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Abstract
Climate changes driven by greenhouse gas emissions have been occurring in an ac-
celerated degree, affecting environmental dynamics and living beings. Among all af-
fected biomes, the Amazon is particularly subjected to adverse impacts, such as 
temperature rises and water acidification. This study aimed to evaluate the impacts 
of predicted climate change on initial growth and development of an important 
Amazonian food fish, the tambaqui. We analyzed growth performance, and moni-
tored the initial osteogenic process and the emergence of skeletal anomalies, when 
larvae were exposed to three climate change scenarios: mild (B1, increase of 1.8°C, 
200 ppm of CO2); moderate (A1B, 2.8°C, 400 ppm of CO2); and drastic (A2, 3.4°C, 
850 ppm of CO2), in addition to a control room that simulated the current climatic 
conditions of a pristine tropical forest. The exposure to climate change scenarios (B1, 
A1B, and A2) resulted in low survival, especially for the animals exposed to A2, 
(24.7 ± 1.0%). Zootechnical performance under the B1 and A1B scenarios was higher 
when compared to current and A2, except for condition factor, which was higher in 
current (2.64 ± 0.09) and A1B (2.41 ± 0.14) scenarios. However, skeletal analysis re-
vealed higher incidences of abnormalities in larvae exposed to A1B (34.82%) and A2 
(39.91%) scenarios when compared to current (15.38%). Furthermore, the bone-
staining process revealed that after 16 days posthatch (7.8 ± 0.01 mm total length), 
skeletal structures were still cartilaginous, showing no mineralization in all scenarios. 
We concluded that tambaqui larvae are well-adapted to high temperatures and may 
survive mild climate change. However, facing more severe climate conditions, its ini-
tial development may be compromised, resulting in high mortality rates and increased 
incidence of skeletal anomalies, giving evidence that global climate change will ham-
per tambaqui larvae growth and skeletal ontogeny.
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1  | INTRODUC TION

The Amazon region is especially vulnerable to the effects of pre-
dicted climate change in the future, considering its great richness 
of species and characteristic seasonal environmental changes 
(IPCC, 2007, 2014). Increased temperatures and carbon dioxide 
(CO2) concentrations are constantly being registered all over the 
world and bring several concerns regarding the environment’s dy-
namics and respective effects on plants and animals (Kochhann, 
Campos, & Val, 2015; Miller, Kroon, Metcalfe, & Munday, 2015; 
Oliveira & Val, 2017; Rosenzweig et al., 2008; Tseng et al., 2013). 
Likewise, reduced precipitation rates are expected in the Amazon 
region (IPCC, 2014), especially due to anthropogenic actions such 
as deforestation (Malhi et al., 2008), which directly affects this 
biome. The challenges that Amazonian biota will face with cli-
mate change may be overcome if the affected species display a 
well-developed adaptive capacity, thus allowing them to survive 
in different environmental conditions (Hoffmann & Sgrò, 2011; 
Parmesan, 2006); otherwise, Amazonian biodiversity might be 
reduced.

As verified in several studies, both temperature and CO2 uptake 
in the oceans are increasing in a worrying scale, and by 2100, tem-
perature may rise by up to 4°C, and pH is estimated to drop over 
0.4 units (Caldeira & Wickett, 2003; IPCC, 2014). Thus, freshwater 
environments may also be affected, disturbing physiological mech-
anisms of living organisms, such as the ontogeny of organs and 
systems, growth and metabolism (Oliveira & Val, 2017; Pimentel 
et al., 2014; Rosa et al., 2012), leading to increased mortality rates 
(Ishimatsu, Kikkawa, Hayashi, Lee, & Kita, 2004). It is noteworthy 
that under stressful thermal conditions, aquatic organisms tend 
to be more susceptible to other stressors, such as water acidifi-
cation (Byrne, 2011; Byrne, Soars, Selvakumaraswamy, Dworjany, 
& Davis, 2010; Rosa et al., 2013, 2014), especially younger organ-
isms, due to the lack of a well-developed physiological apparatus 
that aids the ionic balance. For instance, when body fluid’s pH of 
fish decreases due to higher CO2 concentrations in the water, and 
the organism must compensate this change by accumulating HCO3

− 
ions (Ishimatsu et al., 2004).

