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Between synchrony and turbulence: intricate
hierarchies of coexistence patterns
Sindre W. Haugland 1, Anton Tosolini1 & Katharina Krischer 1✉

Coupled oscillators, even identical ones, display a wide range of behaviours, among them

synchrony and incoherence. The 2002 discovery of so-called chimera states, states of

coexisting synchronized and unsynchronized oscillators, provided a possible link between the

two and definitely showed that different parts of the same ensemble can sustain qualitatively

different forms of motion. Here, we demonstrate that globally coupled identical oscillators

can express a range of coexistence patterns more comprehensive than chimeras. A hierarchy

of such states evolves from the fully synchronized solution in a series of cluster-splittings. At

the far end of this hierarchy, the states further collide with their own mirror-images in phase

space – rendering the motion chaotic, destroying some of the clusters and thereby producing

even more intricate coexistence patterns. A sequence of such attractor collisions can ulti-

mately lead to full incoherence of only single asynchronous oscillators. Chimera states, with

one large synchronized cluster and else only single oscillators, are found to be just one step in

this transition from low- to high-dimensional dynamics.
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One of the big problems in physics is how high-
dimensional disorder in space and time may emerge
from a spatially ordered, in the simplest case uniform,

state with low-dimensional dynamics1. Exploring different paths
from order to spatiotemporal disorder and their universal char-
acter is central for a deeper understanding of complex emergent
behaviour such as spatiotemporal chaos in reaction-diffusion
systems2,3 or turbulence in hydrodynamic flows4,5.

Ensembles of coupled oscillators are one class of apparently
simple dynamical systems that yet may adopt states ranging from
full synchrony to complete incoherence, and which has provided
insights in virtually any discipline, ranging from the natural sci-
ences to sociology6,7. During the last two decades, a kind of
hybrid phenomenon, in which synchronized and incoherent
oscillators coexist in an ensemble of identical oscillators8, coined
a chimera state9, has received considerable attention (see
reviews10–12 and the references therein), not least since it can be
considered a “natural link between coherence and incoherence”13.
In an earlier study employing globally coupled logistic maps14,
four different classes of behaviour were found, including a large
variety of partially ordered states, some of which were later
classified as chimeras15. Yet, the bifurcation structure between the
different classes was not resolved.

In this article, we study the bifurcations from synchrony, via
clustered and partially clustered states to full incoherence in a
system of globally coupled oscillators with nonlinear coupling,
with simulations and bifurcation analysis for an increasing
number of oscillators. Here, chimera states are just one of a
multitude of coexistence patterns, all consisting of clusters, that is,
internally synchronized groups of oscillators, of widely different
sizes and dynamics, and possibly including one or several single
oscillators. The path towards complete incoherence begins with a
symmetry-breaking cascade of cluster-splitting period-doubling
bifurcations, wherein the currently smallest cluster is repeatedly
split into two, leading to hierarchical clustering. Due to the high
symmetry of the system, each symmetry-breaking produces many
equivalent mirror-image variants of each outcome state, multi-
plying the number of attractors and leading to an ever more
crowded phase space16. At some point, each variant collides with
some of its mirror-images, creating larger attractors with higher
symmetry. Usually, this blows up some of the clusters, the
resulting single oscillators henceforth moving similarly on aver-
age. A succession of such symmetry-increasing bifurcations
destroys first the smallest clusters, and then the larger ones,
partially mirroring the former cluster-splitting cascade and ulti-
mately creating a completely incoherent state. A chimera state,
consisting of one synchronized cluster and otherwise only single,
incoherent oscillators is often the second to last state of the
sequence.

The model we employ is an ensemble of N Stuart-Landau
oscillators Wk 2 C, k= 1,…,N, with nonlinear global coupling17:

dWk

dt
¼ Wk � ð1þ ic2ÞjWkj2Wk

� ð1þ iνÞhWi þ ð1þ ic2ÞhjWj2Wi;
ð1Þ

where c2 and ν are real parameters and h¼ i ¼ 1=N∑N
k¼1 ¼

denotes ensemble averages. The Stuart-Landau oscillator itself is a
generic model for a system close to a Hopf bifurcation, that is, to the
onset of self-sustained oscillations18. Networks of such oscillators
have previously been found to exhibit a wide range of dynamics,
many of them occurring for linear global coupling19–23. The non-
linear global coupling in Eq. (1) stands out by featuring two qua-
litatively different chimera states, each of them deduced to
somehow emerge from a corresponding type of two-cluster
solution24. Originally, this coupling was inspired by

electrochemical experiments, wherein the oxide layer on a silicon
electrode displays a wide range of spatiotemporal patterns17. A few
experimental measurements reminiscent of new results in Eq. (1)
will be discussed later in this article.

Because the oscillators are identical and the coupling is global,
the system is SN-equivariant: If WðtÞ 2 CN is a solution, then so
is γWðtÞ 8 γ 2 SN , where SN is the symmetric group of all per-
mutations of the N oscillators25. Or in less mathematical terms: If
we start at a solution to Eq. (1) and interchange the trajectories of
any two oscillators, the result is still a solution. Further, the
average 〈W〉 is confined to simple harmonic motion with fre-
quency ν, as shown by taking the ensemble average of the whole
equation:

dWk

dt

� �
¼ d

dt
hWi ¼ �iνhWi ) hWi ¼ η e�iνt ; ð2Þ

where η 2 R is an additional parameter, implicitly set by
choosing the initial condition. This constraint also implies that
for a Poincaré map26 defined by sampling the system with fre-
quency ν, the average of the N components of the map will always
be constant. Thus the nonlinear constraint in the time-
continuous Eq. (1) becomes a linear constraint in the time-
discrete map.

Results
The fully synchronized solution Wk= ηe−iνt ∀k always exists and
is stable for sufficiently large values of η. It loses stability in either
an equivariant pitchfork bifurcation, producing separate clusters
that continue to orbit the origin with frequency ν at different
fixed amplitudes, or an equivariant Hopf bifurcation to a T2 torus,
producing separate modulated-amplitude clusters that henceforth
oscillate with two superposed frequencies ν and ωH

27. We will
focus on the latter and the dynamics arising from these.

The equivariant Hopf bifurcation occurs at ηH ¼ 1=
ffiffiffi
2

p
for

suitable values of c2 and ν. For ν= 0.1, which we keep fixed
throughout, it does for c2 <−0.44817. In this Hopf bifurcation,
differently balanced two-cluster solutions ranging from
(N− 1)− 1 (with all but one oscillator in the largest cluster) to
N/2−N/2 (with half the oscillators in each cluster) emerge from
the synchronized solution. Some of these emerge as stable and
others as unstable, depending on the value of c2. The balanced
N/2−N/2 solution, with an equal number of oscillators in each
cluster, is shown in Fig. 1a, b. The dashed circle marks the
enforced path of the ensemble average 〈W〉= ηe−iνt, which
the two clusters orbit on opposite sides as it circles the origin.
An unbalanced 3N/4−N/4 solution, with N1= 3N/4 of the
oscillators in one cluster and N2=N/4 in the other, looks as in
Fig. 1c, d.

