. This

is a reflection of the tendency of synthetic bioactive molecules

to exhibit peptidomimetic properties. Though there is a vast

number of procedures that generate amide bonds, an interesting

approach is taken by Leow, who has demonstrated the synthe-

sis of amides through the oxidative coupling of aromatic alde-

hydes and a wide range of secondary amines, using mesitylacri-

dinium salts as the photocatalysts (Scheme 1) [38].

The main advantage is the use of air as the oxidant, which

converts the formed α-hydroxy amine into the desired amide.

This makes for a much more atom economical and environmen-

tally benign process, when compared to traditionally used

amide coupling methods where acid activating agents are

needed, e.g., HATU or DCC, as the only byproduct is water.

Only arylaldehydes can be converted into amides and all but

one of the examples of the amines used are secondary cyclic

amines. Aliphatic aldehydes gave poor yields, with sterically

hindered examples not reacting at all. The author attributed this

to the formation of enamines. Under the reported reaction

conditions primary aliphatic and aromatic amines all produced

imines.

The benzamide moiety is somewhat common in biologically

active molecules. Leow recognised this and provided some ex-

amples which are currently on the market or under investiga-

tion (Figure 6) [39]. An example of the formation of these

bonds using his protocol would serve as a demonstration

of utility of the reaction to complex, biologically relevant

systems.

Figure 6: Biologically active molecules containing a benzamide
linkage.

Naturally occurring amino acids, e.g., glycine, are often used in

medicinal chemistry as linkers, structural components of scaf-

folds or even as precursors to useful building blocks.

Wallentin and co-workers have described a method for the re-

ductive decarboxylation of amino acids, using bis(4-chloro-

phenyl)disulfide (empirical name – dichlorodiphenyl disulfide,

abbreviated as DDDS), 2,6-lutidine and acridinium salts under

blue LED irradiation, providing access to precious, non-com-

mercially available and multifunctional amine building blocks

in one step (Scheme 2) [40].

The group demonstrated the synthesis of protected naturally

occurring amines such as GABA and phenylethylamine as well

as diamines with orthogonal protecting groups, cf. product 2c.
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Scheme 2: The photocatalytic reduction of amino acids to produce the corresponding free or protected amines.

Scheme 3: The organocatalysed photoredox base-mediated oxidation of thiols to disulfides.

The combination of this protocol with the diastereoselective re-

ductive amination reported by Hughes and Devine [41],

provides access to very high value chiral α-trifluoromethyl-

amines, which are attractive due to their low basicity, ability to

act as amide bioisosteres [42] and higher metabolic stability.

The number of medicinal chemists who specialise in peptides

has been increasing in recent years. This is largely due to the in-

creasing interest in macrocyclic peptides. A key structural char-

acteristic of peptides is the disulfide bridge formed by cysteines.

This functional group is much more prevalent in peptide medic-

inal chemistry.

Noël et al. have published a protocol for the aerobic oxidation

of thiols to disulfides, using Eosin Y photocatalysis and

TMEDA (Scheme 3) [43].

The reaction specifically investigated the dimerization of thiols.

Some of the experiments carried out by the group were in a

flow chemistry set up, exemplifying the scalability of the proce-
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Scheme 4: C-Terminal modification of peptides and proteins using organophotoredox catalysis.

dure. In addition, the oxidant that achieves the transformation is

molecular oxygen, making this a very sustainable route, in a

similar manner to the amide coupling by Leow.

The demonstrated oxidation of the free thiols to a disulfide to

afford oxytocin (3c) as the product in quantitative yield shows

the value of this procedure. Medicinal chemists who specialise

in creating artificial peptides could find much use for such a

mild and selective oxidation.

MacMillan and co-workers have recently developed a method

for the bioconjugation of peptides by radical decarboxylation of

the C-terminus of peptides and subsequent Giese-type addition

to Michael acceptors. This is performed under blue light irradia-

tion, using lumiflavin (3Lum Ered*(cat/cat•−) ≈ +1.5 V vs SCE)

as the photocatalyst in aqueous buffer (Scheme 4) [44].

This work highlights the great biocompatibility of organopho-

toredox methodology and also is an excellent demonstration of

the type of chemoselectivity achievable using these methods.

Apart from the immediately obvious application of this biocon-

jugation to biochemistry and molecular biology as a tool for

protein labelling, it could also be used as a convenient tool for

peptide chemists in medicinal chemistry programs for modifica-

tion of peptides.

2.2 C(sp2)–C(sp2) bond formation
Suzuki–Miyaura and related transition metal-catalysed

C–C bond forming reactions are in the top 5 most used reac-

tions in medicinal chemistry [45]. Therefore, the development

of metal-free variants of these types of reactions is a very attrac-

tive goal.

