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Abstract: α-conotoxin GI, a short peptide toxin in the venom of Conus geographus, is composed
of 13 amino acids and two disulfide bonds. It is the most toxic component of Conus geographus
venom with estimated lethal doses of 0.029–0.038 mg/kg for humans. There is currently no reported
analytical method for this toxin. In the present study, a sensitive detection method was developed
to quantify GI in human plasma using a solid-phase extraction (SPE) column (polystyrene–divinyl
benzene copolymer) combined with liquid chromatography/electrospray ionization tandem mass
spectrometry (LC-ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The plasma
samples were treated with a protein precipitating solvent (methanol: acetonitrile = 50:50, v/v). GI
in the solvent was efficiently extracted with an SPE column and was further separated by a Grace
Alltima HP C18 (50 × 2.1 mm, 5 µm) column at a flow rate of 0.4 mL/min. Water (with 2% methanol)
acetonitrile (with 0.1% acetic acid) was selected as the mobile phase combination used in a linear
gradient system. α-Conotoxin GI was analyzed by an API 4000 triple quadrupole mass spectrometer.
In the method validation, the linear calibration curve in the range of 2.0 to 300.0 ng/mL had correlation
coefficients (r) above 0.996. The recovery was 57.6–66.8% for GI and the internal standard. The lower
limit of quantification (LLOQ) was 2 ng/mL. The intra- and inter-batch precisions were below 6.31%
and 8.61%, respectively, and the accuracies were all within acceptance. GI was stable in a bench-top
autosampler through long-term storage and freeze/thaw cycles. Therefore, this method is specific,
sensitive and reliable for quantitative analysis of α-conotoxin GI in human plasma.
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1. Introduction

Commonly known as cone snails, the marine gastropod genus Conus is a hyperdiverse group of
specialized predators, which use venom to subdue the prey and for self-defense. There are an estimated
number of more than 700 species of cone snails around the world [1]. Generally, cone snails are divided
into three groups based on the prey they subdue: piscivorous, molluscivorous and vermivorous [2,3].
The vermivorous species are predominant and account for about 75% of all cone snails [4], but the
piscivorous (~10%) species are the most poisonous and some even fatal to humans [5–7]. Among all
piscivorous species, Conus geographus (C. geographus) is the most dangerous to humans, which resulted
in half of the known human envenomations and almost all were fatal [8,9]. The estimated lethal
dose of the C. geographus venom is about 0.029 mg/kg~0.038 mg/kg for humans [10]. After being
stung by this species, people experience numbness and local swelling at the sting site, followed by a
series of toxic symptoms, including blurred vision or diplopia, fatigue, nausea, stomach cramps, facial
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paralysis, etc. [7]. Symptoms can aggravate over time leading to generalized paralysis and respiratory
failure. Without medical treatment, coma and death may follow.

A series of paralytic peptides have so far been found in the venom of C. geographus [11]. These
peptide conotoxins selectively target ion channels, e.g., Na+, K+ and Ca2+ channels, or membrane
receptors (nAChR, NMDAR and G-protein-coupled receptors) [12–15]. For example, α-conotoxins GI,
GIA and GII are potent antagonists for nicotine acetylcholine receptors (nAChRs) [16–18]; µ-conotoxins
GIIIA, GIIIB and GIIIC selectively target sodium ion channels [19–21]; ω-conotoxins GVIA, GVIB,
GVIC, GVIIA and GVIIB inhibit calcium ion channels [22–24]. GI (Figure 1) contains 13 amino acid
residues and two disulfide bridges and is the most poisonous of all the peptide toxins in the venom
of C. geographus. It functions by selectively inhibiting muscular nAChRs. The lethal dose of GI in
mice is between 8 and 12 µg/kg (intraperitoneal, i.p.) [25,26]. Moreover, no antidote or anti-venom is
currently available for GI. Due to of its ease of production, GI may be potentially used by terrorists as
a biological weapon [27].
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Figure 1. Structure of GI and MI[∆R2].

In the present study, a sensitive analytical method for GI in human blood plasma was developed.
GI was sensitively detected using a solid-phase extraction (SPE) column combined with liquid
chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the multiple
reaction monitoring (MRM) mode. After precipitation with the mixed solvents of methanol and
acetonitrile, GI in human plasma was efficiently concentrated with an SPE column and was further
separated by a reverse-phase column. The analytical method was validated for linearity, accuracy,
precision, lower limit of quantification (LLOQ), and stability. The recovery rate of GI in blood
samples was also determined. The results demonstrate that this method can achieve quick and
sensitive determination of GI in human plasma and blood in envenomation accidents and potential
bioterrorism incidents.