Because 〈W〉 is independent of the individual oscillator
dynamics, the value of any oscillator in the frame of reference of
the ensemble average is always given by the simple transforma-
tion

Wk ¼ η e�iνtð1þ wkÞ ) wk ¼ Wkη
�1eiνt � 1; ð3Þ

where wk is the value of Wk in the co-rotating frame. There, the
N/2−N/2 solution from Fig. 1a, b is simply periodic with fre-
quency ωH and looks as in Fig. 1e, f. An unbalanced modulated-
amplitude 3N/4−N/4 solution like that in Fig. 1c, d appears as in
Fig. 1g, h. The average of all oscillators in the co-rotating frame of
〈W〉 is of course always zero. Notably, the global coupling ensures
that all solutions for an ensemble size N are also solutions for
N 0 ¼ nN; n 2 N, with every cluster scaled up by a factor of n.
For solutions that contain only clusters Ni ≥ 2, the stability
properties will also be the same for different n22,28.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25907-7

2 NATURE COMMUNICATIONS |         (2021) 12:5634 | https://doi.org/10.1038/s41467-021-25907-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


If we initialize the N/2−N/2 solution at a point in the c2− η
parameter plane were it is stable and from there on gradually
change c2 and/or η appropriately, one of the two clusters will
break up into two smaller clusters. A possible outcome is shown
in Fig. 1i, j. The trajectory of the two new clusters is no longer
simply periodic, but period-2, with a small and a large loop. The
N/2−N/2 solution has thus become unstable in a symmetry-
breaking period-doubling bifurcation, giving rise to a stable
N/2−N/4−N/4 three-cluster solution. This bifurcation also
destabilizes less balanced two-cluster solutions, such as the
3N/4−N/4 solution in Fig. 1g, h. In these cases, the smaller of the
two clusters is split. The position of of the period-doubling
bifurcation in parameter space depends on the relative sizes of the
clusters, as shown by the blue line in Fig. 1k, which tracks the
value of c2 at which this bifurcation occurs as a function of N1/N
for η= 0.67.

For very unbalanced solutions N1/N > 0.8, the smallest cluster
is destroyed in a subcritical pitchfork bifurcation (green line).
This results in several smaller clusters and/or single oscillators,
depending on the relative sizes of the initial two clusters. In some
cases, a few oscillators originally in the smaller cluster are also
absorbed by the larger one. As the transition is subcritical, these
outcome states are not directly related to the initial two-cluster

solution, but rather belong to a different, coexisting solution
branch. They will not concern us further here.

Hierarchical clustering through pervasive stepwise symmetry
breaking. If we concentrate on the N/2−N/2 solution, that is, keep
N1/N= 0.5 fixed, we can track the cluster-splitting period-doubling
bifurcation in both c2 and η simultaneously. A part of the resultant
bifurcation line in the c2− η parameter plane is delineated by the
leftmost line in Fig. 2c. Beyond this bifurcation, we find a mesh of
additional cluster-splitting bifurcation curves, creating a hierarchy
of successively less symmetric multi-cluster solutions with various
periodicities. Each bifurcation involves the breakup of either one
cluster or two similarly behaving clusters and produces several
qualitatively different solutions, differing by how the oscillators of
the splitting cluster(s) distribute. (For example, the 4− 4 solution
for N= 8 can split into either 4− 2− 2, 4− 3− 1, 2− 2− 2− 2,
2− 2− 3− 1 or 3− 1− 3− 1.) However, all these solutions will
usually not be co-stable.

Figure 2c shows the stability boundaries of several solutions for
N= 16. The N/2−N/2= 8− 8 solution is stable in the upper left.
This solution is destabilized at the leftmost blue period-doubling
line. When increasing c2 past this line for η > 0.635 (that is, in the

Fig. 1 Two-cluster solutions and their bifurcations. Each filled circle refers to the instantaneous position of a cluster, the line of the respective same
colour to its trajectory. a Trajectory of an N/2−N/2 modulated-amplitude cluster solution for c2=−0.71 and η= 0.65. b Time series of the real part of
each oscillator in a. c, d Like a, b for an unbalanced 3N/4− N/4 solution at c2=−1.0 and η= 0.65. e–h The solutions in a, b and c, d, respectively,
when viewed in a frame co-rotating with the ensemble average 〈W〉= η e−iνt. For the N/2−N/2 solution, the two clusters follow the same trajectory.
i, j N/2− N/4− N/4 three-cluster solution at c2=−0.69, emerging from the solution in a, b in a period-doubling bifurcation. k Bifurcations destabilizing
the two-cluster solution as a function of c2 and the relative size of the larger cluster N1/N for η= 0.67. The blue line denotes a period-doubling (PD)
that splits the smaller cluster, and the green line a subcritical pitchfork (PF) that blows it up. The vertical black line marks the c2-incremented simulation
in Fig. 6.
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upper half of the figure), it gives rise to stable 8− 4− 4 and
8− 5− 3 solutions (shown in Figs. 1i, j and 2a, respectively).
The 8− 5− 3 solution is stable within the two dashed lines. Below
the dashed green line, this solution in turn produces a stable
5− 3− 5 − 3 and unstable 5− 3− 6− 2 and 5− 3− 7− 1 solu-
tions. At the dashed blue line, it undergoes another period-doubling
cluster split to an 8− 5− 2− 1 period-4 solution.

Between η= 0.62 and η= 0.635, only the 8− 4− 4 solution
emerges as stable when crossing the leftmost period-doubling
line. The remaining solid bifurcation lines all affect this solution
and its descendants. At the solid green line from c2 ≈− 0.755 to
c2 ≈− 0.725 in the lower left, it produces stable 4− 4− 4− 4 and
4− 4− 5− 3 (Fig. 2b) solutions, as well as unstable 4− 4− 6− 2
and 4− 4− 7− 1 solutions. Like the dashed green line, this is an
equivariant pitchfork bifurcation, splitting clusters, but not
altering the overall periodicity of the ensemble. Below this
pitchfork line, the abovementioned 4− 4− 4− 4, 4− 4− 5− 3,
4− 4− 6− 2 and 4− 4− 7− 1 four-cluster solutions also
emerge directly from the 8− 8 solution at the leftmost period-
doubling line.

At the solid blue line directly to the right of the dashed blue one,
the 8− 4− 4 solution undergoes a period-doubling bifurcation
analogous to that of the 8− 5− 3 solution, producing a stable
8− 4− 2− 2 (Fig. 2d) and an unstable 8− 4− 3− 1 period-4
solution. The former becomes unstable either at the bottom diagonal
green pitchfork line at c2 ≈− 0.72 or at the rightmost blue period-
doubling line. In the latter case (see inset), the 8− 4− 2− 2 solution

produces an unstable 8− 4− 2− 1− 1 and a stable
8− 4− 1− 1− 1− 1 period-8 solution (Fig. 2e, f).

At the red line in Fig. 2c, the 8− 4− 1− 1− 1− 1 solution
undergoes a torus bifurcation, whereby a third frequency is added
to the dynamics, while all clusters stay intact. The resultant three-
frequency motion is resistant to the addition of small random
numbers over a nonzero c2 interval. This is notable as stable
quasiperiodic dynamics with more that two frequencies is usually
not observed. It has even been proven that quasiperiodic
dynamics with three or more frequencies are in general
structurally unstable1,29. However, such stable quasiperiodic
motion on T3 has also been observed in Stuart-Landau oscillators
with linear global coupling20 and could be due to the rotational
invariance of the differential equations.