The most challenging period of a fish’s life cycle is the larval 
phase (Pimentel et al., 2014; Portella, Leitão, Takata, & Lopes, 
2012). Ontogenetic processes are directly affected by the inter-
action between the developing fish and environmental condi-
tions, such as water temperature and water acidification, which 
may hinder the development of different systems and body struc-
tures (Johnston & Hall, 2004; Pittman et al., 2013). During early 
life stages, fish are even more vulnerable to water acidification 
and temperature increases because the disruption of the acid-
base balance may lead to a compromised ontogeny of skeletal 
structures (Bignami, Sponaugle, & Cowen, 2013; Boglione et al., 
2013; Georgakopoulou, Katharios, Divanach, & Koumoundouros, 
2010; Ou et al., 2015; Pimentel et al., 2014; Pittman et al., 2013). 
Nevertheless, the appearance of skeletal malformations may have 
other possible causes, such as nutrition (Hamre et al., 2013) and 

genetic factors such as consanguinity (Izquierdo, Socorro, & Roo, 
2010). In addition, if a genetic basis for a specific bone anomaly 
exists, this predisposition may be expressed when exposed to 
challenging environmental conditions (Kause, Ritola, & Paananen, 
2007).

One of the most important fish species in the Amazon region 
is the tambaqui (Colossoma macropomum), which is, despite its 
ecological importance, highly explored in extractive fisheries and 
aquaculture, thus serving as an economic resource for several 
communities. As demonstrated in a previous study, future climate 
change will affect the physiological performance of tambaqui ju-
veniles, possibly hindering its frequency in natural environments 
(Oliveira & Val, 2017). In this sense, tambaqui larvae may also 
be affected by such environmental changes, especially during its 
ontogeny, when its physiological and metabolic processes are not 
fully developed. We hypothesize that the exposure to different 
climate change scenarios with increased temperature and CO2 
concentrations (IPCC, 2007) will disturb the ontogeny of tamb-
aqui larvae, thus hampering its skeleton development. Therefore, 
the aim of this study was to investigate if these climatic changes 
would affect larvae growth, survival and skeleton ontogeny. The 
tambaqui belongs to the Ostariophysi group, characterized by 
the presence of cellular bones (which contains osteocytes) and 
the Weberian apparatus, an anatomic structure that bonds the 
swim bladder to the auditory system of these fish (Bird & Mabee, 
2003; Estêvão et al., 2011). As the ossification processes that 
occur in this group are similar in several important species, such 
as zebrafish and pacu (Piaractus mesopotamicus), the results ob-
tained with tambaqui may be compared to other Ostariophysi 
species.

2  | MATERIAL AND METHODS

Tambaqui larvae were obtained by hormonally induced spawn-
ing from breeders kept in captivity, from the Balbina Fish Farming 
Station of the State Department of Rural Production (SEPROR), 
AM, Brazil (latitude −1.191; longitude −59.466). After fertilization, 
eggs were incubated in a 200 L cylinder-conical incubator with 
constant water circulation (27.8 ± 0.2°C) until all larvae hatch. 
Then, larvae were transported to the Laboratory of Ecophysiology 
and Molecular Evolution of the Brazilian National Institute for 
Research of the Amazon (LEEM/INPA) in Manaus, AM, and the 
plastic bag containing all larvae was placed inside a 150 L holding 
tank filled with the same water used to fill the tanks inside each 
room. For approximately one hour, small amounts of this water 
was diluted inside the bag, for the initial acclimatization of larvae. 
After counting the exact number of larvae per tank (315 individu-
als), the batch was transferred to a 1 L recipient containing ap-
proximately 1/4 of water from the respective tank. Each recipient 
remained floating on each tank surface and, during one hour, small 
amounts of the tank-water were slowly exchanged, before larvae 
were released into the tanks.
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2.1 | Experimental design

