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Rodents acquire more information from the sense of smell than humans because
they have a nearly fourfold greater variety of olfactory receptors. They use olfactory
information not only for obtaining food, but also for detecting environmental dangers.
Predator-derived odor compounds provoke instinctive fear and stress reactions in
animals. Inbred lines of experimental animals react in an innate stereotypical manner
to predators even without prior exposure. Predator odors have also been used in
models of various neuropsychiatric disorders, including post-traumatic stress disorder
following a life-threatening event. Although several brain regions have been reported to
be involved in predator odor-induced stress responses, in this mini review, we focus
on the functional role of inhibitory neural circuits, especially in the anterior piriform
cortex (APC). We also discuss the changes in these neural circuits following innate
reactions to odor exposure. Furthermore, based on the three types of modulation of
the stress response observed by our group using the synthetic fox odorant 2,5-dihydro-
2,4,5-trimethylthiazoline, we describe how the APC interacts with other brain regions to
regulate the stress response. Finally, we discuss the potential therapeutic application of
odors in the treatment of stress-related disorders. A clearer understanding of the odor–
stress response is needed to allow targeted modulation of the monoaminergic system
and of the intracerebral inhibitory networks. It would be improved the quality of life of
those who have stress-related conditions.

Keywords: predator odor, stress, innate response, relaxant, feedforward inhibition, anterior piriform cortex,
monoaminergic neuromodulation system

INTRODUCTION

Rodents use odors as cues for evaluating their surroundings, for locating food, social interactions
and breeding, and the detection of threats in the environment. With respect to threat detection, the
primary focus of this review, rapid and accurate detection of threat in its proximity is critical for
survival (e.g., cat, fox, and ferret). The odors produced by these predators, known as kairomones,
which are the interspecific chemical signals that cause a disadvantage to the source of release, rapidly
induce fear and stress responses in rodents (Vernet-Maury et al., 1984; Apfelbach et al., 2005;
Takahashi, 2014; Janitzky et al., 2015; Masuo et al., 2021). While the stress responses are critical
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for survival, dysregulation of these responses can result in
psychiatric disorders in humans, such as anxiety and mood
disorders, phobias, and post-traumatic stress disorder (PTSD)
(Rosen et al., 2008; Staples, 2010; Zoladz et al., 2012; Wilson et al.,
2014; Dopfel et al., 2019).

There is an extensive neural network that responds to
predator odors. A constituent odorant of fox feces, 2,5-dihydro-
2,4,5-trimethylthiazoline (TMT), which mimics the anal gland
secretions of the fox, is one of the most effective at inducing
innate stress responses in rodents (Vernet-Maury et al., 1984; Day
et al., 2004). The detection of TMT appears to be predominantly
through the piriform cortex (PC) via the olfactory bulb (OB)
which receives input signals from olfactory sensory neurons
activated in the olfactory epithelium (OE) (Takahashi, 2014).
Although the anterior piriform cortex (APC) has known to
involve both detection of TMT and induction of TMT-induced
stress responses, the underlying mechanisms including the
related neural network and modulatory system have thought to
be different (Kobayakawa et al., 2007). One of the immediate early
genes, c-fos, is a biomarker of neural activity, and is associated
with stress responses. Based on c-fos expression, it has been
shown that various brain regions, including the APC, medial
part of the bed nucleus of the stria terminalis (mBST), and
amygdalopiriform transition area (AmyPir), are involved in the
stress response to predator odor (Day et al., 2004; Kobayakawa
et al., 2007; Janitzky et al., 2009; Kondoh et al., 2016). In this
review, we describe the effects of odor in the modulation of
stress responses, focusing on the role of the inhibitory circuits
in the APC. We also discuss how a better understanding of the
regulation of stress responses is important for treating stress-
related illnesses.