2. Results

2.1. Sample Treatment

The plasma samples of GI were treated with methanol/acetonitrile (50:50, v/v) for protein
precipitation. The percent recoveries of GI and internal standard (IS) MI[∆R2] (Figure 1) were better
than those obtained by using acetonitrile alone (data not shown). After the dilution of the above extract
with water (the final ratio of solvent to water was 1:3), the GI samples were further concentrated and
purified by an SPE column with methanol/water. GI was eluted with 70% methanol/water containing
1% acetic acid and collected after washing with 10% and 40% methanol.
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2.2. Liquid Chromatography

GI and MI[∆R2] were separated on a C18 reverse phase column with optimized elution conditions
from 0.2 min to 1.3 min by adjusting the ratio of mobile phases A and B. The retention time was 1.76 min
for GI and 1.69 min for IS (MI[∆R2]) (Figure 2) under the optimized elution conditions (Section 5.3).
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2.3. MS/MS

Stock solution of GI or internal standard MI[∆R2] was diluted with the diluent and injected in the
peristaltic pump mode. The optimized parameters for the MRM analysis of analytes (GI) and internal
standard (MI[∆R2]) were 480.0/473.6 and 446.5/437.6, respectively. In addition, transition 480.0→626.6
was also used to avoid false positives in the GI analysis. The MS/MS full scan spectrogram is shown
in Figure 3.
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2.4. Specificity

No significant interfering peaks were observed in the chromatograms of the six plasma blanks
at the retention times of GI and the IS (MI[∆R2]) (Figure 2A). The responses of interferences at the
retention time of GI and MI[∆R2] were lower than 20% and 5% of the LLOQ responses of GI and
MI[∆R2] (Figure 2), respectively.

2.5. Linearity and Sensitivity

The response was linear over the tested concentration range of 2.0–300.0 ng/mL. The correlation
coefficient (r) of six batches was 0.996~0.999, which met the acceptance criteria of no less than 0.99.
A typical calibration curve is shown in Figure 4. The LLOQ of GI was 2 ng/mL. The precision (RSD%)
and accuracy (RE%) at the LLOQ were 12.70% and −7.27% (n = 6, Table 1), respectively.
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Table 1. The intra- batch precision and accuracy of GI at LLOQ.

Sample No. Concentration (ng/mL)
2.0

1 1.83
2 2.27
3 2.28
4 2.32
5 2.41
6 1.77

Mean
(ng/mL) 2.15

SD 0.27
RSD% 12.70
RE% 7.27

SD: standard deviation; RSD%: relative standard deviation; RE%: relative error.

2.6. Assay Precision and Accuracy

The inter-batch precision and accuracy of calibration standards were evaluated for seven different
runs. The precision (RSD%) ranged from 1.31 to 8.83%, while the accuracy (RE%) ranged from −4.28 to
5.21% (n = 7). The intra-and inter-batch precision and accuracy of the QC samples were also evaluated
(Table 2). The intra-batch precision (RSD%) ranged from 4.08 to 6.31% with an accuracy range of
−4.80 to 1.25% (n = 6). The inter-batch precision (RSD%) ranged from 7.02 to 8.61% with an accuracy
(RE%) range of 1.27 to 1.50% (n = 7). These results indicate that the method is accurate, reliable
and reproducible.

Table 2. The intra- and inter-batch precision and accuracy of GI QC samples.

Assay Concentration (ng/mL)

6.0 40.0 225.0
Intra-batch (n = 6)

Mean ± SD (ng/mL) 5.7 ± 0.3 40.5 ± 2.6 223.3 ± 9.1
RSD% 5.72 6.31 4.08
RE% −4.80 1.25 −0.76

Inter-batch (n = 7)
Mean ± SD (ng/mL) 6.1 ± 0.5 40.6 ± 2.9 227.9 ± 18.6

RSD% 8.61 7.02 8.16
RE% 1.47 1.50 1.27

SD: standard deviation; RSD%: relative standard deviation; RE%: relative error.
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2.7. Matrix Effect and Recovery

The spike recoveries of GI at low, mid, and high levels (6.0, 40.0, 225.0 ng/mL) were 99.10 ± 6.83%,
111.96 ± 3.06% and 113.32 ± 7.66% (n = 6), respectively, with a mean of 108.12%. The mean spike
recovery of MI[∆R2] was 89.36 ± 2.36% (n = 6). Therefore, a minimal matrix effect was observed
for GI and MI[∆R2]. The extraction recoveries of GI QC samples were 52.81 ± 2.53%, 61.07 ± 9.19%
and 58.88 ± 3.90% (n = 6), respectively. The mean recoveries of GI and MI[∆R2] were 57.59% and
66.76 ± 2.36% (n = 6), respectively. The results are summarized in Table 3.

Table 3. Matrix effect and extraction recoveries of GI in plasma a.