Larvae were exposed to the climate change scenarios predicted 
by the Fourth Special Report on Emission Scenarios (SRES) of the 
IPCC (IPCC, 2007), in four climate-controlled rooms, each one with 
ten 9 L tanks (replicates) arranged in a water recirculation system. 
The conditions foreseen in the IPCC (2007) report were used in 
this study due to logistical issues required to update the controlled 
rooms to the environmental conditions foreseen in the IPCC 2014 
report. Each room is equipped with an electronic high-tech system 
with a set-point for atmospheric temperature, humidity and CO2 
concentration that updates every other minute. The control treat-
ment simulated the current climatic conditions of a pristine tropical 
forest located in the main campus of INPA (from 10 October 2014 
to 25 October 2014), given by sensors installed in the forest. The 
atmospheric conditions of the other three rooms simulating the cli-
mate change scenarios B1, A1B and A2 (IPCC, 2007) were real-time 
adjusted considering the current conditions existing in the control 
room. Thus, based on the control treatment, the first scenario (mild 
or B1) had an increase of 1.8°C and 200 ppm of CO2 in its atmos-
phere; the second (moderate or A1B) had a 2.8°C and 400 ppm of 
CO2 increase; while the third and more severe scenario (drastic or 
A2) had a 3.4°C and 850 ppm increase in atmospheric CO2 concen-
tration. The water in the recirculation system (which contained the 
experimental tanks) located inside each controlled room equilibrated 
with the local atmospheric conditions, after the period needed to 
reach the equilibrium. Therefore, variations of water temperature, 
CO2, and pH throughout the experimental period occurred only due 
to the atmospheric variations inside the rooms. The water used to 
fill the recirculation system in each controlled room was previously 
collected in the Balbina Fish Farming Station and transported to the 
laboratory, thus avoiding sudden water quality exchange. Both the 
water temperature (°C) and dissolved O2 (mg/L) were registered 
daily, using an oximeter YSI (5512-FT), while pH and CO2 concentra-
tion (ppm) in water were assessed every other day, using a pH meter 
UltraBASIC UB10 (Denver Instrument) and the colorimetric method 
of Boyd and Tucker (1992), respectively.

Tambaqui larvae were stocked in each 9 L tank at an initial density 
of 35 larvae/L and were fed Artemia nauplii in increasing quantities, 
as suggested by Jomori, Carneiro, Malheiros, and Portella (2003) for 
P. mesopotamicus larvae and adapted for tambaqui in our laboratory. 
Throughout the experiment, 10 larvae from each tank were sampled 
eleven times, at hatching up to the 16th day posthatching (dph); thus, 
in each sampling event, 100 larvae were collected from each treat-
ment. All animals were anesthetized and euthanized in benzocaine 
solution (0.15 g/L), then fixed in a formalin solution at 4% for 48 hr 
and preserved in ethanol 70°GL.

Sampled larvae were weighted, measured and, at the end of the 
experiment (16th dph), the following zootechnical indexes were 
calculated: Specific Growth Rate (SGR) ((100 × {ln final weight − ln 
initial weight}/days of experiment)), Condition Factor (K) (weight/
(lengthb), b = 3.57) and Mass Gain (MG) (final weight − initial weight). 
In addition, the yolk-sac area of larvae with 0 to 6 dph was measured 

(mm2) using a stereoscope (Olympus SZX7) and an image analyzer 
software (CellSens Standard v.1.6).