STRESS AND ODOR

Responses to Stress and Fear
There are autonomic, endocrine, and behavioral responses
to fear and stress. The autonomic nervous system, which
provides a rapid and short-term response to stress, raises
heart rate and blood pressure, enabling a rapid response to
threats (Ulrich-Lai and Herman, 2009). The endocrine response,
which involves activation of the hypothalamic–pituitary–adrenal
(HPA) axis, is less rapid, but is sustained for a longer
period (Ulrich-Lai and Herman, 2009). Activation of the HPA
axis stimulates endocrine release, including adrenocorticotropic
hormone (ACTH), cortisol, and corticosterone, which can be
used as biomarkers of stress. In addition, behavioral responses to
stress and fear may include freezing, attack/avoidance and other
behaviors, and these too can be used to assess anxiety.

Moreover, monoaminergic neuromodulation system has
thought to be involved in the regulation of stress-related
responses. Although definitive biomarkers of PTSD remain
elusive, dysregulation of various neurotransmitter systems has
been implicated in the disorder (Arora et al., 1993; Geracioti,
Baker et al., 2001; Krystal and Neumeister, 2009; Southwick
and Charney, 2012). Monoamines, including dopamine (DA),
norepinephrine (NE), and serotonin (5-HT), are synthesized in

specific regions of the brain and regulate neural activities in
numerous target regions. Moreover, predator odors can increase
the release of monoamines in the mouse brain (Hayley et al.,
2001; Smith et al., 2006) and activate the locus coeruleus (LC),
from which noradrenergic fibers innervate the cerebral cortex,
amygdala, and hippocampus (Day et al., 2004; Curtis et al., 2012;
Isosaka et al., 2015; Janitzky et al., 2015). These monoamines play
important roles in behavioral responses to innate and learned
fears and stresses by modulating motor control, motivation,
reward, learning, and associative memory.

Modulation of Stress by Odor
Innate Responses
We previously showed that natural odors can be classified into
three types: (1) odors that cause innate fear/stress reactions
(innate stressors) such as predator odors; (2) odors that innately
reduce stress signaling (innate relaxants) such as rose and
hinokitiol odors; and (3) odors that do not affect stress responses
(neutral odors) such as caraway odor (Matsukawa et al., 2011;
Murakami et al., 2012). Next, we describe the effects and
associated systems for each type of odor.

Innate Stressors
In a number of studies, predator odors, such as those of cats
and ferrets, have also been used to activate stress pathways
in rats and mice (Takahashi, 2014). Despite the absence of
a real threat, TMT activated stress responses, which are to
increase plasma ACTH levels and to heighten the activities in
the predator odor-related neural pathways (Day et al., 2004;
Matsukawa et al., 2011). In addition to TMT, predator urines
have been shown to induce neural activation in the main
olfactory system (MOS) via the main OB (MOB) (Takahashi,
2014). Furthermore, stress responses are strongly linked with
learning and memory processes, and thus may adapt to predator
odors over time (Staples, 2010). The stimulus intensity of
predator odors (concentration and repeated administration) is
known to impact habituation and extinction (Takahashi et al.,
2005). Moreover, neonatal exposure to TMT odor in mice
can reduce avoidance, immobility and freezing behaviors in
adulthood (Hacquemand et al., 2010). In addition to odors from
external threats, a number of studies have shown that stressed
animals can release odors called warning pheromones that cause
anxiety-related behaviors in other conspecifics in their proximity
(Masuo et al., 2021).

Innate Relaxants and Neutral Odors
Conversely, several odors have been shown to improve mood
or signs of stress or anxiety (Haze et al., 2002; Lehrner et al.,
2005; Ito et al., 2009; Masuo et al., 2021). In addition, some
odors can decrease responses to stressor odors. For example, rose
odor reduces plasma ACTH levels during TMT-induced stress
responses by decreasing c-fos upregulation-associated neural
activation in the ventrorostral part of the APC (APCvr) and
the mBST in mice (Table 1; Matsukawa et al., 2011). Notably,
robust odor-induced feedforward inhibitory signals are sent
from the APCvr to the entire APC (Ishikawa et al., 2007).
Hinokitiol odor, a woody scent, but not S(+)-carvone (caraway
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TABLE 1 | Changes in the number of c-fos-positive cells in each brain region following each odor presentation (upper part) and following each electrical
stimulation (lower part).