An interesting approach was taken by König et al., who

report the reduction of aryl halides to the corresponding

non-halogenated aromatics. This was extended to the

coupling of aryl halides to a variety of substituted pyrroles,

using N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-

bis(dicarboximide) (PDI) as the photocatalyst, under blue LED

irradiation, in DMSO and in the presence of triethylamine

(Scheme 5) [46].

The biggest breakthrough in this case is the excitation of PDI by

two photons, creating a radical anion in an excited state, giving

the catalyst a much higher reducing power, allowing the reduc-

tion of aryl chlorides (see product 5b). This is the first report of

the reduction of aryl chlorides without the use of a strong

base, UV radiation or highly reactive neutral organic reducing

agents.

The PDI catalytic cycle is different to the general catalytic cycle

presented in the introduction and is presented in Figure 7.
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Scheme 5: The reduction and aryl coupling of aryl halides using a doubly excited photocatalyst (PDI).

Figure 7: Mechanism for the coupling of aryl halides using PDI, which is excited sequentially by two photons.

The group also showed that it is possible to carry out these reac-

tions using sunlight as the source of photons, leading them to

term their newly discovered photocatalyst a “minimalistic

chemical model of the Z-scheme in biological photosynthesis”.

The König group has contributed a more traditional methodolo-

gy as well, publishing a protocol for coupling simple five-mem-

bered heterocycles to substituted benzenes, using Eosin Y as the

photocatalyst, starting from arenediazonium salts (Scheme 6)

[47].

The scope of the reaction is limited to N-Boc-pyrroles, furans

and a couple of simple substituted thiophenes with respect to

the heterocycle, and the benzene moiety can tolerate all manner

of substituents in all positions, however, only mono-substituted

systems are explored. This is a powerful procedure, which

allows for the circumvention of traditional Pd or Cu catalysed

couplings of heteroarenes, which are notoriously difficult.

A publication by Kundu and Ranu provides a way of arylating

the C2 position of electron-rich five-membered heterocycles,

using anilines as the coupling partner. tert-Butyl nitrite

(t-BuONO) is used as a diazotizing agent to generate di-

azonium salts transiently in situ. The reaction is catalysed by

Eosin Y under irradiation with blue LEDs at room temperature

(Scheme 7) [48].
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Scheme 6: The arylation of five-membered heteroarenes using arenediazonium salts under organophotoredox conditions.

Scheme 7: The C–H (hetero)arylation of five-membered heterocycles under Eosin Y photocatalysis.

The authors report that in general their procedure allowed for

better transformation of electron-poor anilines compared to

their electron-rich counterparts. Unfortunately, it is also re-

ported that the scope of the reaction cannot be extended to elec-

tron-poor heterocycles under the current conditions. However,

the aniline coupling partner opens up a huge variety of

opportunities, as arylamines and heteroarylamines are widely

available.

Scaffolds such as 7b have lots of potential for further elabo-

ration. In addition, the presence of electron-poor pyridines,

cf. 7e, is also very encouraging, as these find widespread

use in pharmaceuticals as benzene isosteres, which are

more polar and metabolically stable, but lack the – often

problematic – basicity of regular pyridines. Compounds such as

7c are not commonly encountered, but definitely have

the potential to be of interest if explored further. The

good physical chemical properties of thiazoles, as well as

their ability to act as isosteres to thiophenes, carbonyls

and pyrazoles [49,50] make this scaffold an intriguing novel

motif.

2.3 C(sp2)–X bond formation
The obvious extension after considering C–C coupling reac-

tions, is to consider the ability of organocatalysed photoredox

reactions to perform reactions which create C–X (X = N, O, S)

bonds, in reactions analogous to Buchwald or Chan–Lam

couplings.

An example of the creation of C–S bonds is given by Wang and

co-workers, who have reported the formation of aromatic

thioethers by functionalising C–H bonds of imidazo[1,2-

α]pyridines and benzo[d]imidazo[1,2-b]thiophenes using Eosin

B and sulfinic acids (Scheme 8) [51].
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Scheme 8: The C–H sulfurisation of imidazoheterocycles using Eosin B-catalyzed photochemical methods.

The manipulated heterocycles, particularly the imidazopy-

ridines, are motifs which are commonly encountered in medici-

nal chemistry. The formation of the thioether is also quite inter-

esting, due to the possibility of accessing sulfones, which are

abundant in drugs and drug-like molecules.

The scope of the reaction covers the basics in terms of substitu-

ents on both reactants and investigates various substitution

patterns. Most of the reactions proceed in good yields. The use

of tert-butyl hydroperoxide as the oxidant likely prohibits the

use of oxidation-sensitive functional groups, such as alkenes or

aldehydes. Use of a milder oxidant, e.g., oxygen – seen many

times in this review, could help broaden the functional group

compatibility.