After biometric evaluations, all larvae underwent a differential 
bone and cartilage staining process, following the methodology pro-
posed by Potthoff (1984), excluding the bleaching step, because the 
larvae were too small and had no body pigmentation yet. After the 
staining process, larvae were preserved in glycerin and then ana-
lyzed for the skeletal development. Skeletal anomalies were regis-
tered by means of a digital photographic camera (Olympus DP26) 
attached to the stereoscope previously used to measure the animals, 
and were qualified (lordosis, scoliosis, kyphosis, malformation in ver-
tebral bodies, upper jaw and lower jaw) and quantified as the pres-
ence (1) or absence (0) of skeleton anomalies.

This study was approved by the Ethics Committee on Animal Use 
of the Faculty of Agrarian and Veterinary Sciences of the São Paulo 
State University (CEUA/FCAV/UNESP), protocol nº 11714/14.

2.2 | Statistical analysis

All data were tested as for error normality (Shapiro-Wilk’s test) 
and variance homoscedasticity (Levene’s test) and are expressed 
as mean ± standard error (SE). An one-way ANOVA, followed by a 
Dunnett’s post hoc test (Dunnett, 1955) was performed to distin-
guish differences between the climate change and the current sce-
narios, regarding environmental variables. Zootechnical data were 
also evaluated by a one-way ANOVA, followed by the Tukey’s post 
hoc. For both tests, a 5% significance level was admitted and both 
were performed with the aid of the Software R (version 3.4.0, 2017).

Skeletal anomalies (categorical data) were evaluated by two dif-
ferent methods. At first, the incidence of anomalies was analyzed by 
one-way ANOVA, followed by the Tukey’s post hoc test. Thereafter, 
in order to seek existing associations between the climate change 
scenarios and the types of skeletal anomalies, an exploratory mul-
tivariate analysis of Simple Correspondence was applied, which was 
performed by means of the Chi-square test. Besides the anoma-
lies data, a Larval Quality Index (LQI) was calculated according to 
Boglione et al. (2009), considering the number of deformed larvae 
per treatment. At last, an exploratory Cluster analysis (by hierarchic 
method) was used to evaluate anomalies incidence. The Software 
STATISTICA 7.0 was used for all exploratory multivariate analysis.

3  | RESULTS

The climate-controlled rooms efficiently simulated the different cli-
mate change scenarios predicted by the IPCC (IPCC, 2007) (Table 1). 
Water temperature and CO2 concentration inside the tanks are 
shown in Figure 1.

The larvae exposed to current conditions and to the three climate 
change scenarios showed complete yolk-sac absorption at 6 dph, 
which was statistically similar within treatments throughout time 
(p > 0.05). At the end of the experiment, larvae exposed to current 
conditions and to the A2 scenario were smaller (p < 0.0001) in weight 
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and length, compared to B1 and A1B scenarios, a result that was also 
verified in the specific growth rate (Supporting Information Figure 
S1). Despite the similar growth performance of larvae exposed to 
current and the A2 scenarios, survival rates were higher in the cur-
rent scenario and lower within the climate change scenarios, espe-
cially for the A2 scenario (the most severe one), which is the most 
severe one (Supporting Information Figure S1). It is remarkable that 
the condition factor was significantly higher in larvae reared both in 
the current conditions (2.64 ± 0.09, p < 0.001) and A1B (2.41 ± 0.14, 
p < 0.001) scenario, while the larvae exposed to the A2 presented 
the lowest values (1.88 ± 0.12, p < 0.001) (Supporting Information 
Figure S1).

Bone mineralization was not observed in larvae exposed to 
both current conditions and to the studied climate change scenar-
ios. However, the incidence of skeletal anomalies increased from 

Scenario
Atmospheric 
Temperature (°C)

Atmospheric CO2 
(ppm)

Dissolved 
Oxygen (mg/L) Water pH

Current 27.91 ± 2.07 498.9 ± 27.5 7.34 ± 0.09 7.10 ± 0.07

B1 29.96 ± 1.99* 704.2 ± 61.1* 7.07 ± 0.07 7.03 ± 0.09

A1B 30.87 ± 2.00* 900.4 ± 44.1* 6.88 ± 0.06* 6.96 ± 0.07

A2 32.95 ± 1.99* 1284.9 ± 50.1* 6.64 ± 0.06* 6.80 ± 0.09

Notes. Asterisks indicate significant differences (p < 0.05) between the current scenario and the pre-
dicted climate change scenarios, by the Dunnett’s test.
Current: current environmental conditions; B1: mild scenario; A1B: moderate scenario; A2: drastic 
scenario.