Plasma c-fos positive cells

ACTH OB APCvr APCd mBST lBST AmiPir PPC

TMT ++ ++ ++ ++ ++ n.s. ++ n.s.

TMT + rose n.s.** ++ ++* ++ n.s.** n.s. − −

TMT + hinokitiol n.s.** − ++ ++** ++ ++** − −

TMT + caraway ++ − ++ ++ ++ n.s. − −

TMT + habitat odor n.s.*** − ++* ++ +** n.s. − −

Significant differences compared with TMT; *P < 0.05, **P < 0.01, ***P < 0.001;

n.s., no significant difference (P ≥ 0.05); –, no data available.

mOB electrical stimulation − − +++ +++ n.s. n.s. n.s. +++

dlOB electrical stim − − + +++ n.s. n.s. n.s. +++

mOB and dlOB electrical stimulation − − +++** +++ +* + +++*** +++

Significant differences compared with each OB stimulation; *P < 0.05, **P < 0.01, ***P < 0.001;

n.s., no significant difference (P ≥ 0.05); –, no data available.

odor), prevents the TMT-induced upregulation of plasma ACTH
by increasing c-fos-associated neural activation in the lateral
part of the BST (lBST) when presented in combination with
TMT odor (Table 1; Murakami et al., 2012). This demonstrates
that animals have innate responses to specific odors, and that
some odors, such as rose and hinokitiol odors, reduce stress
responses without prior learning, while others, like caraway
odor, are innately neutral and do not significantly impact the
stress response.

Apparently, there are multiple mechanisms that induce the
innate inhibitory response. When combined with TMT odor,
hinokitiol odor may activate the olfactory system broadly and
robustly, thereby making the specific effect of TMT impossible to
distinguish at the neural level (Table 1; Murakami et al., 2012).
These findings suggest that there may be at least two distinct
mechanisms that reduce TMT odor-induced stress responses: (1)
direct and selective mechanisms that inhibit TMT odor-induced
activation of stress-related networks, as seen with rose odor; and
(2) mechanisms that obscure the selective effect of TMT odor, as
seen with hinokitiol odor.

Conditioned Responses
Experiences can change the innate reactions. We previously
demonstrated that even an artificial odor, classified as a neutral
odor, could alleviate the predator odor-induced stress responses
in adulthood in mice when they experience and are habituated
to the artificial odor early in life (Matsukawa et al., 2016). This
suggests that animals can be conditioned to experience stress-
relieving effects from odors later in life when experienced in the
absence of a real threat. This also means that experience can
modify innate reactions. When combined with a habitat odor,
TMT odor-induced neural activation is reduced in the APCvr and
the mBST, similar to the effect of rose odor (Table 1; Matsukawa
et al., 2016). These stress-reducing effects suggest that a selective
inhibitory system is present in brain regions that participate in
predator odor-induced stress responses.

THE MECHANISMS OF ODOR-INDUCED
STRESS REACTIONS: OLFACTION AND
STRESS RESPONSES

Neural Substrate of Olfactory
Information Processing
In mammals, the olfactory system is composed of two
distinct pathways—the MOS and the accessory olfactory
system (AOS). The MOS is considered to be primarily
involved in the detection of environmental cues such as
foods and predators (Takahashi, 2014; Masuo et al., 2021),
whereas the AOS is more involved in the detection of
intraspecific chemical stimuli such as pheromones (Wyatt,
2017; Mohrhardt et al., 2018). The MOS comprises the
main OE, which expresses odorant and trace amine-associated
receptors. These detect environmental cues and convey the
information to the olfactory cortex [APC, posterior piriform
cortex (PPC), AmyPir, entorhinal cortex (EC)] and other areas,
including the amygdala, to modify physiological and behavioral
responses (Figure 1A; Takahashi, 2014; Isosaka et al., 2015;
Kondoh et al., 2016). Both the amygdala and the EC have
bidirectional innervation to the hippocampus, and bidirectional
connections exist between the amygdala and extended amygdala,
including the BST.