If we initialize the 8− 4− 4 solution at c2=− 0.71 and
η= 0.63 and slowly increase c2 along the horizontal black line in
Fig. 2c, the maxima of ReðwkÞ for k= 1,…, 16 develop as in
Fig. 3a: Initially, there are one maximum of the oscillators in the
cluster of eight (blue) and two shared maxima of the two period-2
clusters of four (red). When one of these clusters splits up into
two smaller clusters of two at the period-doubling bifurcation
PD2, the maxima of these smaller clusters henceforth appear as
four distinct yellow lines. In the next period-doubling bifurcation
(PD3), these lines split up into eight.

From the fully synchronized solution to the 8− 4− (4 × 1)
solution, four discrete steps of symmetry breaking have taken place:
one initial equivariant Hopf bifurcation, as well as three equivariant

Fig. 2 Cluster solutions and bifurcations for N= 16. Each filled circle refers to the instantaneous position of a cluster or single oscillator, the line of the
respective same colour to its trajectory. Sizes of filled circles mirror sizes of clusters. a 8− 5− 3 solution in the co-rotating frame of 〈W〉 for c2=− 0.715
and η= 0.64. b 4− 4− 5− 3 solution for c2=−0.75 and η= 0.61. c Bifurcation diagram of 8− 8-derived solutions with PD period-doubling, PF pitchfork.
Dashed lines mark bifurcations of the 8− 5− 3 solution (a), solid lines those of the 8− 4− 4 (Fig. 1i-j) and the solutions emerging from it. Grey labels
mark where each type of solution is stable. Labeled crosses mark the parameter values of the solutions depicted in Fig. 1e, f, i, j, a, b and d–f. The black line
marks the c2-incremented simulation in Fig. 3a, b. d 8− 4− 2− 2 solution for c2=−0.72 and η= 0.62. e, f 8− 4− 1− 1− 1− 1 solution for c2=−0.718
and η= 0.62, including time series of real part of each cluster and single oscillator.
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period-doubling bifurcations. The three last of these steps are
shown schematically in Fig. 3b. Similar stepwise symmetry breaking
is observed both for larger N and when the smallest cluster does not
break up into equal-sized parts (Fig. 3c). The larger N is, the more
steps occur, at ever closer parameter values, and for N= 256, as
many as seven steps can be observed (see Fig. 3d). The N/2−N/2
two-cluster solution thus gives rise to a cluster-splitting cascade,
producing a multitude of coexisting multi-cluster states and, most
notably, hierarchical clustering.

Symmetry-increasing bifurcation and temporary clusters. At
the end of a cascade of cluster-splitting period-doubling bifur-
cations, a torus bifurcation usually occurs (see e.g. the red
bifurcation line in Fig. 2c). The resultant T3 motion is usually
stable for a nonzero parameter interval, before being superseded
by less regular dynamics in a symmetry-increasing bifurcation30,
wherein several distinct, but equivalent variants of the same
solution collide. These variants exist because Eq. (1) is
SN-equivariant. Thus, any solution remains a solution when any
of the oscillators are interchanged, and each solution (except the
fully synchronized one) exists in the form of several distinct
symmetric variants in phase space. (For example, if we inter-
change an oscillator from the blue cluster in Fig. 1a with one from
the red, the outcome is such a different, but equivalent variant.)

All solutions investigated here are at least periodic in the co-
rotating frame. The attractor corresponding to a stable solution
thus occupies more than a single point in the phase space
spanned by wk, k= 1,…,N. As these attractors become more
complex, and especially as the aforementioned torus bifurcation
renders the motion quasiperiodic, the part of phase space they
occupy increases in extent. This of course applies equally to all the
symmetrized variants of each solution.

At some point, two or more variants might grow to touch each
other in phase space. When this happens, the variants involved in
the collision merge to become a single instance of a new solution,
of which there are fewer distinct mirror-image variants in total.
The attractor on which the new solution lives is correspondingly
more symmetric than the attractors of the colliding variants. One
symmetry-increasing bifurcation can in general be followed by
another, further increasing the attractor symmetry.

In the N= 16 case in Fig. 3a, the first symmetry-increasing
bifurcation only disrupts the former rigid cyclic order of the four
single oscillators, inherited from the solution in Fig. 2e, f (i.e. that
the purple oscillator trails the yellow one, which trails the pink,
and so on). In other cases, some of the intact clusters of a certain
colliding variant contain oscillators that are in a different cluster
in some of the other variants this variant is colliding with. Then,
the symmetry-increasing bifurcation destroys these clusters. Such
a scenario is schematically shown in Fig. 4: In this N= 8 example

Fig. 3 Cluster-splitting cascades for different N. a Maxima of ReðwkÞ in an N= 16 c2-incremented simulation at η= 0.63. Labels on the figure mark the
clusters reaching the different maxima as the solution changes from 8− 4− 4 via 8− 4− 2− 2 to 8− 4− (4 × 1). Labels on the abscissa mark occurring
bifurcations. The additional smallest yellow maximum appearing at c2≈−0.712 is caused by the continuous deformation of the oscillator trajectories and
not by a bifurcation. At c2≈−0.7115, the torus bifurcation to three-frequency dynamics manifests itself in a distinct broadening of the formerly discrete
maxima. b Schematic portrayal of the period-doubling cluster splittings in the simulation in a. c, d Like b for c2-incremented simulations at η= 0.63 with
N= 32 and N= 256, respectively, based on quantitative results shown in Supplementary Figs. 1–3 and described in Supplementary Note 1.
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of two colliding 4− 2− 1− 1 variants, the cluster of two in one
of the variants contains oscillators 5 and 6, while in the other, it
contains oscillators 5 and 7. Because the two variants are identical
mirror-images of each other, they must both be treated equally by
the collision. Thus, the oscillators 5 and 6, which are clustered in
only one of the variants, cannot remain together after the
collision, nor can the oscillators 5 and 7. The result is thus a
4− 1− 1− 1− 1 state in which all four single oscillators behave
identically. Similarly for larger ensembles, as the attractor
symmetry is increased, the number of single oscillators, in
general, grows, in a sense also decreasing the overall order of the
ensemble.

The N= 32 cluster-splitting cascade in Fig. 3c is also followed by
symmetry-increasing bifurcations, and at some point, the long-term
cluster-size distribution becomes 16− 9− (7 × 1). A time series of
the resulting solution is shown in Fig. 5a: Here, the seven single
oscillators in yellow move similarly to the clusters of four, two and
one in the former 16− 9− 4− 2− 1 solution, being close to deep
minima when the red cluster of nine is at a shallow minimum and
vice versa. They also repeatedly congregate into loose temporary
agglomerations of four, three and two oscillators, respectively. This is
further illustrated by Fig. 5b–d, where the cross-correlation between
all oscillator trajectories is calculated every 104 time steps. Two
oscillators are said to be in the same cluster if their cross-correlation
is greater than 1− ε for ε= 10−8 (b), ε= 10−4 (c) or ε= 10−2 (d).
Sometimes, a temporary cluster of three detected for a certain ε
becomes a cluster of four for larger values of ε, such as the blue
cluster at t= 7 ⋅ 104 and the red cluster at t= 1.2 ⋅ 105. This means
that four oscillators are loosely congregating here, but that three of
the oscillators are more strongly clustering than the fourth. The
ensemble is thus less closely approaching the remains of a formerly
stable 16− 9− 4− 2− 1 attractor in phase space.