TABLE  1 Atmospheric temperature 
and CO2 concentration, and 
environmental variables of the water 
inside the climate-controlled rooms used 
in the experiment, reflecting the future 
climatic conditions predicted by the IPCC. 
Values are presented as mean ± SE

F IGURE  1 Water temperature 
and dissolved CO2 concentration in 
the controlled rooms throughout the 
experiment. Values are presented as mean 
(n = 10) ± SE, representing mean values 
obtained in the observation of 10 tanks 
per room

24.00

26.00

28.00

30.00

32.00

34.00

36.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Te
m

pe
ra

tu
re

 in
 °C

Current B1 A1B A2

0.00

5.00

10.00

15.00

20.00

25.00

1 3 5 7 9 11 13 15 16

C
O

2
in

 p
pm

Days

Current B1 A1B A2

TABLE  2  Incidence (%) of skeletal anomalies found in tambaqui 
larvae exposed to different climate change scenarios

Skeletal anomalies Current B1 A1B A2

Lordosis (%) 4.59c 4.77c 7.43bc 15.19a

Scoliosis (%) 0.88b 3.01a 3.71a 3.71a

Kyphosis (%) 0.70c 1.93bc 3.01b 6.36a

Upper Jaw (%) 3.01c 7.24a 5.65b 7.06a

Lower Jaw (%) 5.30a 3.35b 6.55a 6.55a

Ʃ of deformed 
larvae (%)

15.38c 21.28bc 34.82b 39.91a

Notes. Letters indicate significant differences (p < 0.05) regarding skele-
tal anomalies in the different climatic scenarios, according to the Tukey’s 
test.
Current: current environmental conditions; B1: mild scenario; A1B: mod-
erate scenario; A2: drastic scenario.
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the control to the drastic scenario (Table 2), resulting in a highest 
occurrence of anomalies in larvae exposed to A2 scenario (39.91%), 
in comparison with all other treatments. The type of anomaly varied 
among scenarios, with lordosis, considered as the most severe one 
(Figure 2a), often registered for larvae exposed to A2 scenario.

Still concerning the malformations in the notochord, kyphosis 
was the second most frequent anomaly in larvae of the treatment 
A2 (Figure 2b), while scoliosis was the third most current anomaly in 
these larvae (Figure 2c). Jaw anomalies have also been found in tam-
baqui larvae (Figure 2d,e) exposed to the climate change scenarios 

predicted for the end of the century (IPCC, 2007). Other anomalies 
were also observed, such as malformations of the vertebrae carti-
lage model (Figure 2f), but as it appeared in a very small frequency, 
these were not considered for statistical analysis.

Based on the incidence of skeletal anomalies, the cluster analysis 
revealed an expected proximity between the A1B and A2 scenarios, 
both being different from the current and B1 conditions (Supporting 
Information Figure S2). In addition, the simple correspondence anal-
ysis revealed possible associations between the predicted climate 
change scenarios and types of skeletal anomalies (Table 3), whereas 

F IGURE  2 Skeletal anomalies 
registered in tambaqui larvae exposed 
to different climate change scenarios. 
(a) Lordosis, characterized by a dorso-
ventral curvature of the notochord 
(5 dph); (b) kyphosis, characterized by a 
ventral-dorsal curvature of the notochord 
(5 dph); (c) scoliosis, characterized by a 
latero-lateral curvature of the notochord 
(5 dph); (d) upper-jaw malformation 
(9 dph); (e) lower-jaw malformation 
(9 dph); (f) malformation of the future 
vertebral bodies, evidenced by an anterior 
flattening of the cartilage model (16 dph)

.
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a better larval quality index was observed for the larvae exposed to 
the current conditions (Figure 3).