Hajra et al. have reported the direct C–H thiocyanation of

substituted imidazo[1,2-a]pyridines, using ammonium thio-

cyanate, in combination with Eosin Y under irradiation by blue

LEDs (Scheme 9) [52]. This is another photoredox example of

C–S bond formation, in this case to a highly versatile thio-

cyanate functional group, which is a precursor group to many

sulfur-containing functional groups, as well as heterocycles

such as thiazoles and isothiazoles.

The imidazo[1,2-a]pyridine core is a particularly interesting

drug-like structure, e.g., electron poor, polar, of low basicity,

etc. The scope of the modified substituted imidazo[1,2-

a]pyridines contains scaffolds commonly found in pharmaceuti-

cals, such as sulfones 9a and trifluoromethyl groups 9b.

Scheme 9: The introduction of the thiocyanate group using Eosin Y
photocatalysis.

Hence, this publication provides an easy route to access scaf-

folds with diverse aromatic systems, allowing for the construc-

tion of interesting molecules.

An interesting report of C–N bond formation is seen in König

and co-workers’ method for the formation of sulfonamidated

pyrroles, using acridinium salts as photocatalysts, in the pres-

ence of oxygen and sodium hydroxide (Scheme 10) [53].
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Scheme 10: Sulfonamidation of pyrroles using oxygen as the terminal oxidant.

Scheme 11: DDQ-catalysed C–H amination of arenes and heteroarenes.

Unfortunately, this protocol was investigated for its use in the

sulfonamidation of other heterocycles and was not successful.

The authors attribute this lack of reactivity to the limited

oxidising power of the excited acridinium salts and to the rela-

tive instability of the heterocyclic radical cation, which is a key

intermediate in the proposed mechanism. Considering

that Ered*(cat/cat•−) is greater than +2 V (vs SCE) for

acridinium salts, the limited oxidising power is not the

most probable explanation. Instability of the heteroaromatic

radical  cat ion seems more plausible .  The authors

explore both aromatic and heteroaromatic pendant

groups on the sulfonamide, as well as aliphatic chains.

Unsurprisingly, esters and other base labile groups are not en-

countered.

A recent publication by König and his group shows the

DDQ catalysed (3DDQ Ered*(cat/cat•−) ≈ +3.18 V vs SCE)

C–H amination of arenes and heteroarenes using weakly

nucleophilic species such as carbamates, urea and non-basic

heterocycles (Scheme 11) [54].

The scope covers a multitude of electron-poor and electron-rich

arenes which can be reacted with carbamates, urea, pyrazole

and triazole derivatives to furnish aminated products. The

authors address the various reactivities observed with respect to

both the electronics of the arene and the nucleophilicity of the

amine. Particularly electron-rich arenes such as N-methylindole

are not tolerated, as is the case for relatively nucleophilic

amines such as imidazoles, anilines or alkylamines.
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Scheme 12: Photoredox-promoted radical Michael addition reactions of allylic or benzylic carbons.

The reported substrates are particularly valuable to medicinal

chemistry, since electron-deficient systems, as well as polar but

weakly basic nitrogen atoms possess molecular properties

desired in biologically active molecules.

More C(sp2)–N bond forming reactions are reported in the liter-

ature; however, they are encountered further in this review, as

they are better suited to be included in the late stage functionali-

sation (LSF) section.

2.4 Reactions manipulating hydrocarbon backbones
The reactions of hydrocarbons are central to building the scaf-

folds of molecules. This is also true in medicinal chemistry.

There are countless C–C bond-forming reactions using tradi-

tional chemistry and organophotoredox synthesis can offer

some interesting options as well.

Wu et al. reported the alkylation of unfunctionalised allylic and

benzylic sp3 C–H bonds by reaction with Michael acceptors,

using blue LEDs and acridinium salts (Scheme 12) [55]. The

main advantage is the absence of strong bases like tert-butyl-

lithium (t-BuLi).

A very broad scope of Michael acceptors, allylic and benzylic

substrates is reported, with an equally broad range of yields

achieved (10–99%). Some selectivity is observed when asym-

metric alkenes are used. The key to this selectivity is likely the

proposed intermediate Int 8, which is formed selectively by

SET from the alkene to the excited photocatalyst, in a reductive

quenching of the catalytic cycle (Figure 8).

The more stable intermediate Int 8 is formed selectively by the

SET and the allylic radical species that is formed from the less

hindered and more reactive, less substituted position of its two

canonical forms.

In a similar manner, Rueping et al. demonstrated the functional-

isation of C–H bonds α to tertiary amines with various nucleo-

philes. They also reported the formation of C–C bonds from

α-amino C–H bonds using an organophotocatalytic version of

the Ugi reaction. These procedures were undertaken in a flow

chemistry set-up, using irradiation by green LEDs and Rose

Bengal as the photocatalyst (Scheme 13) [56].

The scope of the reaction is fairly broad, especially considering

the method was developed in a flow chemistry set-up, which

requires a large amount of optimisation itself. A range of

nucleophiles including nitroalkanes, cyanides, malonates and

phosphonates are used to modify different N-aryltetrahydroiso-

quinolines. These products have the potential for quite a range

of subsequent reactions for elaboration and their core structural

characteristics are quite drug like.