Concentration
(ng/mL)

The Ratio of
Peak Area b (A)

The Ratio of
Peak Area c (B)

The Ratio of
Peak Area d (C) Matrix Effect e (%A) Recovery f (%)

6.0 0.129 0.146 0.077 113.32(RSD%7.66) 52.81(RSD%2.53)
40.0 0.853 0.955 0.583 111.96(RSD%3.06) 61.07(RSD%9.19)
225.0 5.512 5.462 3.216 99.10(RSD%6.83) 58.88(RSD%3.90)

IS 1.173 1.048 0.700 89.36(RSD%2.36) 66.76(RSD%2.36)
a n = 6; b The ratio of peak areas from samples; in pure water; c The ratio of peak areas from pre-extraction plasma
samples; d The ratio of peak areas from post-extraction plasma samples; e Matrix effect(%) = (The mean ratio of
peak areas from pre-extraction plasma samples)/(The mean ratio of peak areas from samples in pure water) × 100;
f Extraction recovery(%) = (The mean ratio of peak areas from post-extraction plasma samples)/(The mean ratio of
peak areas from pre-extraction plasma samples) × 100. The average recovery of GI was 57.59%. RSD%: relative
standard deviation.

2.8. Stability

The stabilities of benchtop, freezer storage and freeze/thaw cycles of the QC samples were
evaluated. The results are summarized in Table 4. GI was stable after three freeze (−20 ◦C) and thaw
cycles in plasma. It was also stable in the plasma for at least 5.25 h at room temperature and for 14 days
at −20 ◦C. Stock solutions of GI and internal standard MI[∆R2] were found to be stable for 19 days at
2–8 ◦C and for 6 h at room temperature.

Table 4. Summary of stability of GI in human plasma.

Sample QC1 QC2 QC3

Concentration 6.0 ng/mL 40.0 ng/mL 225.0 ng/mL
Room temperature (5.25 h)

Mean concentration founded (n = 6) 5.9 ± 0.4 35.8 ± 2.5 200.5 ± 5.6
RSD% 6.58 7.00 2.81
RE% −1.77 −10.54 −10.87

Autosampler(55 h)
Mean concentration founded (n = 6) 6.2 ± 0.6 37.8 ± 4.3 203.5 ± 15.4

RSD% 9.11 11.37 7.54
RE% 3.13 −5.49 −9.56

Freeze-thaw (3-cycles)
Mean concentration founded (n = 6) 5.6 ± 0.4 38.2 ± 4.0 205.7 ± 16.9

RSD% 6.77 10.38 8.21
RE% −7.31 −4.53 −8.58

Long-term (14 days at −20 ◦C)
Mean concentration founded (n = 6) 6.2 ± 0.6 42.0 ± 3.4 221.9 ± 12.6

RSD% 9.86 8.14 5.67
RE% 3.76 4.95 −1.38

RSD%: relative standard deviation; RE%: relative error.

2.9. Analysis of GI in Human Blood

As shown in Table 5, the relative recovery of GI in human blood was 73.48% ± 9.55% (n = 4), and
the absolute recovery of GI in human blood was 42.32% ± 5.50% (n = 4). GI in human blood was stable
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for 3 h at room temperature. The mean ratio of GI samples at room temperature for 3 h to GI samples
at 0 h was 103.54 ± 13.09% (n = 4).

Table 5. The analyses and recovery rates of GI in blood/plasma.

Matrix Blood Plasma

Mean volume founded (mL)
n = 4 2.0 1.0
SD 0.00 0.07

RSD% 0.00 6.90
Mean concentration of GI (ng/mL)

n = 4 100.0 141.5
SD 0.00 14.57

RSD% 0.00 10.30
Mean content of GI (ng)

n = 4 200.0 147.0
SD 0.00 19.11

RSD% 0.00 13.00
The relative recovery of human blood (%) a

n = 4 73.48
SD 9.55

RSD% 13.00
The absolute recovery of human blood (%) b

n = 4 42.32
SD 5.50

RSD% 13.00
a The relative recovery of human blood = (The amount of analyte in plasma/the amount of analyte in blood) ×
100% = (the concentration of analyte in plasma × the volume of plasma)/(The theoretical concentration of analyte
in blood × the volume of blood) × 100%; b The absolute recovery of human blood = the relative recovery of human
blood × the recovery of plasma. SD: standard deviation; RSD%: relative standard deviation.

3. Discussion

Generally, a precipitating solvent is used to precipitate most proteins in plasma and keep the
analytes in solution [24,28,29]. In the present assay, a mixed solvent of methanol/acetonitrile (50:50,
v/v) was used. α-Conotoxin GI and internal standard MI[∆R2] were soluble upon addition of the
mixed solvent to the plasma samples. This method is similar to the analyses of small compounds, but
different from the analyses of longer 125-I-peptides, in which the analyte is also precipitated together
with plasma proteins.