4  | DISCUSSION

Skeletal anomalies appear both in natural and artificial environ-
ments, with higher frequencies occurring in abnormal climatic 
conditions, as demonstrated in this study. Tambaqui larvae will not 
develop its skeleton in a normal way when facing climate change 
expected for the end of the century, especially under moderate and 
extreme conditions of high temperatures, dissolved CO2 and water 
acidity, as observed in the A1B and A2 scenarios (IPCC, 2007). These 
climatic conditions resulted in severely structurally compromised 
skeletons, with marked notochord curvatures (lordosis, scoliosis and 
kyphosis), certainly affecting the animal’s welfare and its fitness both 

in natural and artificial environments (Boglione et al., 2009, 2013; 
Izquierdo et al., 2010; Lopes, Freitas, Jomori, Carneiro, & Portella, 
2014). Poorly developed structures in the craniofacial skeleton were 
also observed (e.g., crooked upper and lower jaws), which may hin-
der larvae growth by directly affecting food capture (Boglione et al., 
2009), as verified in the A2 scenario.

The aforementioned anomalies were also found in larvae deriv-
ing from wild broodstocks, as verified by Lopes et al. (2014) in pacu 
Piaractus mesopotamicus, a phylogenetically closely related species 
of tambaqui. In this case, the appearance of anomalies is unpredict-
able, as several factors are involved in fish ontogeny. On the con-
trary, in artificial environments, such as the climate-controlled rooms 
used in this study, the differential occurrence of skeletal anomalies 
were given mainly by different conditions inside each room. It is 
noteworthy that almost 40% of the larvae exposed to the A2 sce-
nario showed at least one type of bone malformation, while in the 

Scenarios Lordosis Scoliosis Kyphosis Upper Jaw Lower Jaw LQI

Current −9.3010 −7.4821 −9.2622 −8.3542 6.0109 28.3886*

B1 −14.0376 2.4895 −4.4174 11.5255* −8.8874 13.3274

A1B −3.3718 4.9569 −0.0457 −0.5874 6.1672 −7.1191

A2 26.7103* 0.0357 13.7254* −2.5837 −3.2907 −34.5969

Notes. The asterisks indicate the statistically significant associations, which presented normality de-
viations above 1.96, indicating p values above 0.05, by the Tukey’s test.
Positive values (bold) indicate possible associations between climate change scenarios and skeletal 
anomaly.
Current: current environmental conditions; B1: mild scenario; A1B: moderate scenario; A2: drastic 
scenario; LQI: larval quality index.

TABLE  3 Observed minus expected 
frequencies obtained after data 
standardization by the Chi-square test

F IGURE  3 Perceptual map showing associations between climate change scenarios (triangles) and skeletal anomalies (squares), revealed 
by the correspondence multivariate analysis. Black ellipses indicate statistically significant associations between a climatic condition and 
skeletal anomalies (p < 0.05). Current: current environmental conditions; B1: mild scenario; A1B: moderate scenario; A2: drastic scenario; LQI: 
larval quality index
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remaining controlled rooms, the occurrence of anomalies was sig-
nificantly lower. In pacu larvae obtained from wild broodstock and 
reared in captivity, the incidence of cranial and column anomalies 
were 10.9% and 15.8%, respectively (Lopes et al., 2014).