The products of the Ugi-type reaction the group report are also

interesting. The functional group (FG) compatibility of the reac-

tion is very good, as many of the FGs tolerated can be further
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Figure 8: Proposed mechanistic rationale for the observed chemoselectivities.

Scheme 13: The photocatalytic manipulation of C–H bonds adjacent to amine groups.

functionalised in a plethora of different ways. Examples of

heterocyclic (e.g., pyridinyl) anilines would be more relevant to

the pharmaceutical industry.

Medicinal chemistry often requires particularly furnished

hydrocarbon backbones as bioisosteric replacements. One such

interesting group is the difluoromethyl group. Akita et al. have

described a novel difluoromethylating agent which was used to

simultaneously install a difluoromethyl and an acetamide group

on various styrene-type derivatives, under perylene-catalysed

(Eox* (cat+•/cat) = −2.23 V vs ferrocene in acetonitrile)

photoredox conditions (Scheme 14) [57].

For the most part, the scope of the reaction is limited to relative-

ly simple styrenes, however, some rather interesting substrates

are reported, as shown in Scheme 12, in addition to some

others, e.g., meta-aldehyde or para-bromo substituents. These

types of motifs have the potential to be elaborated into very

drug-like molecules.

Overall, this presents a decent method for the introduction of

the typically difficult to introduce CF2H group. However, this

method is applied to quite simple substrates and so use of this

protocol is limited to the early steps in the synthesis of com-

pounds. The ability to extend this procedure to encompass
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Scheme 14: The perylene-catalysed organophotoredox tandem difluoromethylation–acetamidation of styrene-type alkenes.

Figure 9: Examples of biologically active molecules containing highly functionalised five membered heterocycles.

structurally diverse and relatively delicate scaffolds, making it

suitable for LSF, would make this an incredibly valuable tool to

the medicinal chemist.

3 Heterocycle formation
The importance and prevalence of heterocyclic systems in me-

dicinal chemistry cannot be overstated. Although reactions for

the formation of heterocycles are decreasing in frequency [45],

the presence of heterocycles in drugs on the market is still

extremely high. The former is more a reflection of the fact that

heterocyclic building blocks are now more readily available as

starting materials, so chemists opt to construct them less

frequently.

Many biologically active synthetic compounds contain highly

substituted five-membered heterocycles. In particular, pyrroles

and oxazoles are quite commonly encountered (Figure 9)

[58,59].

Xiao and co-workers have shown that highly substituted

pyrroles can be synthesised by the [3 + 2]-cycloaddition of elec-

tron-poor alkynes and 2H-azirines [60]. The reaction is per-
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Scheme 15: The [3 + 2]-cycloaddition leading to the formation of pyrroles, through the reaction of 2H-azirines and alkynes via organophotoredox
catalysis.

Figure 10: Proposed intermediate that determines the regioselectivity of the reaction.

formed under blue LED irradiation and using acridinium salts

as a photocatalyst (Scheme 15).

With respect to 2H-azirine the scope of the reaction is demon-

strated to be relatively broad, with aromatics, heteroaromatics

and aliphatics all seen. However, the variation in the alkyne

partner is limited, with only examples of esters and nitriles

shown. The yields are variable (15–98%), with no general ex-

planation being offered to rationalise this by the authors. An ex-

ample of the reaction of two asymmetric substrates is provided

and the reaction demonstrates reasonable regioselectivity

(6.5:1). The synthesis of 15c, a precursor to an active pharma-

ceutical ingredient (API), by the authors demonstrates how this

method is immediately useful in the synthesis of biologically

active molecules. Although the authors offer no direct explana-

tion for the observed regioselectivity, the mechanism of the

reaction could provide some insight. The key step of the reac-

tion, which sets the regiochemistry of the product is seen in

Figure 10.

The intermediate cation radical Int 10 and the stability of the

positive charge in the iminium radical cation are the keys in

the mechanism and to understanding the selectivity of the reac-

tion.

In an unsymmetrical reactant, the iminium carries most of the

partial positive charge on the benzylic carbon (Figure 11). The

radical is not stabilised by being borne on the benzylic carbon,

as the aromatic ring must lie in conjugation with the iminium

double bond, making the orbitals of the ring orthogonal to the

orbital in which the unpaired electron resides.

The Xiao group have also published a method for making

oxazoles using conditions that are very similar to those de-
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Figure 11: Comparison of possible pathways of reaction and various intermediates involved.

Scheme 16: The acridinium salt-catalysed formation of oxazoles from aldehydes and 2H-azirines.

scribed above (Scheme 16). The reaction uses 2H-azirines and

aldehydes to access the functionalised heterocycles [61].