Relationship Between Olfaction and
Stress Responses
The Piriform Cortex
The PC, which is the largest area in the primary olfactory
cortex, consists of three layers (Layers I, II, and III) and
is divided into two regions, the APC and the PPC. These
two regions have different roles in olfactory information
processing. The APC encodes odorant information, perception,
and odor-associated values, while the PPC encodes associated
information (e.g., odor similarity, quality) (Litaudon et al., 2003;
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FIGURE 1 | Olfactory information processing and stress-related networks. (A) Overview of the regulation of the odor–stress response. Distinct olfactory bulb (OB)
projection neurons are shown in red [tufted cells (TCs)] and blue [mitral cells (MCs)] lines, and show fast and slow pathways, respectively. TCs project to the anterior
olfactory nucleus (AON) and the ventrorostral part of the anterior piriform cortex (APCvr). MCs innervate the AON, the olfactory tubercle (OT), the APCd, the posterior
piriform cortex (PPC), the amygdalopiriform transition area (AmyPir), the entorhinal cortex (EC), and the amygdala (Amy). Feedforward inhibitory circuit from the
APCvr to the APCd is shown as a green line. Stress-related networks are illustrated in brown; from the bed nucleus of the stria terminalis (BST), the information
passes to the hypothalamus (PVH and ORXs) where it can activate the hypothalamic–pituitary–adrenal (HPA) axis. Many brainstem regions, including the
periaqueductal gray (PAG) and autonomic system, receive information from the BST and hypothalamus. The yellow lines show monoaminergic modulatory networks.
DA projections from the ventral tegmental area (VTA), NE projections from the locus coeruleus (LC), and serotonin (5-HT) projections from the dorsal raphe (DR) are
distributed widely in the brain. (B) Inhibitory pathways in the piriform cortex (PC). In the PC, olfactory information from the OB is obtained via the lateral olfactory tract
(LOT). Horizontal cells (H), neurogliaform cells (G), bitufted cells (B), and multipolar cells (M), which are inhibitory interneurons in the superficial layer (illustrated in light
blue), have feedforward connections to projection neurons [semilunar cells (S) and pyramidal cells (P); illustrated in red] in the PC. Inhibitory cells in mid to deep layers
(B and M; illustrated in blue) feedback onto S and P cells. (C) Putative networks for odor-induced stress responses. The accessory olfactory system (AOS) from the
vomeronasal organ (VNO) provides inputs to the extended amygdala (Ext Amy) via the medial amygdala (MeA). In contrast, the main olfactory system (MOS) from the
olfactory epithelium (OE) provides inputs to the Ext Amy directly from the central amygdala (CeA) and indirectly via olfactory cortices, including the APC, EC, and
AmyPir. Both the Amy and Ext Amy have projections to subcortical regions (Sub Ctx) including the PVH, PAG, VTA, LC, and DR.