The main causes of skeletal anomalies in fish relate to genetic 
(Georgakopoulou et al., 2010), nutritional (Cahu, Zambonino-
Infante, & Takeuchi, 2003) and environmental factors (Boglione 
et al., 2013) or handling methods (Izquierdo et al., 2010; Wargelius, 
Fjelldal, & Hansen, 2005). Thus, we argue that the differential occur-
rence of anomalies verified in all treatments was given by environ-
mental factors, seen that all larvae were obtained from the same pair 
of breeders, feed was supplied as the routine protocol for tambaqui 
larviculture and was identical within all animals, and the adopted 
handling methods were also identical among the treatments. Thus, 
genetic, nutritional or handling factors were not the causes that trig-
gered the appearance of such anomalies. The differences among the 
controlled rooms were exclusively their atmospheric temperatures 
and CO2 concentrations, which reflected in differential combination 
of water temperature and acidity inside the tanks.

The ontogeny of organs and systems of fish larvae may be af-
fected by inappropriate abiotic factors (e.g., temperature), especially 
when an organism has genetic predisposition to develop malfor-
mations (Kause et al., 2007). In this context, it is possible that both 
increased water temperature, dissolved CO2, and acidity may have 
influenced the animals’ growth and skeletal development. As ob-
served by Pimentel et al. (2014), the first life stages of fish—when 
larvae do not have yet developed an sufficient ion-regulatory sys-
tem, represent a critical period for the organisms’ ecological success. 
When exposed to climate change scenarios with increased CO2 and 
temperature, the lack of a good regulation capacity may lead to met-
abolic depression, growth reduction, a compromised skeletal ontog-
eny and, consequently, differential survival rates (Ou et al., 2015; 
Pimentel et al., 2014; Pittman et al., 2013; Pörtner, Langenbuch, & 
Reipschlager, 2004; Rosa & Seibel, 2008; Seibel & Walsh, 2001). 
This may be the reason for the increasing occurrences of anomalies 
in fish exposed to the climate change scenarios (B1, A1B, and A2) 
in the climate-controlled rooms. In a similar manner, survival rates 
were also differential among scenarios, being lower in the A2 sce-
nario (24.7 ± 1.0%), comparing to the others. Altricial larvae, such as 
the tambaqui larvae used in this study, do not possess a completely 
developed physiological and metabolic apparatus at their early 
stages of development. In this sense, high mortalities rates may be 
observed when these organisms face climate change, because early 
hatched larvae might not be yet adapted to such climatic variations, 
as suggested by Pittman et al. (2013).

Different incidences of skeletal anomalies were verified in the four 
predicted climate change scenarios. These results are in accordance to 
the zootechnical parameters evaluated, showing a lower performance 
of larvae exposed to the most extreme scenario (A2, 6.84 ± 0.9 mm 
length and 1.79 ± 0.1 mg) in comparison with others. Lopes et al. 
(2014) showed that bone mineralization starts at 6 dph in P. mesopo-
tamicus (5.5 mm total length), first through the dentary bone, then by 
the ninth vertebrae followed by the final portion of the notochord, so 

it was expected that tambaqui larvae would undergo the same pro-
cess, as they are closely related species. Although, in marine species, 
several authors (Boglione et al., 2009, 2013; Cahu et al., 2003; Noble 
et al., 2012; Wargelius et al., 2005) indicate that under different rear-
ing conditions (e.g., larvae density, feeding, light regime and water 
quality parameters), this event may be delayed. Another hypothesis 
about the delay or the nonmineralization of the tambaqui bone struc-
tures concerns to the water used in the experiment, which came from 
Balbina reservoir. This water is typically acid and deficient in calcium 
carbonate, an essential element in the composition and formation of 
mineralized bone structures (Feely et al., 2004). The pH values regis-
tered throughout the experiment were close to neutrality, with slight 
variations among treatments, however, such variations are meaning-
ful, considering that slight reduction in water pH may be very prob-
lematic for fish species, especially during their early stages (Caldeira 
& Wickett, 2003; Pimentel et al., 2014). Therefore, new studies must 
be performed in order to investigate the time for mineralization of the 
tambaqui’s bone structures in controlled and natural environments, as 
the water pH and mineral composition influences this process.