Unlike the pyrrole-forming reaction, this protocol requires an

oxidising agent, DDQ, for the desired oxazole to be obtained.

This means that access to the corresponding 2,5-oxazolines is

also possible. Aliphatic and heteroaromatic substituents on the

2H-azirine were not tolerated. The aldehyde substituents are

much more diverse, with a variety of substituted benzenes,

heteroaromatics, carbonyls and aliphatic side chains under-

going the cycloaddition.

Overall, these two methods provide much more mild, scalable

and environmentally friendly reaction conditions than the tradi-

tional methods employed for making these highly substituted

heteroaromatics.

Access to the saturated oxazolines and thaziolines from amides

and thioamides, respectively, has been described by Nicewicz

who used acridinium salt photocatalysts in cooperation with a

disulfide cocatalyst, which is converted to the corresponding

thiol and serves as a source of hydrogen atoms for the reduc-

tion of the double bond (Scheme 17) [62].
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Figure 12: Biologically active molecules on the market containing 1,3,4-oxadiazole moieties.

Scheme 18: The synthesis of 1,3,4-oxadiazoles from aldehyde semicarbazones using Eosin Y organophotocatalysis.

Scheme 17: The synthesis of oxazolines and thiazolines from amides
and thioamides using organocatalysed photoredox chemistry.

The scope of the reaction is not particularly broad; electron-

withdrawing groups such as pyridyl or trifluoromethyl are not

tolerated. No functional group tolerance towards other

carbonyls such as esters or aldehydes is demonstrated. The use

of terminal or trisubstituted alkenes is limited and the reaction

times are long.

However, the authors do report that the reaction is somewhat

diastereoselective, favouring the anti-configuration in all cases.

In addition, the option for oxidation to the oxazole or thiazole is

always enticing as a way of easily accessing a diverse set of

molecules.

Immediately akin to the oxazole moiety is the oxadiazole

heterocycle, which exhibits similar properties. There are several

examples of drugs on the market containing such heteroaro-

matics (Figure 12).

Yadav et al. reported the synthesis of 1,3,4-oxadiazoles from

aldehyde semicarbazones, using CBr4, green LEDs and Eosin Y

as the photocatalyst, at room temperature, in the presence of air

(Scheme 18) [63].

This procedure offers a much milder route to these heterocycles

than traditional synthetic methodologies, which typically use

harsh conditions. Semicarbazones are readily synthesised from

the corresponding aldehydes, so these starting materials are

easily accessible. The yields are very good to excellent

(86–96%), while the variation on the ligands of the aromatic

ring covers a sensible range. The 4-pyridyl 18a example is par-

ticularly interesting, as is the hindered 2,6-disubstituted ring

system 18b. Only the synthesis of 2-amino-1,3,4-oxadiazoles is
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Scheme 20: The radical cycloaddition of o-methylthioarenediazonium salts and substituted alkynes towards the formation of benzothiophenes.

reported, which although useful building blocks, are not

extremely common in drugs.

The Yadav research group have also published the homocou-

pling of primary thioamides for the formation of symmetrical

1,2,4-thiadiazoles, using visible light and Eosin Y as the photo-

catalyst, in air at room temperature (Scheme 19) [64].

Scheme 19: The dimerization of primary thioamides to 1,2,4-thia-
diazoles catalysed by the presence of Eosin Y and visible light irradia-
tion.

The immediately obvious limitation of this reaction is the iden-

tical nature of the substituents on the product. This severely

limits its potential applications, and the usefulness of this

protocol is likely limited to the creation of linkers or pendant

groups.

Benzo-fused five-membered heterocycles also find widespread

use in medicinal chemistry, with indoles, benzothiophenes and

benzimidazoles seen in many drugs. In another demonstration

of the value of diazonium salts, the König group have published

a protocol for the synthesis of substituted benzothiophenes

using Eosin Y photocatalysis, starting from o-methylthioarene-

diazonium salts and substituted alkynes (Scheme 20) [65].

The scope of the substrates demonstrated is quite broad, with

substituted aromatic and aliphatic alkynes being used and a

variety of substituents tolerated on the diazonium salt starting

material. Terminal alkynes selectively formed 2-substituted

benzothiophenes, whereas the regioselectivity of unsymmetri-

cal disubstituted alkynes was not explored. It is important to

note the role of DMSO, which acts as a demethylating agent as

well as solvent. Even so, the benzothiophene cores constructed

by the authors are still valuable, as molecules such as 20b can

be further elaborated in many ways and 20c is a precursor to an

API.

Another method for benzothiopene construction is seen in

Kumar and co-workers’ report describing a dehydrogenative

oxytrifluoromethylation cascade reaction of 1,6-enynes, cata-

lysed by phenanthrene-9,10-dione (PQ) (Ered*(cat/cat•−) +1.6 V

vs SCE) using visible light (Scheme 21) [66]. However, benzo-

furans and, most importantly, indoles are also accessible

through this cascade.