Several columns have been used to enrich analytes so far, such as the C18 reverse phase column,
ion exchange column and magnetic beads [30–33]. In this experiment, the polystyrene–divinyl benzene
SPE column was used to recover α-conotoxin GI in the precipitating solvent. Compared to other SPE
columns, the polystyrene–divinyl benzene column was less expensive, easier to use, and the recovery
(>52.8%) was satisfactory. It is possible to improve the recovery by increasing the volume of elution
solvent. However, the interfering substances would also increase, resulting in matrix effects.

α-conotoxin MI, another α-conotoxin found in C. magus, is also fatal to human [26]. In order to
obtain the internal standard where the molecular weight is close to GI and contains 13 amino acids
with two disulfide bonds, MI mutant (MI[∆R2]) was selected as an internal standard.

Furthermore, our results demonstrated that GI was stable in the plasma for at least 5.25 h at room
temperature and for 14 days at −20 ◦C; it was also stable in human blood for at least 3 h at room
temperature. Accounting for the absolute recovery of conotoxin GI in human blood (42%) and the
LLOQ of GI (2 ng/mL) in human plasma, this analytical method can detect GI in the blood as low as
5 ng/mL. The lethal dose of GI (intravenous, i.v.) in human has not been established so far. However,
the lethal dose of GI in mice (i.p.) has been determined to be 8~12 µg/kg [25,26], suggesting a possible
LD50 of more than 8 µg/kg (~8 ng/mL, i.v.) for humans. Therefore, this method is able to detect GI in
at least 3 h after intoxication, requiring approximately 2 ml of the blood of the poisoned victim.
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4. Conclusions

In this study, we developed an SPE-LC-ESI-MS method for the detection of α-conotoxin GI in
human plasma. GI and internal standard MI[∆R2] were well recovered from human plasma after
protein precipitation with the mixed solvent of methanol/acetonitrile (50/50%, v/v) and an SPE column
(polystyrene–divinyl benzene copolymer). This method is sensitive with the LLOQ of 2.0 ng/mL and
has good linearity (r > 0.996) in the concentration range of 2.0–300.0 ng/mL. The intra- and inter-batch
precisions were below 6.31% and 8.61%, respectively, and the accuracies were all within acceptance.
GI in the plasma could be sensitively detected after storage in the plasma at room temperature for
at least 5.25 h and at −20 ◦C for 14 days. Furthermore, this method was successfully applied to
the quantification of GI in human blood. It may be valuable for the identification of envenomation
accidents and possible bioterrorism incidents.

5. Experimental Section

5.1. Chemicals and Reagents

α-conotoxin GI (purity > 98%) and α-conotoxin MI mutant MI[∆R2](internal standard, IS)
(purity > 98%) were synthesized using a previously described method [34]. Drug-free human plasma
and full blood (with sodium citrate as anticoagulant) were collected from volunteers and outdated
transfusion blood obtained from the 307th Hospital of Chinese People’s Liberation Army (Beijing,
China). All solvents were of HPLC grade. Acetonitrile and methanol were purchased from Honeywell,
Morris Plains, NJ, USA. Formic acid and acetic acid were purchased from Dikma, Lake Forest, CA,
USA. Deionized water (≥18.3 MΩ) was produced by a nanopure water purification system (Thermo
scientific, Waltham, MA, USA). Solid-phase extraction (SPE) columns (polystyrene-divinyl benzene
copolymer) (30 mg × 1 mL, 50 µm, 80 A) were purchased from Tianxingda Technology Co. Ltd.
(Tianjin, China).

5.2. Preparation of Standards

A diluent of 0.2% formic acid (v/v) was prepared in deionized water. Stock solutions of GI
(1.00 mg/mL) and internal standard MI[∆R2] (1.00 mg/mL) were prepared in the diluent. The
working solutions of GI were prepared at concentrations of 20.0, 40.0, 100.0, 500.0, 1000.0, 2400.0,
3000.0, 10,000.0 and 100,000.0 ng/mL by diluting aliquots of the stock solution with the diluent.
The QC working solutions of GI were prepared at concentrations of 60.0, 400.0, 2250.0, 10,000.0 and
100,000.0 ng/mL by spiking aliquots of the QC stock solution (1.0 mg/mL) into the diluent. QC
standards of 6.0, 40.0 and 225.0 ng/mL were prepared by diluting 30 µL of the corresponding QC
working solutions into 300 µL drug-free human plasma. All stock solutions were stored at 4 ◦C before
analysis. All working solutions were freshly prepared before daily use.