Dynamics like those in Fig. 5 have previously been observed by
Kaneko in globally coupled logistic maps when the phase space
becomes so full of mirror-image attractors that they inevitably
intrude upon each other31. The outcome is a form of chaotic
itinerancy32, wherein the system meanders between the attractor

ruins of previous attractors, each of them relatively low-
dimensional, but connected by higher-dimensional transitional
motion15.

Also found in globally coupled maps is precision-dependent
clustering, wherein trajectories of individual maps that are
unclustered when distinguished with high precision appear to
repeatedly merge into the ever thicker branches of a clustering tree
when the precision is decreased14. In our ensemble, this occurs as a
consequence of the symmetry-breaking period-doubling cascade.
For example, past the N= 256 cascade in Fig. 3 (at c2 ≈−0.71162),
we encounter a 128− 64− 33− (31 × 1) itinerant solution that for
small ε ≤ 10−5 is found to have an additional cluster of usually 16,
sometimes 18 or 19 oscillators, while the remaining oscillators
repeatedly form ephemeral smaller clusters of strongly fluctuating
sizes. For ε= 10−4, a cluster of size 15 is also sometimes detected
(along with that of 16), and for ε= 10−3 the sizes are always
128− 64− 33− 16− 15, 128− 64− 33− 18− 13 or 128− 64

Fig. 4 Schematic of a symmetry-increasing bifurcation destroying
clusters. Here, two equivalent variants of a 4− 2− 1− 1 solution collide.
The increase in attractor symmetry caused by the collision implies that any
two oscillators which behaved equivalently in either of the variants must
also behave equivalently in the resulting solution. Because the cluster of
two contains different oscillators in the two variants, this cluster is
necessarily destroyed. Nj denotes cluster sizes and j denotes the index of
each oscillator.

Fig. 5 Partially clustered 16− 9− (7 × 1) solution past the cascade in
Fig. 3c. a Time series of ReðwkÞ for c2=− 0.712 and η= 0.63. The single
oscillators (yellow) reach a deep minimum approximately when the cluster
of nine (red) reaches a shallow minimum and the cluster of 16 (blue)
reaches a maximum. b–d Cluster sizes detected when two oscillators are
said to be clustered if their cross-correlation over an interval of 800 time
units is > 1− ε for ε= 10−8, 10−4 and 10−2, respectively. The large red and
blue dots mark two exemplary loose oscillator conglomerations at different
sensitivities ε.
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− 33− 19− 12. For ε= 10−2, they are 128− 64− 33− 31
throughout, and for ε= 10−1, 128− 64− 64. The same pattern
to some extent already applies in the quasiperiodic domain of
Fig. 3b–d, where clusters are most strongly correlated with those
other clusters from which they most recently split.

If we initialize the ensemble in the itinerant state beyond a
symmetry-increasing bifurcation and gradually change the
parameters back towards more regular motion, the transition to
the relevant two-cluster solution will simply be the reverse of the
one that created the itinerant state. For example, if we initialized
the N= 16 ensemble in the state at the right edge of Fig. 3a and
slowly decreased c2, this would produce the same sequence of
bifurcations. See Supplementary Fig. 4 and Supplementary
Note 2.

When the equation parameters are incremented too far into the
regime of chaotic itinerancy, the ensemble will often jump to an
entirely different solution. Beyond the 16− 9− 7-derived state in
Fig. 5, it e.g. jumps to the blue hitherto co-stable 16− 8− 8-derived
branch. However, the end result can also be the destruction of all
permanent clusters and the motion of only single oscillators on a
fully symmetric chaotic attractor. See Supplementary Figs. 5–7 and
Supplementary Note 3.

Emergence of a chimera state. In our context, a chimera state is
an N1− ((N−N1) × 1)) solution. The modulated-amplitude chi-
meras previously found in Eq. (1) have significantly more syn-
chronized (N1) than unsynchronized (N−N1) oscillators33. This
suggests they have not evolved from balanced two-cluster solu-
tions like the ones studied above. Yet, our above results can be
used to explain how they are created. If we e.g. initialize an
N= 20 ensemble as an 3N/4−N/4= 15− 5 solution (Fig. 6a) for
c2=− 0.87 and η= 0.67, the bifurcation diagram in Fig. 1k tells
us it will undergo a cluster-splitting period-doubling bifurcation if
c2 is increased. The resulting 15− 3− 2 period-2 solution is
shown in Fig. 6b. Further up in c2, the cluster of two is split into
single oscillators (Fig. 6c). Then, a torus bifurcation smears the
previously closed trajectories into continuous bands (Fig. 6d).

Finally, the current 15− 3− 1− 1 variant collides with nine
others in a symmetry-increasing bifurcation. This destroys the
cluster of three, resulting in a 15− (5 × 1) chimera state (Fig. 6e).
Note how the three oscillators that are temporarily close to each
other in Fig. 6e (red, yellow, grey, in the lower left) are not all the
same three that were clustered in Fig. 6b–d (red, purple, grey).
The ensemble is currently close to the ruin of a different
15− 3− 1− 1 solution variant, and the chimera state is thus also
an example of chaotic itinerancy. For N= 200, the transition
from a 150− 50 to a 150− (50 × 1) solution proceeds along a
much more involved, but essentially similar path. See Supple-
mentary Fig. 8 and Supplementary Note 4.

Generality of results I—pitchfork maps. Other theoretical
SN-symmetric systems can also develop as discussed in the pre-
vious sections. One such system is the following ensemble of N
globally coupled time-discrete maps:

ykðnþ 1Þ ¼ ð1þ α� jykðnÞj2Þ � ykðnÞ

� 1
N

∑
N

j¼1
ðα� jyjðnÞj2Þ � yjðnÞ;

ð4Þ

where ykðnÞ 2 R denotes the nth iteration of the kth
map, k= 1,…,N, and α is a real-valued parameter. Each map
yk(n+ 1)= (1+ α− ∣yk(n)∣2) ⋅ yk(n) (without the coupling) is
modeled on the normal form of the supercritical pitchfork
bifurcation 26, xnþ1 ¼ xn þ μxn � x3n Altogether, the system (4) is
subject to a conservation law:

hyðnþ 1Þi ¼ 1
N

∑
N

k¼1
ykðnþ 1Þ ¼ hyðnÞi; ð5Þ

that is, the ensemble average hyðnÞi ¼ hyð0Þi 8 n 2 N remains
constant independent of the individual map behaviour and thus
effectively constitutes an additional parameter β=N−1∑ky(0),
implicitly set by choosing the initial value of each map yk(0).

For suitable values of α and β, Eq. (4) has stable period-1 (i.e.
constant) two-cluster solutions, among them a balanced N/2−N/2
solution for any even N. As an example, for α= 0.7 and β= 0.15 this
solution is given by yk(n)≈− 0.645 for k= 1,…,N/2 and yk(n) ≈
0.945 for k=N/2+ 1,…,N. (Of course, any other N/2 of the N
maps could also be in the first cluster; that would simply constitute a
different equivalent variant of the same solution.) Clearly, the
ensemble average remains constantly equal to β= 0.15.