The authors demonstrated the synthesis of an array of different,

potentially drug-like compounds. The authors also showed the

accessibility of their starting materials by synthesising the 1,6-

enynes from the corresponding 2-halogenated phenols,

benzenethiols or anilines, via a simple substitution–elimination–

Sonogashira synthetic sequence. In addition, the group has syn-

thesised trifluoromethylated modified versions of certain drugs

(Figure 13).

Variations on the classical benzofused heterocycles (indole etc.)

– such as benzimidazoles or tetrazolopyridines are often seen in
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Scheme 21: The dehydrogenative cascade reaction for the synthesis of 5,6-benzofused heterocyclic systems.

Figure 13: Trifluoromethylated version of compounds which have known biological activities.

medicinal chemistry. Singh et al. reported a method for prepar-

ing 3-arylnitrobenzimidazoles from 2-aminopyridines and nitro-

alkanes, using green LED Eosin Y photocatalysis, with molecu-

lar oxygen as the oxidant (Scheme 22) [67].

Heterocycles in drugs are not only restricted to five-membered

rings. Pyridines, pyrazines, pyrimidines, pyridazines are all

common functional groups in biologically active compounds.

Liu et al. have published the visible light-catalysed oxidation of

dihydropyrimidines (DHPMs) using atmospheric oxygen as the

stoichiometric oxidant, TBA-Eosin Y photocatalysis and

carbonate as the base at room temperature (Scheme 23) [68].

The group also reported that this transformation is possible

using sunlight as the source of photons, with a yield compa-

rable to that obtained when blue LEDs were employed. Though

the scope of the reaction is quite broad, variation is only investi-

gated in the C4 and C5 positions of the DHPMs. Variability at

C1 and C6 are not investigated. The variation of the ester and

the C4 ligands, however, is good, with some interesting prod-

ucts being presented.

The authors do not justify the selection of the particular substi-

tution pattern with the C6 methyl and the C2 heteroatom

methyl, e.g., ease of access to this type of DHPM core. There-

fore, it would be interesting to see whether this method is com-

patible with other DHPM systems.

In the same publication, the group described the use of similar –

also mild – reaction conditions to synthesise benzoxazoles from

2-substituted phenolic imines (Scheme 24). This implies that

the DHPM manipulation was perhaps a preliminary study that

served to optimise mild oxidation conditions.



Beilstein J. Org. Chem. 2018, 14, 2035–2064.

2055

Scheme 22: Eosin Y-catalysed photoredox formation of 3-substituted benzimidazoles.

Scheme 23: Oxidation of dihydropyrimidines by atmospheric oxygen using photoredox catalysis.

Scheme 24: Photoredox-organocatalysed transformation of 2-substituted phenolic imines to benzoxazoles.
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Scheme 25: Visible light-driven oxidative annulation of arylamidines.

Tang et al. reported a procedure for performing a visible light-

driven oxidative cyclisation of arylamidines using Rose Bengal

as the photocatalyst, in the presence of base and CBr4 as the

oxidant (Scheme 25) [69].

The scope of the reaction is restricted to mono-substituted

benzenes and lacks any carbonyl derivatives as ligands. The

reaction conditions are relatively harsh (high temperature) com-

pared to the typical conditions encountered so far.

Overall, the synthesis of many of the most common hetero-

cyclic systems has been reported using organophotocatalytic

conditions, which offer several advantages over their tradi-

tional counterparts. Mainly, milder conditions are employed and

easily elaborated structures are accessed in one step.

4 Late stage functionalisation
In this section, the bonds formed during the reactions are high-

lighted in red, as they are not always immediately and easily

identifiable.

Late stage functionalisation (LSF) is a relatively new concept. It

is the name given to the synthetic strategy in medicinal chem-

istry where lead structures are diversified by transformation of

unactivated C–H bonds. In LSF C–H bonds are treated as

distinct functional groups. This approach allows for diversifica-

tion of lead structures without having to devise alternative syn-

theses [70].

There are numerous examples of novel methodologies for LSF

published in recent years. The general theme is that these proto-

cols employ mild conditions that are widely functional

group-tolerant, as they usually operate on highly elaborate

structures.

LSF can either be guided, e.g., selective fluorination of a mole-

cule or can also follow an unselective approach, e.g., fluori-

nation in various positions, but in either case the goal is explo-

ration of SAR directly on a lead structure and easy diversifica-

tion. In addition, LSF can explore the addition of small groups,

e.g., methyl, fluoro, chloro, trifluoromethyl etc., or can be

aimed at installing larger functional groups, e.g., heterocycles,

amides or long alkyl chains.

The previous two sections outlined how mild the reaction

conditions employed in visible light organophotoredox cataly-

sis usually are, making it a uniquely suited method for LSF. For

example, Scaiano et al. have demonstrated the direct C–H tri-

fluoromethylation of heterocycles using TMEDA, visible light

from white LEDs, Methylene Blue as the photocatalyst and

Togni’s reagent as the trifluoromethyl source (Scheme 26) [71].