5.3. Sample Preparation and Extraction Procedure

A 0.30 mL aliquot of human drug-free plasma sample was spiked with 30 µL of the working
solution of GI or QC. Unknown samples or blank control samples were spiked with 30 µL of the diluent.
The internal standard solution (30 µL) was then spiked into each sample and fully mixed, followed
by the addition of 0.60 mL precipitating agent (methanol:acetonitrile = 50:50, v/v). The solution was
vortexed and centrifuged at 12,000 rpm for 5 min. A 0.750 mL aliquot of the supernatant in each
sample was mixed with 2.250 mL water. The resulting solution was extracted on the SPE column.
The SPE column was rinsed with methanol (0.500 mL) twice, and conditioned twice with pure water
(0.500 mL) prior to use. The prepared sample (3.0 mL) was then transferred onto the SPE column,
and washed by 0.50 mL of 10% and 40% methanol/water (v/v) sequentially. Finally, 0.15 mL of 70%
methanol/water with 1% acetic acid was added, and the eluent was collected, diluted five times in
water, and analyzed by LC-MS/MS.
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5.4. LC-MS/MS Analysis

LC-MS/MS spectra were collected on an Agilent 1200 HPLC system (Palo Alto, CA, USA) coupled
to an API 4000 triple quadrupole mass spectrometer (Applied Biosystems-SCIEX, Carlsbad, CA, USA).
The ion source was a Turbo ion spray source operating in ESI+ mode. The LC system consisted of
a G1322A vacuum degasser, a G1312A binary pump, a G1316A column compartment and a CTC
autosampler (Leap Technology, Zwigen, Switzerland). Chromatographic separation was carried out on
a Grace Alltima HP C18 (Grace Davison Discovery Sciences, Deerfield, IL, USA) (50 × 2.1 mm, 5 µm)
column at ambient temperature. The LC elution conditions were as follows (all solvent percentages
were by volume): mobile phase A, 2% methanol in water; mobile phase B, 0.1% formic acid in
acetonitrile; gradient: 0 min, 100% A/0% B; 0.2 min, 100% A/0% B; 1.3 min, 50% A/50% B; 1.5 min,
10% A/90% B; 1.9 min, 10% A/90% B; 2.1 min, 100% A/0% B and 3 min, 100% A/0% B. The flow rate
was 0.4 mL/min. All injection volumes were 10 µL.

The mass spectrometer was operated in the positive ion multiple reaction monitoring (MRM)
mode. The ion source parameters were set as follows: curtain gas (nitrogen) = 30 p.s.i., temperature
= 450 ◦C, gas 1 (nitrogen) = 50 p.s.i., gas 2 (nitrogen) = 50 p.s.i., ion spray voltage = 5500 V. The
optimized parameters for the MRM analysis of GI with disulfide bridges were set as follows: transition
(m/z):480.0→473.6, declustering potential (DP) = 40 V, collision energy (CE) = 19 eV. The optimized
parameters for the MRM analysis of MI[∆R2] with disulfide bridges were set as follows: transition
(m/z):446.5→437.6, declustering potential (DP) = 50 V, collision energy (CE) = 20 eV.

5.5. Method Validation

The FDA guidelines for bioanalytical method validation were followed [35]. For specificity, six
different batches of blank human plasma samples were analyzed. Plasma samples were pretreated
as detailed in the sample preparation section. For linearity, seven different concentrations of GI in
the range of 2.0–300.0 ng/mL in human plasma were analyzed. The ratios of GI area to IS area were
plotted against the concentrations of GI in the plasma. The linear regression equation was obtained by
least square fitting with a weighting factor of 1/x2. The correlation coefficient was reported. The lower
limit of quantification (LLOQ) was chosen as the concentration of the lowest calibration standard if the
analyte response at the LLOQ was at least ten times the response of the blank human plasma. Precision
was evaluated as relative standard deviation (RSD%), while accuracy was calculated as relative error
(RE%). The precision and accuracy of standard curves were determined by seven inter-batch plasma
samples containing GI at the calibration curve standards, with six replicates for each standard. The
inter-batch and intra-batch precision and accuracy were determined by analyzing QC samples at
low, mid and high levels (6.0, 40.0 and 225.0 ng/mL) for all of the six different runs. The acceptance
criterion for RSD% was within ±15% (±20% for LLOQ samples) and the criterion for RE% was
within ±15 RSD% (±20% for LLOQ samples). The matrix interference on GI was evaluated by the
spike recovery of GI at three QC levels spiked post extraction into the plasma extract against the
corresponding peak areas of GI in the diluent. Matrix interference was considered negligible if the
spike recovery was between 85% and 115%. The extraction recoveries of GI at three QC levels were
determined by comparing the peak areas of the pre-extraction spiked plasma samples and those of the
post-extraction spiked plasma samples. The stability of the QC samples was evaluated after sample
storage at room temperature for 5.25 h, at 4 ◦C in the autosampler (pretreated) for 55 h, at −20 ◦C after
three freeze/thaw cycles, and at −20 ◦C for 14 days (long term). The stability of the GI stock solutions
was evaluated after sample storage at room temperature for 6 h (short term) and at 2–8 ◦C for 19 days
(long term). The stability of the MI[∆R2] stock solutions was evaluated after sample storage at room
temperature for 6 h (short term) and at 2–8 ◦C for 23 days (long term).
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5.6. Analysis of GI in Human Blood

The blood samples were collected from four individuals, each with two duplicate samples. A 40 µL
aliquot of the GI working standard solution (5 µg/mL) was diluted in 1960 µL human blood and
mixed slightly, resulting in a final GI concentration 100 ng/mL. The blood samples were incubated at
37 ◦C for 10 min to test recoveries and were incubated at room temperature for 3 h to test stabilities.
The samples used for the recovery test were centrifuged at 3000 rpm to separate plasma. A 0.30 mL
aliquot of the plasma samples was then processed as described in the “sample preparation” section and
prepared for LC-MS/MS analysis. The mixed plasma was used in the preparation of standard curves.