Let us now again consider the concrete case N= 16. If α is
slowly increased, the N/2−N/2= 8− 8 solution undergoes an
equivariant period-doubling bifurcation at α= 0.708. Like in the
Stuart-Landau ensemble, several three-cluster period-2 solutions
emerge, one of which is the N/2−N/4−N/4= 8− 4− 4 solution
in Fig. 7a. For a further increase of α, this solution also undergoes
a period-doubling bifurcation, wherein both clusters of four are
split into a total of four period-4 clusters of two, as seen in Fig. 7b.
The cluster of eight (at yk(n) ≈− 0.7) still remains period-1, but
has been left out of the figure for a better view. This sequence of
two-cluster splittings, summarized in Fig. 8a, is strongly
reminiscent of the two last steps in Fig. 3b.

For sufficiently large ensemble sizes N, when the N/2−N/2
solution is destabilized in its period-doubling bifurcation, several of
the resultant three-cluster solutions emerge as co-stable. For N= 128
and β= 0.15, one of the stable solutions is a 64− 33− 31 period-2
solution whose trajectory looks more or less like that of the
N/2−N/4−N/4 solution in Fig. 7a. (The maxima of the period-2
trajectory of the cluster of 33 are only slightly smaller than those of
the cluster of 31, and its minima slightly less deep, in order to fulfill

Fig. 6 Steps from 15− 5 two-cluster solution to chimera state. Each filled circle refers to the instantaneous position of a cluster or single oscillator, the
line of the respective same colour to its trajectory. Sizes of filled circles mirror sizes of clusters. N= 20, ν= 0.1 and η= 0.67, proceeding along the black
line in Fig. 1k. a 15− 5 solution for c2=−0.87. b 15− 3− 2 period-2 solution for c2=− 0.82. c 15− 3− 1− 1 period-4 solution for c2=−0.725. The two
largest loops of the two single oscillators are almost equal. d 15− 3− 1− 1 three-frequency solution for c2=−0.71. e 15− (5 × 1) chimera at c2=−0.705,
after collision of mirror-image attractors.
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the condition 〈y(n)〉= β ∀n.) When α is gradually increased for this
64− 33− 31 solution, an equivariant period-doubling also occurs,
but here, only the cluster of 31 is split. The result is the
64− 33− 16− 15 period-4 solution shown in Fig. 7c. (Here,
the cluster of 64 also moves with a small period-4 component, due
to the asymmetry in the smaller clusters.) If α is increased somewhat
further, it results in the 64− 33− 16− 8− 7 period-8 solution in
Fig. 7d. Even further upward in α, two more cluster-splitting period-
doubling bifurcations occur, resulting in the overall sequence of
cluster sizes shown in Fig. 8b. Thus, Eq. (4) undergoes a cluster-
splitting cascade remarkably similar to that of Eq. (1).

The coupled maps of Eq. (4) also exhibit transitions likely to be
symmetry-increasing bifurcations. Past the α interval covered in
Fig. 8b, the N= 128 ensemble namely also enters several

consecutive α intervals wherein the sizes of only some clusters
remain stable for several α increments. Other clusters seemingly
appear and disappear erratically, as already observed for the Stuart-
Landau ensemble in Fig. 5. We even encounter 64− (64 × 1)
chimera states, as shown in Supplementary Fig. 10.

The difference between the two systems (1) and (4) lies in the
details. For example, we have already seen that in the Stuart-Landau
ensemble, the period-doubling bifurcation of the N/2−N/4−N/4
solution produces a stable N/2−N/4−N/8−N/8 solution, whereas
the analogous bifurcation in the coupled maps gives rise to a stable
N/2− (4 ×N/8) solution (comparing Figs. 3b and 8a). Another
difference can be observed if we track the 128− 65− 63 period-2
solution to Eq. (4) for N= 256 upward in α for β= 0.15. At first, it
will give rise to a stable 128− 65− 32− 31 period-4 solution.
However, the next bifurcation encountered will not be another
period-doubling, but an equivariant pitchfork splitting the cluster of
65. Thus, the pattern of stepwise cluster splitting, whereby always the
smallest cluster is the next one to be split, as observed in both Figs. 3c,
d and 8b, ends prematurely. In this case, no more discrete cluster
splittings occur and the next qualitative change of the dynamics is a
symmetry-increasing bifurcation, as seen in Supplementary Fig. 11
and described in Supplementary Note 6.

Generality of results II—electrochemical experiments. As stated
in the introduction, Eq. (1) is inspired by electrochemical
experiments. In fact, the theoretical model was originally more
complicated, consisting not of discrete identical oscillators, but of
a continuous oscillatory medium coupled via both global and
local (diffusional) coupling17,34. Later results showed that most of
the qualitative dynamics obtained in this extended model could
still be reproduced if the diffusion was set to zero33, thus paving
the way for our purely globally coupled ensemble. Meanwhile, the
experimental system itself has been found to exhibit a vast
amount of dynamical phenomena17,34–41. Below, we revisit four
different spatiotemporal states representative of solutions in the
transition scenario outlined above.

The central component of the experiment is an n-type silicon (Si)
electrode, immersed in a fluriode-containing electrolyte. A voltage is
applied across the electrode, which is also illuminated with a laser.
Thus, an oxide layer is grown photo-electrochemically on the Si
surface. Simultaneously, the fluoride species in the electrolyte etches
away the silicon oxide in a purely chemical process42. An
ellipsometric setup is used to measure the spatiotemporal changes
in the optical pathway through the Si∣SiO2∣electrolyte interface34,35,43.

For a wide range of experimental parameters, the ellipsometric
signal can be made to oscillate homogeneously with a simple
period37. If the parameters are suitably changed, the electrode
undergoes a period-doubling bifurcation, resulting in two anti-
phase clusters connected by a mediating region with rather low
amplitude. An exemplary snapshot of the electrode in this state is
shown in Fig. 9a, together with the time series of a section. The
location of the section is indicated by the blue line on the image of
the electrode. In the depicted snapshot, a rather high ellipso-
metric signal, displayed by the red color in the upper part of the
electrode, coexists with a rather low signal in the lower right,
displayed by the blue color. In the time series below, we recognize
the oscillation of the ellipsometric signal; the two regions,
connected by the cut, oscillate with the same frequency, but in
anti-phase to each other. Note that the global time series exhibits
a simple periodic oscillation, which, as demonstrated in
Supplementary Fig. 12 and described in Supplementary Note 7,
defines a rotating frame. Thus, as in the above simulation results,
the experimental results are depicted in a rotating frame, that is,
the spatial mean of each frame has been subtracted from every
point in the same frame.

Fig. 7 Trajectories of time-discrete maps. a 8− 4− 4 solution for N= 16,
α= 0.8 and β= 0.15, wherein the clusters of 4 (green and red,
respectively) are period-2 and the cluster of 8 (purple) is constant. b
8− (4 × 2) solution emerging in a period-doubling of the solution in a, with
the cluster of 8 not shown for better resolution. α= 0.86. Here, each color
marks the trajectory of a cluster of two. c 64− 33− 16− 15 period-4
solution for N= 128, α= 0.86 and β= 0.15. Cluster trajectories: 64 purple,
33 green, 16 blue, 15 red. d 64− 33− 16− 8− 7 period-8 solution
emerging in a period-doubling of the solution in c, with the cluster of 64 not
shown. α= 0.87. The cluster of 15 has split into smaller clusters of 8 (red)
and 7 (yellow).
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Figure 9b shows the same electrode after a further parameter
variation (see appendix). This time, in order to properly view the
spatiotemporal development, the spatial coordinate of the
time series is composed of two lines forming an angle. Clearly,
the variation of the parameters has resulted in a period-doubling
bifurcation affecting the right and left side of the electrode,
corresponding to the upper and lower part of the time-series
spatial coordinate. These regions now oscillate with double the
period of the oscillations in the upper part of the electrode and
are in anti-phase with respect to each other.