Kadohisa and Wilson, 2006; Calu et al., 2007; Roesch et al.,
2007). A recent study showed that the PPC has a key role in
spatial representation, including the formation of odor–place
associations and guided olfactory-based spatial navigation (Poo
et al., 2022). The APC and the PPC are also neuroanatomically
different—the APC receives greater input from olfactory regions
than the PPC, while the latter receives comparatively more
projections from the hippocampus and cerebral nuclei (Wang

et al., 2020). In addition, the APC can be subdivided into two
distinct parts, the APCvr and the dorsal part of the APC (APCd),
by morphological analysis (Ekstrand et al., 2001). In the MOB,
there are two distinct projection neurons—mitral cells (MCs)
and tufted cells (TCs). The axonal projections of MCs and TCs
differ, with MCs sparsely projecting to the APCd, and the TCs
robustly projecting to the APCvr (Figure 1A; Igarashi et al.,
2012).
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Despite its relatively simple trilaminar cortical structure,
the PC has many inhibitory interneurons for both feedforward
and feedback connections (Figure 1B; Gavrilovici et al.,
2010; Suzuki and Bekkers, 2012; Bekkers and Suzuki, 2013;
Large et al., 2016). The feedforward inhibition usually
occurs when excitatory inputs activate inhibitory cells,
which then inhibit postsynaptic excitatory neurons (Kee
et al., 2015). In contrast, feedback inhibition generally occurs
when excitatory neurons activate inhibitory cells that then
recurrently inhibit them (Kee et al., 2015). In the PC, the
interneurons responsible for feedforward inhibition are
localized superficially (Layers I–II), and those responsible for
feedback connections are distributed in deep layers (Layers
II–III) (Figure 1B).

The Bed Nucleus of the Stria Terminalis
The BST, known as the extended amygdala, has an important
role in stress and fear responses. This forebrain region, made up
of more than 10 subregions, comprises distinct neuroanatomical
and neurochemical populations. AOS information from the
vomeronasal organ (VNO) provides input to the mBST via
the medial amygdala (MeA), and MOS information from
the OE provides input to both the mBST, via the MeA,
and the lBST, via the central amygdala (CeA). In addition,
the BST outputs project to the hypothalamus [e.g., the
paraventricular hypothalamic nucleus (PVH), orexin neurons
(ORXs)] and brainstem regions [e.g., the periaqueductal
gray (PAG), and the origins of monoaminergic innervation,
including the ventral tegmental area (VTA), dorsal raphe
nucleus (DR), and LC] (Figure 1C; Takahashi, 2014; Fox
et al., 2015; Lebow and Chen, 2016). The HPA axis may
be stimulated, via the mBST, following presentation of the
predator odor (Kobayakawa et al., 2007). In addition, the
BST appears to play a role in conditioned fear responses
with a temporal aspect (Goode and Maren, 2017). Moreover,
recent studies suggest that the BST modulates the response
to weak, uncertain threats (Glover et al., 2020; Bruzsik et al.,
2021).

Inhibitory Circuits and the Piriform Cortex
2,5-Dihydro-2,4,5-trimethylthiazoline odor information is
conveyed from the MOB to the APC by several neural networks.
The OE innervates spatially distinct glomeruli forming mirror-
image maps in the MOB (Nagao et al., 2000; Uchida et al.,
2000; Inaki et al., 2002; Mori et al., 2006; Matsumoto et al.,
2010; Murthy, 2011). We demonstrated that stress-related
neural activities were induced only following simultaneous
stimulation in the mirror-image-organized medial and dorso-
lateral walls of the MOB (mOB and dlOB, respectively), but not
following stimulation of the mOB or dlOB individually (Table 1;
Matsukawa et al., 2020). The TCs, whose firing rates during burst
discharges are about 100 Hz, provide rapid input to the APCvr
(fast pathway), whereas the MCs, whose firing rates during burst
discharges are about 40 Hz, provide slow input to the APCd
(slow pathway) (Figure 1A; Nagayama et al., 2004; Igarashi
et al., 2012). We previously suggested that the association of
beta-band (15–40 Hz) oscillations from MCs in both mOB

and dlOB should be needed for stress-induced activation of
the APCd (Matsukawa et al., 2020). In addition, through the
inhibitory circuit from the APCvr, the fast pathway component
can regulate the association of oscillatory activities in the APCd
(Ishikawa et al., 2007; Sato et al., 2008). It has been shown that
the integration and processing of the mOB and dlOB inputs in
the APC are important for the expression of what is termed the
odor–stress response (Matsukawa et al., 2020). Furthermore, we
showed that the selective inhibitory system involved in reducing
the predator odor-induced stress response is likely to be in
the APC rather than in the OB (Matsukawa et al., 2011, 2016,
2020).