5.7. Data Acquisition and Analysis

Data were processed using the Analyst (v1.6) software (Applied Biosystems-SCIEX, Carlsbad, CA,
USA). Calibration curves were constructed by least square linear regression analysis using a weighting
factor of 1/x2. Ratios of analyte peak areas versus IS peak area were calculated for each point.

Acknowledgments: This work was supported by National Key Research and Development Program of
China (grant number 2016YFC1202902) and the High Technology Program of Oceans in China (grant number
SS2013AA090204).

Author Contributions: S.Y. synthesized peptides and verified the results; B.Y. and L.Y performed the experiments;
Q.D. designed research and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kaas, Q.; Westermann, J.C.; Craik, D.J. Conopeptide characterization and classifications: An analysis using
ConoServer. Toxicon 2010, 55, 1491–1509. [CrossRef] [PubMed]

2. Duda, T.F., Jr.; Remigio, E.A. Variation and evolution of toxin gene expression patterns of six closely related
venomous marine snails. Mol. Ecol. 2008, 17, 3018–3032. [CrossRef] [PubMed]

3. Liu, Z.G.; Li, H.Y.; Liu, N.; Wu, C.X.; Jiang, J.; Yue, J.J.; Jing, Y.; Dai, Q.Y. Diversity and evolution of conotoxins
in Conus virgo, Conus eburneus, Conus imperialis and Conus marmoreus from the South China Sea. Toxicon 2012,
60, 982–989. [CrossRef] [PubMed]

4. Kohn, A.J.; Perron, F.E. Life History and Biogeography Patterns in Conus; Clarendon Press VII: Oxford, UK,
1994; p. 106.

5. Kohn, A.J. Human injuries and fatalities due to venomous marine snails of the family Conidae. Int. J. Clin.
Pharmacol. Ther. 2016, 54, 524–538. [CrossRef] [PubMed]

6. Nelson, L. Venomous snails: One slip, and you’re dead. Nature 2004, 429, 798–799. [CrossRef] [PubMed]
7. Halford, Z.A.; Yu, P.Y.; Likeman, R.K.; Hawley-Molloy, J.S.; Thomas, C.; Bingham, J.P. Cone shell

envenomation: Epidemiology, pharmacology and medical care. Diving Hyperb. Med. 2015, 45, 200–207.
[PubMed]

8. Yoshiba, S. An estimation of the most dangerous species of cone shell, Conus geographus venom’s lethal dose
in humans. Nihon Eiseigaku Zasshi 1984, 39, 565–572. [CrossRef] [PubMed]

9. Fegan, D.; Andresen, D. Conus geographus envenomation. Lancet 1997, 349, 1672. [CrossRef]
10. Dutertre, S.; Jin, A.H.; Alewood, P.F.; Lewis, R.J. Intraspecific variations in Conus geographus defence-evoked

venom and estimation of the human lethal dose. Toxicon 2014, 91, 135–144. [CrossRef] [PubMed]
11. Mir, R.; Karim, S.; Kamal, M.A.; Wilson, C.M.; Mirza, Z. Conotoxins: Structure, therapeutic potential and

pharmacological applications. Curr. Pharm. Des. 2016, 22, 582–589. [CrossRef] [PubMed]
12. Azam, L.; McIntosh, J.M. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors.

Acta Pharmacol. Sin. 2009, 30, 771–783. [CrossRef] [PubMed]
13. Munasinghe, N.R.; Christie, M.J. Conotoxins that could provide analgesia through voltage gated sodium

channel inhibition. Toxins 2015, 7, 5386–5407. [CrossRef] [PubMed]
14. Adams, D.J.; Berecki, G. Mechanisms of conotoxin inhibition of N-type (Cav2.2) calcium channels. Biochim.