In Fig. 9c, a deep blue region can be seen on the right of the
electrode snapshot. This region appears rather regular throughout

whereas the rest of the electrode is irregularly patterned. In the
time series of the spatial cut, the deep blue area appears in the
lower quarter. It is indeed found to exhibit simply periodic
oscillations, whereas most of the electrode is turbulent. This
solution is a chimera state.

Finally, Fig. 9d depicts a state that is turbulent throughout.
Here, irregular patterns arise over the entire electrode. The
time series shows that the spatial incoherence is accompanied by
aperiodic behaviour.

Note that the measurements in Fig. 9a, b were carried out on a
different day and with a different electrolyte than the ones in
Fig. 9c, d. The electrolyte composition seems to be a crucial

Fig. 8 Cluster splitting in the time-discrete maps. a Schematic portrayal of the period-doubling cluster splittings as α is increased for β= 0.15 and an
initial 8− 8 solution. b Like a for a possible cluster-splitting cascade for N= 128 and β= 0.15. The schematics are based on the quantitative results shown
in Supplementary Figs. 9 and 10, respectively, and described in Supplementary Note 5.

Fig. 9 Ellipsometric measurements of four different experimental states. Each state shows a snapshot of the electrode and the time series along a
section on the electrode as indicated by the blue lines in the electrode snapshots. Note that the dynamics are shown in a rotating frame, where the uniform
oscillation of the spatial average has been subtracted. a anti-phase two-cluster state, b subharmonic cluster state, c chimera state and d turbulent state.
The size of the electrode in a and b is 6.0 × 4.3 mm (width × height), while in c and d it is 5.8 × 4.6 mm. For parameter values and experimental details, see
the Methods section.
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parameter for some of the presented states, yet it is a parameter
which cannot be easily varied during a measurement day.
Spatially homogeneous oscillations can, however, be found with
both of the electrolytes used here.

Discussion
In this article, we have shown how a globally coupled system can
transition from full symmetry to ever more complex coexistence
patterns through a sequence of discrete symmetry-breaking steps.
The transition begins with a cascade of cluster-splitting bifurca-
tions, and at each step of this cascade, either one cluster or two
similarly behaving clusters are split into smaller clusters. In an
ideal form of the cascade, the next cluster to split is always the
smallest one, ultimately creating a multi-cluster state with very
different cluster sizes, wherein the smallest “cluster” is just a
single oscillator. This ideal cascade is schematically depicted in
the left part of Fig. 10.

The cluster-splitting cascacde is followed by one or more
symmetry-increasing bifurcations, breaking ever more clusters up
into single oscillators. Even though they destroy clusters, these
bifurcations are symmetry-increasing because the single oscilla-
tors they produce all behave equally for t→∞. Thus, the attractor
is symmetric with regards to the interchange of any two of these
oscillators.

In practice, the symmetry-increasing transition is often cut
short by interactions with other solution branches and the
ensemble at some point is thrown onto a different, hitherto co-
stable solution. In the ideal case when it is allowed to continue
sufficiently long, the end result is ultimately a turbulent state of
only single oscillators, all behaving equally in the long run. A
chimera state is then the last step but one in the cascade.

Our primary model has been one of N ¼ 2n; n 2 N Stuart-
Landau oscillators with nonlinear global coupling and our main
focus on the case where the fully synchronized solution is initially
split into two equal clusters N/2−N/2. However, the cluster-
splitting cascade is also observed for less balanced initial states,
such as the 15− 5 solution which transitions via 15− 3− 2 to
15− 3− 1− 1 in Fig. 6. The cascade is also not dependent on the
choice of N= 2n, but similarly occurs for odd N as well, as shown
in Supplementary Fig. 13 and described in Supplementary Note 8.

Nor is it conditional upon the particular chosen model, but can
be similarly observed in globally coupled time-discrete maps.

Symmetry-increasing bifurcations also occur whether the
cluster-size distribution of the initial two-cluster state emerging
from synchrony is N1/N2= 1 (Fig. 3a) or N1/N2= 3 (Fig. 6).
Moreover, it is observed in both the Stuart-Landau oscillators (1)
and the pitchfork maps (4). The general outcome of a symmetry-
increasing bifurcation, chaotic itinerancy, has previously been
found in globally coupled logistic maps, along with both multi-
cluster states, chimeras and precision-dependent clustering, but
without an overall explanation of how these phenomena might be
bifurcation-theoretically related to each other14,15,31,32. This
suggests that the bifurcation scenario uncovered here occurs in
those logistic maps as well.

What are the prerequisites for the observed bifurcation sce-
nario? The high permutation symmetry of globally coupled
equations is probably a central factor shared by the Stuart-Landau
oscillators and the pitchfork maps (and Kaneko’s logistic maps).
SN not only has many subgroups, but most of these subgroups
have many subgroups as well, and so on. This intricate subgroup
structure is mirrored in the hierarchy of successively less sym-
metric quasiperiodic solutions. Moreover, because SN is much
larger than those of its subgroups corresponding to the more
intricate solutions, there are many mirror-image variants of the
latter, causing the symmetry-increasing bifurcations and the
itinerant coexistence patterns that these produce.

The nonlinear nature of the global coupling could be another
relevant system property, and all three systems studied here are
coupled nonlinearly (as are Kaneko’s logistic maps). However,
symmetry-increasing bifurcations have also been observed in
Stuart-Landau oscillators with linear global coupling44, for an
ensemble size as small as N= 4. Such an ensemble is of course too
small to exhibit an evident cluster-halving cascade, and instead,
the symmetry-increasing bifurcation was preceded by a non-
equivariant Feigenbaum period-doubling cascade to chaos. To
test whether our full bifurcation scenario can occur for linear
global coupling as well, is thus an exciting task for future studies.

In the case of the Stuart-Landau oscillators, an additional factor
required by the cluster-splitting cascade is the amplitude variation
of the cluster orbits. If the clusters were to have fixed amplitudes,
i.e., d∣wk∣/dt= 0 for all oscillators wk, then there could namely

Fig. 10 Ideal transition from synchrony to turbulence. The synchronized state is initially broken into two clusters. These clusters are in turn split into
successively smaller clusters in a cluster-splitting cascade. When the smallest cluster is just a single oscillator, a symmetry-increasing bifurcation occurs.
Hereby, one or more clusters are abruptly broken into single oscillators that henceforth all behave equally in the long run. Additional symmetry-increasing
bifurcations ultimately lead to a turbulent state of only single oscillators. The last step but one is often a chimera state.
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only be three different clusters, due to the Stuart-Landau oscil-
lator being a third-order polynomial45. This would render any
extended cluster-splitting impossible. On the other hand, the fact
that cluster-splitting takes place by means of period-doubling
seems to imply that the amplitudes must vary over the course of a
full oscillation period.