The reaction is regioselective and follows the same substitution

pattern as the electrophilic substitution of electron-rich hetero-

cycles. Although highly elaborated structures are not presented,

the mild reaction conditions and general functional group

compatibility that the reaction exhibits make it well suited for

LSF purposes. In the same study, the hydrotrifluoromethylation

of terminal alkenes and alkynes is also reported and in this case

the amine base acts as the hydrogen atom source to complete

the reduction of the π-bond (Scheme 27).

The more electron-rich double bond is more reactive towards

the electrophilic trifluoromethyl radical, providing some selec-

tivity to the process, which indicates that it could be applied to a

guided LSF strategy.

Itoh and co-workers have described a procedure for the direct

C–H perfluoroalkylation of substrates, which can act as fluo-
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Scheme 26: Methylene blue-photocatalysed direct C–H trifluoromethylation of heterocycles.

Scheme 27: Photoredox hydrotrifluoromethylation of terminal alkenes and alkynes.

rous tags. The group utilised the corresponding fluoroalkyl

sulfinate salt as the fluoroalkyl source, in combination with

TFA and Acid Red 94 as the photocatalyst, under 22 W fluores-

cent lamp irradiation to perform the transformation (Scheme 28)

[72].

The substrate scope is limited to rather simple compounds, the

most structurally complex of which is caffeine. The yields are

good (44–92%), with regioselectivity being observed in a few

cases. As with the trifluoromethylation by Pitre et al., this pro-

cedure does fit all the criteria for LSF, as it is very mild and

simple, even though no complex structures are exemplified.

Although it does not fit the exact definition of a reaction em-

ployed in LSF, Jiang and co-workers have described a proce-

dure that allows the enantioselective aerobic olefination of

α-amino sp3 C–H bonds, using cooperative asymmetric and

organocatalysed photoredox catalysis (Scheme 29) [73].

This may not allow for direct diversification of leads, however,

the products shown can, in one or two steps, be converted into

functionalised versions of a lead compound (vide infra). The

study revolves around two types of substrates, tetrahydroiso-

quinolines (THIQs) and tetrahydro-β-carbolines (THCs), both

of which are scaffolds encountered in biologically active mole-

cules.

This reaction was included due to the ability to introduce

chirality into lead structures, something that is valuable in me-

dicinal chemistry. The straightforward synthesis of isoxazoline
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Scheme 29: The cooperative asymmetric and photoredox catalysis towards the functionalisation of α-amino sp3 C–H bonds with electron-deficient
olefins.

Scheme 28: Trifluoromethylation and perfluoroalkylation of aromatics
and heteroaromatics.

29a from the corresponding vinyl aldehyde is a perfect exam-

ple of the potential for application to LSF.

Leonori et al. have demonstrated the coupling of amide deriva-

tives to aromatics using aryloxy amides, under Eosin Y

photocatalysis with green LEDs and potassium carbonate

(Scheme 30) [74].

The reaction is well suited for LSF, as is demonstrated by the

authors in the diversification of derivatives of lysergic acid such

as 30c. The overall scope of the reaction is quite diverse with

respect to both the amide and aromatic coupling partner. The

authors also address the issue of availability of the starting

aryloxy amides by accessing their starting materials in two

simple steps.

Molander and his group report the selective, direct C–H alkyl-

ation of various heterocycles, using their staple BF3K salts,

visible light, persulfate and acridinium salts as the photocata-

lyst (Scheme 31) [75].

The scope of the reaction is truly exceptional, with a wide

variety of heterocycles, ranging from nicotinamides to highly

functionalised quinolines, such as the antimalarial drug quinine.

The ability of this protocol to tolerate such highly function-

alised molecules, with such a variety of functional groups

present, really justifies the claims of the authors that this

protocol is ideal for LSF in drug discovery programs.

The scope of the alkyl chains is also tremendous, with primary,

secondary and tertiary alkyl trifluoroborates being used. The

team also addresses the availability of these substrates, showing
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Scheme 30: Organophotoredox-catalysed direct C–H amidation of aromatics.

Scheme 31: Direct C–H alkylation of heterocycles using BF3K salts. CFL – compact fluorescent lamp.

how these can be easily made in one step from the correspond-

ing alkyl bromides, using a method published by Cook [76].

The authors also further establish the immediate value of the

procedure to LSF by exploring SAR of camptothecin, a mole-

cule identified as an anticancer drug candidate. The authors

selectively manipulated the C-7 position, which has been shown

to improve efficacy when alkylated (Figure 14) [77].

Nicewicz and co-workers have published a procedure for the

aerobic C–H amination of aromatics, using acridinium salts

as the photocatalyst under blue LED irradiation (Scheme 32)

[78].