THE THERAPEUTIC IMPORTANCE OF
ODOR MODULATION OF STRESS
RESPONSES

Monoamine neurotransmitters have been the primary target
of therapeutic strategies for the treatment of neuropsychiatric
diseases such as PTSD (Krystal and Neumeister, 2009). In
animal models of PTSD, lower 5-HT and elevated NE levels
have been observed in the prefrontal cortex and hippocampus
(Wilson et al., 2014). In addition, we demonstrated changes in
hippocampal NE concentrations following TMT presentation
(Matsukawa et al., 2016). These studies suggest that increased
hippocampal NE concentrations are important in the stress
response following exposure to a life-threatening event/cue.
Higher concentrations of NE in the hippocampus have also been
shown to affect the regulation of stress responses and learning
under stress (de Kloet et al., 2005; Joëls et al., 2006; Ulrich-Lai
and Herman, 2009). Moreover, hippocampal NE concentrations,
under stress conditions, have also been shown to affect memory
consolidation via the amygdala (Roozendaal et al., 2009; Galliot
et al., 2010; Hubert and Muly, 2014). Recent studies have
shown that medial prefrontal areas, including the prelimbic,
infralimbic, and anterior cingulate cortices, can regulate the
response to predatory threats (Glover et al., 2020; de Lima
et al., 2022). Dopaminergic innervation from the VTA has also
been reported in these brain regions, where the number of
synapses is regulated by DA in Layer I via D1 receptor as well
as by NE in Layer II/III (Imai et al., 2004). Together, these
observations suggest that monoamines, which can modify the
neural activities in broad regions of the brain, participate in
odor-induced stress responses.

In addition to monoaminergic modulation, there are many
intrinsic inhibitory circuits that use a variety of inhibitory
neurotransmitters in the APC (Gavrilovici et al., 2010; Suzuki
and Bekkers, 2012; Bekkers and Suzuki, 2013; Large et al., 2016),
as well as inhibitory connections among subregions in the APC
(Ishikawa et al., 2007; Sato et al., 2008). However, many issues
remain to be addressed, such as whether the selective inhibition
system in the APC is a specific response to TMT odor or common
to other predator odors. A better understanding of the inhibitory
mechanisms that selectively suppress the odor-induced stress
response in the APC may be important for the therapeutic
modulation of odor–stress relationships.
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CONCLUSION AND FUTURE STUDIES

Odor-induced stress responses, which involve autonomic,
endocrine, and behavioral responses, can be modulated by innate
and conditioned odors. This modulation of the response to
stress-inducing stimuli such as predator odors likely involves
inhibitory pathways in the APC. These pathways have potential
as therapeutic targets for conditions such as chronic stress,
anxiety, phobias, and PTSD. However, many questions remain
unresolved, including which inhibitory neural circuits and
inhibitory neurotransmitters are involved in a condition-
dependent manner. Moreover, a recent study suggests that
transient receptor potential ankyrin 1 (TRPA1) participates
in predator odor-evoked innate fear responses (Wang et al.,
2018). TRPA1, a chemoreceptor for noxious stimuli, such
as formaldehyde (McNamara et al., 2007), has an important
role in nociception (Story et al., 2003). In addition, a recent
study suggests that innate fear stimuli orchestrate hypothermia
and anti-hypoxia via TRPA1 activation (Matsuo et al., 2021).
Elucidation of stress-related neural circuits, their selective
inhibitory systems, and related chemoreceptors is necessary for
the future development of effective therapeutic interventions.
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