What all discussed symmetry-increasing bifurcations seem to
require, is a certain dimensionality of the dynamics before the
bifurcation. (That is, trajectories can for example not be zero-
dimensional fixed points or one-dimensional periodic orbits.) In the
Stuart-Landau ensemble with nonlinear global coupling and in the
pitchfork maps, this extra dimensionality arises in the torus bifur-
cation at the end of the cluster-splitting cascade. In the aforemen-
tioned Stuart-Landau oscillators with linear global coupling, it is
provided by a period-doubling cascade to chaos, and in the globally
coupled logistic maps, the maps are also in the chaotic regime.

Finally, we again consider the experiments. These exhibit a
series of patterns which are similar to the ones in the simulations.
The anti-phase clusters in Fig. 9a emerge from the homogeneous
oscillation and bring about a second frequency. Figure 9b, c
exhibits coexistence patterns, consisting either of clusters of dif-
ferent frequencies (b) or of the coexistence of a regularly oscil-
lating region and irregular motion (c). Figure 9d is a completely
turbulent state. These states are clearly reminiscent of the ones
found in the simulations, and we are not aware of other bifur-
cation scenarios that include these states.

Nevertheless, the connection between the experiments and the
discussed bifurcation scenario has yet to be clearly demonstrated.
As mentioned above, one difficulty is that the electrolyte com-
position, which is difficult to change within the same experiment,
seems to be a crucial bifurcation parameter. Despite the prior
equivalence of many results with and without diffusion, the dif-
fusive coupling on the electrode could also potentially influence
the dynamical transition. This could for example be investigated
in experiments with amorphous instead of crystalline silicon.
Altogether, many effects of different parameters on the dynamics
are only poorly understood and the detailed oscillation
mechanism is still unknown. There is thus great potential for
further studies in this direction. The same applies to the search
for other experimental systems that exhibit the discussed transi-
tion from synchrony to turbulence.

Methods
Stuart-Landau oscillators. The differential equations (1) were solved numerically
using the Python programming language46 (version 2.7 and later 3.8) and the
implicit Adams method of the scipy.integrate.ode class of the SciPy
library47 (version 1.6) with a time step of Δt= 0.01. The data were held and
processed in the form of NumPy (version 1.19) arrays48 with complex-valued
floating-point elements and visualized using the Matplotlib library and graphics
environment (version 3.3) 49. The numerical results were evaluated using custom-
built functions drawing on the resources of these standard Python libraries, written
by S.W.H. Simulations were carried out in the non-rotating frame of Eq. (1), and
results in the co-rotating frame of 〈W〉 were visualized applying Eq. (3) to the data
after simulations had been carried out. When not otherwise stated, initial condi-
tions of numerical solutions were random numbers on the real line, fulfilling the
global constraint that 〈W〉= ηe−iνt. This choice was inspired by earlier work17.

Figures 1e and 2c were created using the dynamical-systems continuation
software Auto07p50,51 to continue solutions in parameter space. As Auto can only
continue fixed-point and limit-cycle solutions, Eq. (1) had to be formulated in the
co-rotating frame of the ensemble average in order to carry out these
continuations, yielding

dak
dt

¼ ak � νbk � η2½Ak � c2Bk�

þ 1
N
η2 ∑

j
½Aj � c2Bj�;

dbk
dt

¼ bk þ νak � η2½Bk þ c2Ak�

þ 1
N
η2 ∑

j
½Bj þ c2Aj�;

ð6Þ

where wk= ak+ ibk with ak; bk 2 R, k= 1,…,N, and

Ak ¼ 3ak þ 3ak
2 þ ak

3 þ akbk
2 þ bk

2;

Bk ¼ bk þ 2akbk þ ak
2bk þ bk

3:
ð7Þ

To obtain Fig. 2c, the relevant N= 16 quasiperiodic solutions where first
generated using Python simulations. The output data were transferred to the
rotating frame, and a time series corresponding to one full period in that frame was
used as input for a c2 or η one-parameter continuation of each periodic solution, in
order to detect the location of the depicted bifurcations. Then, the detected
bifurcations were two-parameter continued in c2 and η to obtain the depicted
bifurcation lines.

To obtain Fig. 1e, Eq. (6) was reduced to a two-cluster model by setting ak= ac1
and bk= bc1 for all k= 1,…,N1, where wc1= ac1+ ibc1 is the value of the first
cluster. All other oscillators k=N1+ 1,…,N are in the other cluster
wc2= ac2+ ibc2. This yields the following equation for the first cluster

dac1
dt

¼ ac1 � νbc1

þ η2 1� N1

N

� �
Ac2 � Ac1 � c2 ðBc2 � Bc1Þ
� �

;

dbc1
dt

¼ bc1 þ νac1

þ η2 1� N1

N

� �
c2 ðAc2 � Ac1Þ þ Bc2 � Bc1

� �
;

ð8Þ

with Ac1 and Bc1 analogous to Eq. (7), while wc2 ¼ N1
N�N1

wc1, because of the

constraint that ∑kwk= 0. Thus, the reduced two-cluster model is only two-
dimensional. The relative size of the first cluster, N1/N, becomes an effective fourth
parameter, in addition to c2, ν and η.

Whereas (8) describes the motion of two clusters of sizes N1 and N2=N−N1,
respectively, it says nothing about intra-cluster stability and cannot model the
breakup of either cluster. To be able to evaluate the internal stability of the clusters,
we followed Ku et al.22 and added two effectively infinitesimal extra oscillators to
the model, which only feel the presence of the two macroscopic clusters, but
themselves neither affect the movement of each other, nor that of the macroscopic
clusters. Their motion is given by

dp1;2
dt

¼ p1;2 � νq1;2 � η2 P1;2 � c2 Q1;2

h i

þ η2
N1

N
Ac1 � c2 Bc1

	 
�

þ N � N1

N
Ac2 � c2 Bc2

	 
�
;

dp1;2
dt

¼ q1;2 þ νp1;2 � η2 Q1;2 þ c2 P1;2

h i

þ η2
N1

N
Bc1 þ c2 Ac1

	 
�

þ N � N1

N
Bc2 þ c2 Ac2

	 
�
;

ð9Þ

where P1,2 and Q1,2 denote composite expressions for the first and second
infinitesimal oscillator, of the same form as Ac1,c2 and Bc1,c2:

P1;2 :¼ 3p1;2 þ 3ðp1;2Þ2 þ ðp1;2Þ3

þ p1;2ðq1;2Þ2 þ ðq1;2Þ2;
Q1;2 :¼ q1;2 þ 2p1;2q1;2 þ ðp1;2Þ2q1;2 þ ðq1;2Þ3:

ð10Þ

In the initial state of the continuation, one of these two infinitesimal oscillators
is set to follow the same periodic orbit as either of the two clusters. If any
bifurcations are detected to make either infinitesimal oscillator leave the
macroscopic cluster it started at, this means that cluster has become unstable.

Figure 3a was created by initializing the N= 16 ensemble in the 8− 4− 4
configuration at c2=− 0.715 and incrementing c2 by Δc2= 10−5 every
ΔT= 4 ⋅ 104 time steps until c2=− 0.7095 for ν= 0.1 and η= 0.63. At the
beginning of each c2 step, random numbers ≤10−6 were added to the real and
imaginary part of each oscillator to provoke the breakup of potential unstable
clusters. Maxima of ReðwkÞ were plotted for the last 2000 time steps of simulation
at each c2 steps.