The proximity revealed by the cluster analysis between the A1B 
and A2 scenarios reinforces the hypothesis that the species will be 
severely affected by moderate or drastic climatic changes, as also 
reported by Oliveira and Val (2017). When analyzing the significant 
associations found between severe skeletal anomalies and climate 
change scenarios, especially the most drastic one (A2), and between 
larval quality index and the larvae exposed to current conditions, 
we assume that the predicted climate changes, regardless of its 
dimension will affect the life cycle of the species C. macropomum. 
The tambaqui is a strict freshwater species and the appearance of 
skeletal anomalies facing climate change were similar to what was 
found in other studies with marine species (Dionísio et al., 2012; 
Georgakopoulou et al., 2010; Lall & Lewis-McCrea, 2007; Pimentel 
et al., 2014), demonstrating that future climatic variations will simi-
larly affect both freshwater and marine species.

Throughout its reproduction season, the tambaqui migrates 
to muddy, nutrients-rich waters with a typical stable temperature 
(around 28°C). After spawning, newly hatched larvae grow in flood-
plains where the variations of temperature and dissolved oxygen are 
wider (Gomes, Simões, & Araújo-Lima, 2013). Thus, these organisms 
must be able to tolerate a certain range of environmental conditions, 
without compromising its homeostasis. The thermal tolerance range 
of a species varies depending on animal’s age (Wilson & Nagler, 
2006), and this range was not yet studied for tambaqui. Our results 
suggested that over the first days of development, tambaqui larvae 
grows in a healthier way and with higher survival rates in tempera-
tures close to 28°C, despite presenting greater growth (weight and 
length) in higher temperatures, as also verified in the marine species 
Theragra chalcogramma (Hurst, Fernandez, & Mathis, 2013).

Anthropogenic activities are currently one of the greatest prob-
lems in the Amazon basin, causing habitat fragmentation and river 
courses deviations as consequences of deforestation, dam construc-
tions, excessive exploitation of natural stocks and pollution (Castello 
et al., 2013). These activities directly influence fish populations, as well 
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as other aquatic species, and certainly the predicted climate variations 
for the end of the century will augment such impacts, by increased 
or decreased precipitation patterns or by water quality variations, as 
previously quoted (IPCC, 2007, 2014), even leading to extinction of 
vulnerable species (Hugueny, Movellan, & Belliard, 2011). However, 
it is possible that some species are better prepared to face mild or 
moderate environmental changes, as verified by Luo, Guan, Li, and Jin 
(2013) with two eel species (Anguilla marmorata and A. bicolor), which 
developed well in slightly elevated temperatures, but not in drastic 
conditions. Tambaqui juvenile were considered as “partially” adapted 
to mild and moderate predicted climate change (B1 and A1B scenarios), 
seen that they showed physiological adaptations in blood parameters, 
such as increased cortisol and glucose concentrations, which enabled 
their survival in these scenarios (Oliveira & Val, 2017). Indeed, larvae 
grew more under these intermediate conditions than when exposed to 
the current and drastic conditions (current and A2 scenarios), but con-
versely developed a greater number of skeletal anomalies and possibly 
were not in a higher welfare status than the current condition larvae, 
reflected by the condition factor. The influences that climate change 
will exert in this species and its response to such impacts involves 
complex mechanisms (Prado-Lima & Val, 2016) that must be studied 
in order to better understand how this important species will respond 
to future climatic variations. A recent study demonstrated that one of 
the main current challenges for Amazonian species is the mitigation 
of anthropogenic influences in this biome (Foster, Falter, McCulloch, 
& Clode, 2016). In this sense, urgent conservation actions should be 
taken into account in order to reduce such impacts on this biome 
(Assunção, Gandour, & Rocha, 2015). In conclusion, the environmen-
tal alterations caused by predicted climate change for the end of the 
century will affect growth, survival and the skeletal development of 
Colossoma macropomum larvae, an important Amazonian food species.
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