Biophys. Acta 2013, 1828, 1619–1628. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.toxicon.2010.03.002
http://www.ncbi.nlm.nih.gov/pubmed/20211197
http://dx.doi.org/10.1111/j.1365-294X.2008.03804.x
http://www.ncbi.nlm.nih.gov/pubmed/18489546
http://dx.doi.org/10.1016/j.toxicon.2012.06.011
http://www.ncbi.nlm.nih.gov/pubmed/22781954
http://dx.doi.org/10.5414/CP202630
http://www.ncbi.nlm.nih.gov/pubmed/27285461
http://dx.doi.org/10.1038/429798a
http://www.ncbi.nlm.nih.gov/pubmed/15215832
http://www.ncbi.nlm.nih.gov/pubmed/26415072
http://dx.doi.org/10.1265/jjh.39.565
http://www.ncbi.nlm.nih.gov/pubmed/6492464
http://dx.doi.org/10.1016/S0140-6736(05)62639-6
http://dx.doi.org/10.1016/j.toxicon.2014.09.011
http://www.ncbi.nlm.nih.gov/pubmed/25301479
http://dx.doi.org/10.2174/1381612822666151124234715
http://www.ncbi.nlm.nih.gov/pubmed/26601961
http://dx.doi.org/10.1038/aps.2009.47
http://www.ncbi.nlm.nih.gov/pubmed/19448650
http://dx.doi.org/10.3390/toxins7124890
http://www.ncbi.nlm.nih.gov/pubmed/26690478
http://dx.doi.org/10.1016/j.bbamem.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23380425


Toxins 2017, 9, 235 11 of 11

15. Prorok, M.; Castellino, F.J. The molecular basis of conantokin antagonism of NMDA receptor function.
Curr. Drug Targets 2007, 8, 633–642. [CrossRef] [PubMed]

16. McManus, O.B.; Musick, J.R. Postsynaptic block of frog neuromuscular transmission by conotoxin GI. J.
Neurosci. 1985, 5, 110–116. [PubMed]

17. McManus, O.B.; Musick, J.R.; Gonzalez, C. Peptides isolated from the venom of Conus geographus block
neuromuscular transmission. Neurosci. Lett. 1981, 25, 57–62. [CrossRef]

18. Gray, W.R.; Luque, A.; Olivera, B.M.; Barrett, J.; Cruz, L.J. Peptide toxins from Conus geographus venom.
J. Biol. Chem. 1981, 256, 4734–4740. [PubMed]

19. Green, B.R.; Bulaj, G.; Norton, R.S. Structure and function of µ-conotoxins, peptide-based sodium channel
blockers with analgesic activity. Future Med. Chem. 2014, 6, 1677–1698. [CrossRef] [PubMed]

20. Sato, K.; Yamaguchi, Y.; Ishida, Y.; Ohizumi, Y. Roles of basic amino acid residues in the activity of µ-conotoxin
GIIIA and GIIIB, peptide blockers of muscle sodium channels. Chem. Biol. Drug Des. 2015, 85, 488–493.
[CrossRef] [PubMed]

21. Sato, K.; Ishida, Y.; Wakamatsu, K.; Kato, R.; Honda, H.; Ohizumi, Y.; Nakamura, H.; Ohya, M.; Lancelin, J.M.;
Kohda, D.; et al. Active site of mu-conotoxin GIIIA, a peptide blocker of muscle sodium channels. J. Biol.
Chem. 1991, 266, 16989–16991. [PubMed]

22. Hannon, H.E.; Atchison, W.D. Omega-conotoxins as experimental tools and therapeutics in pain management.
Mar. Drugs 2013, 11, 680–699. [CrossRef] [PubMed]

23. Nielsen, K.J.; Schroeder, T.; Lewis, R. Structure-activity relationships of omega-conotoxins at N-type
voltage-sensitive calcium channels. J. Mol. Recognit. 2000, 13, 55–70. [CrossRef]

24. Wang, F.; Yan, Z.; Liu, Z.; Wang, S.; Wu, Q.; Yu, S.; Ding, J.; Dai, Q. Molecular basis of toxicity of N-type
calcium channel inhibitor MVIIA. Neuropharmacology 2016, 101, 137–145. [CrossRef] [PubMed]

25. McIntosh, M.; Cruz, L.J.; Hunkapiller, M.W.; Gray, W.R.; Olivera, B.M. Isolation and structure of a peptide
toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 1982, 218, 329–334. [CrossRef]

26. Gray, W.R.; Rivier, J.E.; Galyean, R.; Cruz, L.J.; Olivera, B.M.; Conotoxin, M.I. Disulfide bonding and
conformational states. J. Biol. Chem. 1983, 258, 12247–12251. [PubMed]

27. Anderson, P.D. Bioterrorism: Toxins as weapons. J. Pharm. Pract. 2012, 25, 121–129. [CrossRef] [PubMed]
28. Wang, Q.; Li, X.; Dai, S.; Ou, L.; Sun, X.; Zhu, B.; Chen, F.; Shang, M.; Song, H. Quantification of

puerarin in plasma by on-line solid-phase extraction column switching liquid chromatography-tandem
mass spectrometry and its applications to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed.
Life Sci. 2008, 863, 55–63. [CrossRef] [PubMed]