The schematic in Fig. 3b was drawn based on automatically detected cluster
sizes at each c2 step in the aforementioned c2-incremented simulation. These
cluster sizes were determined by calculating the pairwise cross-correlations of the
trajectories of all oscillators over the last 2000 time steps at each c2 step,
respectively. If the cross-correlation differed from 1 by less than ϵ= 10−8, the two
oscillators were deemed to belong to the same cluster. To calculate the cross-
correlations and obtain the clusters, we used SciPy’s built-in scipy.cluster.
hierarchy.linkage function.

The schematic in Fig. 3c was determined based on an analogous c2-incremented
simulations for N= 32, ν= 0.1 and η= 0.63, initialized in the 16− 16
configuration at c2=− 0.74. Here, Δc2= 2 ⋅ 10−5 and ΔT= 104. The simulation
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was performed until c2=−0.712, producing the result in Supplementary Fig. 1a.
Clusters were calculated as in the N= 16 case based on the last 800 time steps of
simulation at each c2 step, producing Supplementary Fig. 2b.

The schematic in Fig. 3d was determined based on two analogous c2-incremented
simulations for N= 256, ν= 0.1 and η= 0.63. In the first of these, the ensemble was
initialized in the 128− 64− 64 configuration at c2=− 0.7145, from where c2 was
incremented by Δc2= 10−5 every ΔT= 2 ⋅ 104 time steps until c2=− 0.7117,
producing the result in Supplementary Fig. 2a. In a second c2-incremented simulation
for N= 256, the ensemble was initialized at c2=− 0.71172 in the 128− 64− 33
− 16− 15 configuration found there in the prior N= 256 simulation with Δc2=
10−5. From there on, c2 was incremented by Δc2= 2 ⋅ 10−7 every ΔT= 2 ⋅ 104 time
steps until c2=− 0.7116, producing the result in Supplementary Fig. 3a, b. For either
simulation, clusters were calculated based on the last 800 time steps of simulation at
each c2 step, producing Supplementary Figs. 2b and 3b, c, respectively.

Figure 5 b–d were created by simulating the 16− 9− (7 × 1) solution in Fig. 5a
for T= 106 time steps. Every 104 time steps, the pairwise cross-correlation between
all oscillators was calculated over an interval of 800 time steps, and if the cross-
correlation of two oscillators was found to be greater than 1− ε for ε= 10−8

(Fig. 5b), ε= 10−4 (Fig. 5c) or ε= 10−2 (Fig. 5d), respectively, they were counted as
being in the same cluster.

The solutions in Fig. 6 were obtained by initializing the N= 20 ensemble in a
15− 5 solution at c2=− 0.88, ν= 0.1 and η= 0.67, and incrementing c2 by
Δc2= 2 ⋅ 10−4 every ΔT= 5000 time steps until c2=− 0.7. Supplementary
Figures 4–7 were created based on data obtained analogously to that in Figs. 3 and
6 with parameters as given in their respective captions.

Pitchfork maps. The differential equations (1) were solved numerically using the
Python programming language46 (version 3.8). The data were held and processed
in the form of NumPy (version 1.19) arrays48 with complex-valued floating-point
elements and visualized using the Matplotlib library and graphics environment
(version 3.3) 49. The numerical results were evaluated using custom-built functions
drawing on the resources of these standard Python libraries, written by S.W.H.

The α-incremented simulations behind Fig. 8 were initialized in the N/2−N/2
configuration and α was then gradually increased as specified in the captions of
Supplementary Figs. 9 and 10. The same applies to Supplementary Fig. 11. At the
beginning of each α step, small random numbers ≤10−6 were added to the maps to
provoke the breakup of potential unstable clusters.

The cluster sizes at each α step of the aforementioned simulations were
calculated automatically by comparing the trajectories of all maps during the last
2000 steps at each α value. If the Euclidean distance between the vectors made up
by two such map trajectories was found to be less than ε= 10−4, the two maps
were said to be in the same cluster.

Electrochemical experiments. For the experiments a custom made three electrode
electrochemical PTFE cell is used, with a circular shaped platinum wire as counter
electrode and a commercial mercury-mercurous sulfate reference electrode34. As
working electrode a sample from an n-type Silicon wafer with a (111) crystal
orientation and a resistivity of 1–10Ωcm is used. A 200 nm aluminium back
contact is evaporated onto the wafer and annealed at 250 °C for 30 min. To pas-
sivate the silicon surface and get rid of organic contamination, the samples are
plasma-oxidized.

Before the experiment the sample is brought into contact with the wire in the
custom made PTFE WE holder using silver paste. It is subsequently sealed using
silicone rubber (Scrintex 901, Ralicks GmbH, Rees- Haldern, Germany), leaving
free only the active electrode area. After the silicone has dried, the sample holder
with the sample is immersed in acetone for 5 min, subsequently in ethanol for
5 min, then methanol for 5 min, then in ultra pure water (R= 18.2 MΩcm) for
10 min and finally it is abundantly rinsed with ultra pure water.

The organic cleaning solvents are AnalaR NORMAPUR grade (VWR
Chemicals). The electrolyte components are Suprapur grade (Merck). For the
potential control a FHI-2740 potentiostat is used. Illumination of the electrode is
provided by a 15 mW HeNe laser with a wavelength of 632.8 nm (Thorlabs
HNL150L). The illumination intensity is controlled by an SLM (Hamamatsu
x10468-06). The ellipsometric signal is recorded with a JAI-CV-A50 CCD camera.
A background correction of the video data is performed according to

ξð~xÞ ¼ ðξð~xÞraw � ξð~xÞrawÞ �
hξð~xÞrawi
ξð~xÞraw

; ð11Þ

where ξð~xÞ is the corrected ellipsometric signal at ~x, ξð~xÞraw is the raw data of the
ellipsometric signal at ~x, ξð~xÞraw is the temporal average of the raw data and
hξð~xÞrawi denotes the spatial average of the temporal average of the raw data. The
homogenous mode is subtracted after the background correction is performed.

The experimental data presented are obtained from experiments under the
following conditions: The electrolyte used for Fig. 9a, b had a pH of 2.3 and a fluoride
concentration cF= 50mM. For (a) the applied potential was U= 5.65 V vs SHE, the
external resistance times electrode area RextAel= 0 kΩcm2 and the illumination
intensity Iill= 0.67mW/cm2. For (b) U= 6.65 V vs SHE, RextAel= 3.84 kΩcm2,
Iill= 0.57mW/cm2. The electrolyte used for (c) and (d) had a pH of 1 and a fluoride
concentration of cF= 75mM. For (c) the applied potential was U= 8.65 V vs SHE,

the external resistance times electrode area RextAel= 0.81 kΩcm2 and the illumination
intensity Iill=mW/cm2. For (d) U= 8.65 V vs SHE, RextAel= 0.54 kΩcm2,
Iill= 0.57mW/cm2. The illumination on the working electrode was homogeneous at
any time.

Data availability
The numerical and experimental data generated in this study have been deposited in the
database of the TUM University Library under the accession code https://doi.org/
10.14459/2021mp1618587.

Code availability
The code is available as free and open source software under the GPL version 3 or later. It
has been deposited in the database of the TUM University Library under the accession
code https://doi.org/10.14459/2021mp1618587.
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