The authors have demonstrated a truly extensive scope for their

protocol, subjecting a range of aromatics, heteroaromatics and

fused aromatic and heteroaromatic systems with a variety of

substituents to C–H amination using a wide range of hetero-

cyclic amines. The functionalisation of molecules that are

natural product-like such as 32c is demonstrated by the authors,

which is an excellent example of how this protocol translates

seamlessly to drug discovery in the LSF strategy.

In a method that is complementary to their C–H amination

strategy, Nicewicz et al. have reported the SNAr-type addition

of nucleophiles to methoxybenzene derivatives at the ipso posi-

tion, as opposed to the C–H amination that operates on the
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Figure 14: The modification of camptothecin, demonstrating the use of the Molander protocol in LSF.

Scheme 32: Direct C–H amination of aromatics using acridinium salts.

ortho- and para-position of such EDGs. The reaction is cata-

lysed by acridinium salts under anaerobic conditions and irradi-

ation by blue LEDs (Scheme 33) [79].

The scope of substrates able to undergo the transformation is

quite broad and many, if not all the substrates that the group

report are scaffolds and moieties seen in typical medicinal

chemistry syntheses. There are numerous examples of amino

acid-derived substrates, either as the methoxybenzene electro-

phile (tyrosine type derivatives) or as the nucleophile

(histidine and related structures such as the depicted triazole

33c).

Examples such as the synthesis of a modified structure of

naproxen, starting from the methyl ester of the well-known

NSAID, demonstrate the full power of the protocol for its use as

a LSF tool. The mild conditions, selectivity on certain sub-

strates and the great opportunity for diversification of sub-

strates make this an ideal method for introducing nucleophilic

ligands onto aromatic rings.

Another publication from the Nicewicz group demonstrates

the C–H direct cyanation of a variety of aromatic and

heteroaromatic substrates. TMSCN is employed as the

cyanide source, acridinium salts as the photocatalyst, under

irradiation from blue LEDs and aerobic conditions (Scheme 34)

[80]. The authors show a set of diverse molecules that under-

went the transformation cleanly. The group again demonstrated

the LSF applications by cyanating the methyl ester naproxen

derivative 34a.

In summary, organophotoredox chemistry has been developed

to be applied to medicinal chemistry in the context of LSF and

appears to be very broadly applicable and robust. As LSF

becomes more popular in the ensuing decades, procedures such

as the ones outlined above will become both more numerous

and powerful.

Conclusion
Overall, the presented literature demonstrates that the recent de-

velopments in organophotoredox catalysis are increasingly in
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Scheme 33: Photoredox-catalysed nucleophilic aromatic substitution of nucleophiles onto methoxybenzene derivatives.

Scheme 34: The direct C–H cyanation of aromatics with a focus on its use for LSF.

line with the demands of medicinal chemistry. Not only

has it been shown to be highly sustainable, versatile and

mild, but in some cases, it enables transformations that are

notoriously challenging, cf. heteroaryl–heteroaryl coupling

(vide supra).

Possibly the most attractive application of these methods is

LSF. Medicinal chemists are constantly exploring SAR and

LSF is the concept that will expedite this process. Protocols that

can be used as tools for LSF are being rapidly developed and

organophotoredox catalysis is at an advantage when compared

to other approaches, due to its mild nature, as has been high-

lighted repeatedly.

Great advances are constantly being made in this emerging field

and even so, there are still numerous possibilities to be

explored. For example, stereoselective photoredox chemistry is

still quite sparse in the literature. Late-stage fluorination proto-

cols are also rare and would be exhaustively used by the phar-

maceutical industry. In addition, as has been pointed out in this

review, mostly electron-rich heterocycles are manipulated,

which are less valuable to the drug discovery process than their

electron-poor counterparts. The growing number of academic

and pharma laboratories entering organophotoredox catalysis

and the development of even stronger photocatalysts

ensures that the field will produce impactful research for years

to come.
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Abbreviations

Table 2: Abbreviations.

abbreviation explanation

API active pharmaceutical ingredient
BOC tert-butyloxycarbonyl
DCC dicyclohexyl carbodiimide
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DMP Dess–Martin periodinane
DMSO dimethyl sulfoxide
EDG electron-donating group
ET electron transfer
EWG electron-withdrawing group
GABA γ-aminobutyric acid
HATU 1-[bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxide
hexafluorophosphate

IBX 2-iodoxybenzoic acid
LED light-emitting diode
LSF late stage functionalisation
MB methylene blue
MesAcr mesityl acridinium salt
NSAID non-steroidal anti-inflammatory drug
PET photoinduced electron transfer
SAR structure–activity relationship
SCE saturated calomel electrode
SET single electron transfer
TFA trifluoroacetic acid
TMEDA N,N,N′,N′-tetramethylethane-1,2-diamine
TMSCN trimethylsilyl cyanide
UV ultraviolet
X heteroatom
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