29. Che, J.; Meng, Q.; Chen, Z.; Hou, Y.; Shan, C.; Cheng, Y. Quantitative analysis of a novel HIV fusion inhibitor
(sifuvirtide) in HIV infected human plasma using high-performance liquid chromatography-electrospray
ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 51, 927–933. [CrossRef] [PubMed]

30. Zhang, Y.; Chen, D.; Hong, Z. A rapid LC-HRMS method for the determination of domoic acid in urine
using a self-assembly pipette tip solid-phase extraction. Toxins 2016, 8, 10. [CrossRef] [PubMed]

31. Belén Serrano, A.; Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Ventura, S.; Laganà, A.
Development of a rapid LC-MS/MS method for the determination of emerging fusarium mycotoxins
enniatins and beauvericin in human biological fluids. Toxins 2015, 7, 3554–3571. [CrossRef] [PubMed]

32. Andjelkovic, M.; Tsilia, V.; Rajkovic, A.; De Cremer, K.; Van Loco, J. Application of LC-MS/MS MRM to
determine staphylococcal enterotoxins (SEB and SEA) in Milk. Toxins 2016, 8, 118. [CrossRef] [PubMed]

33. Fang, J.; Dong, F.; Wang, N.; He, K.; Liu, B.; Wu, S.; Li, A.; Zhang, X. Rapid detection of conotoxin SO-3
in serum using Cu-chelated magnetic beads coupled with matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry. J. Anal. Toxicol. 2009, 33, 272–277. [CrossRef] [PubMed]

34. Wang, S.; Zhao, C.; Liu, Z.; Wang, X.; Liu, N.; Du, W.; Dai, Q. Structural and Functional Characterization of a
Novel α-Conotoxin Mr1.7 from conus marmoreus targeting neuronal nAChR α3β2, α9α10 and α6/α3β2β3
Subtypes. Mar. Drugs 2015, 13, 3259–3275. [CrossRef] [PubMed]

35. Food and Drug Administration. Guidance for Industry Bioanalytical Method Validation; Food and Drug
Administration: Silver Spring, MD, USA, 2001.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2174/138945007780618481
http://www.ncbi.nlm.nih.gov/pubmed/17504106
http://www.ncbi.nlm.nih.gov/pubmed/2981295
http://dx.doi.org/10.1016/0304-3940(81)90101-4
http://www.ncbi.nlm.nih.gov/pubmed/7014556
http://dx.doi.org/10.4155/fmc.14.107
http://www.ncbi.nlm.nih.gov/pubmed/25406007
http://dx.doi.org/10.1111/cbdd.12433
http://www.ncbi.nlm.nih.gov/pubmed/25228447
http://www.ncbi.nlm.nih.gov/pubmed/1654319
http://dx.doi.org/10.3390/md11030680
http://www.ncbi.nlm.nih.gov/pubmed/23470283
http://dx.doi.org/10.1002/(SICI)1099-1352(200003/04)13:2&lt;55::AID-JMR488&gt;3.0.CO;2-O
http://dx.doi.org/10.1016/j.neuropharm.2015.08.047
http://www.ncbi.nlm.nih.gov/pubmed/26344359
http://dx.doi.org/10.1016/0003-9861(82)90351-4
http://www.ncbi.nlm.nih.gov/pubmed/6630187
http://dx.doi.org/10.1177/0897190012442351
http://www.ncbi.nlm.nih.gov/pubmed/22523138
http://dx.doi.org/10.1016/j.jchromb.2007.12.023
http://www.ncbi.nlm.nih.gov/pubmed/18242154
http://dx.doi.org/10.1016/j.jpba.2009.10.018
http://www.ncbi.nlm.nih.gov/pubmed/19931996
http://dx.doi.org/10.3390/toxins8010010
http://www.ncbi.nlm.nih.gov/pubmed/26729165
http://dx.doi.org/10.3390/toxins7093554
http://www.ncbi.nlm.nih.gov/pubmed/26371043
http://dx.doi.org/10.3390/toxins8040118
http://www.ncbi.nlm.nih.gov/pubmed/27104569
http://dx.doi.org/10.1093/jat/33.5.272
http://www.ncbi.nlm.nih.gov/pubmed/19671247
http://dx.doi.org/10.3390/md13063259
http://www.ncbi.nlm.nih.gov/pubmed/26023835
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Sample Treatment 
	Liquid Chromatography 
	MS/MS 
	Specificity 
	Linearity and Sensitivity 
	Assay Precision and Accuracy 
	Matrix Effect and Recovery 
	Stability 
	Analysis of GI in Human Blood 

	Discussion 
	Conclusions 
	Experimental Section 
	Chemicals and Reagents 
	Preparation of Standards 
	Sample Preparation and Extraction Procedure 
	LC-MS/MS Analysis 
	Method Validation 
	Analysis of GI in Human Blood 
	Data Acquisition and Analysis 


