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Background: Respiratory virus infections are significant causes of morbidity and mortality, and may induce
host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chroma-
tography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the
diagnosis of influenza infection.
Methods: We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures
for diagnosis of acute illness. Machine learning models were performed for classification, followed by Shap-
ley additive explanation (SHAP) analysis to analyze feature importance and for biomarker discovery.
Findings: A total of 236 samples were tested in the discovery phase by LC/Q-TOF, including 118 positive sam-
ples (40 influenza A 2009 H1N1, 39 influenza H3 and 39 influenza B) as well as 118 age and sex-matched
negative controls with acute respiratory illness. Analysis showed an area under the receiver operating char-
acteristic curve (AUC) of 1.00 (95% confidence interval [95% CI] 0.99, 1.00), sensitivity of 1.00 (95% CI 0.86,
1.00) and specificity of 0.96 (95% CI 0.81, 0.99). The metabolite most strongly associated with differential clas-
sification was pyroglutamic acid. Independent validation of a biomarker signature based on the top 20 differ-
entiating ion features was performed in a prospective cohort of 96 symptomatic individuals including 48
positive samples (24 influenza A 2009 H1N1, 5 influenza H3 and 19 influenza B) and 48 negative samples.
Testing performed using a clinically-applicable targeted approach, liquid chromatography triple quadrupole
mass spectrometry, showed an AUC of 1.00 (95% CI 0.998, 1.00), sensitivity of 0.94 (95% CI 0.83, 0.98), and
specificity of 1.00 (95% CI 0.93, 1.00). Limitations include lack of sample suitability assessment, and need to
validate these findings in additional patient populations.
Interpretation: This metabolomic approach has potential for diagnostic applications in infectious diseases
testing, including other respiratory viruses, and may eventually be adapted for point-of-care testing.
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1. Introduction

Over the last decade, the diagnosis and monitoring of infectious
diseases has been revolutionized by molecular testing, including the
widespread use of Polymerase Chain Reaction (PCR) in Clinical Micro-
biology and Virology Laboratories. These methods are rapid and
highly accurate; however, important limitations remain unaddressed,
including high cost, high complexity, inability to differentiate active
infection from latency or colonization, and lack of sensitivity in direct
patient specimens [1�4]. Moreover, although molecular testing avail-
ability has improved overall, it remains largely restricted to central-
ized laboratories especially in the context of kit shortages for point-
of-care testing [5]. In addition, traditional rapid influenza diagnostic
tests and digital immunoassays have been limited by suboptimal sen-
sitivity, and alternatives are needed [6]. Accurate testing is particu-
larly important for respiratory viruses including influenza, which are
estimated to have caused over 35 million symptomatic illnesses
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Research in context

Evidence before this study

We performed a literature search of 3 major databases (PubMed,
Embase, and Cochrane), and medRxiv for preprints. The search
identified English and French studies published from January 1
2010 to May 31 2021 using the keywords “influenza”, and “metab-
olomics”, “mass spectrometry”, “quadrupole time of flight”, “triple
quadrupole”, and similar terms, and “nasopharyngeal”, “samples”,
“specimens” and similar terms. Overall, several studies have
described the use of untargeted metabolomics for the diagnosis
and characterization of influenza infection, mainly using viral cell
culture lines and/or animal models. We found a single study that
employed proteomics for characterization of influenza from naso-
pharyngeal swab specimens. Furthermore, comprehensive quanti-
tative analysis and diagnostic test performance indicators were
infrequently reported.

Added value of this study

We demonstrated the feasibility and high accuracy of an untar-
geted metabolomics approach from nasopharyngeal samples
combined with machine learning for the identification of dis-
tinct metabolic signatures for the diagnosis of influenza infec-
tion. This study draws on a larger dataset than previously
employed, and this approach maintained high performance
after adaptation to clinically-adaptable LC/MS-MS instruments
on an independent validation cohort.

Implications of all the available evidence

Our study reinforced the potential of metabolomics as a diag-
nostic approach for clinical virology application, and demon-
strated successful adaptation for clinically-adaptable testing.
Further work assessing performance for detection of other
pathogenic targets and patient populations will be required to
further characterize potential for clinical use.

Fig 1. Conceptual diagram of the study from data collection to interpretation. The
phases of data collection, model development, and interpretation are illustrated. LC/Q-
TOF: liquid chromatography quadrupole time-of-flight; LC-MS/MS: liquid chromatog-
raphy-mass spectrometry; RF: random forests; ROC: receiver operating characteristic
curve; SHAP: Shapley Additive explanation; SRM: selected reaction monitoring.
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during the 2018�2019 season alone in the United States [7]. These
viruses infect respiratory epithelial cells, where they may induce
metabolite alterations in the host [8,9]. The ‘-omics’ field, including
genomics, proteomics, and metabolomics, has been studied for the
diagnosis of influenza with variable success [10�16]. Of the three
fields, genomics has been the most utilized for clinical virology pur-
poses; however, there is significant interest in leveraging alternative
approaches such as metabolomics and proteomics to address remain-
ing gaps. Metabolomics, or the large-scale study of small molecules,
represents a change in paradigm from routine clinical virology diag-
nostics as it detects host metabolic response rather than directly
detecting the pathogen [17]. Metabolomics theoretically holds prom-
ise for infectious diseases applications as it can be performed directly
from patient specimens from minimal sample volume, is inexpensive
to run, provides a real-time assessment of host response and may
accurately differentiate active infection from colonization [18,19].
However, approaches until now using viral culture have been ham-
pered by low sensitivity and prolonged turnaround time.

Nasopharyngeal swab sampling followed by swab immersion in
viral transport medium (VTM) is the most common collection tech-
nique for the diagnosis of respiratory viruses and enables the non-
invasive collection of respiratory cells. We hypothesized that analysis
of VTM after nasopharyngeal sampling using a recently reported and
sensitive in-line two-column metabolomics method would reveal
distinct signatures for the diagnosis of infectious diseases [20]. This
method is well suited for the characterization of host metabolite
signatures directly from patient specimens by liquid chromatography
quadrupole time-of-flight mass spectrometry (LC/Q-TOF) using a
simplified experimental workflow (Fig. S1) [20]. The objective of this
study was to use this LC/Q-TOF method to generate data to develop
and validate machine learning (ML) algorithms for classification of
influenza infection status, and an interpretation method for bio-
marker discovery (Fig. 1). The developed top-20 ion feature signature
was then successfully adapted to testing on a clinically-applicable,
targeted triple quadrupole mass spectrometry instrument (LC/MS-
MS; referred to as tandem mass spectrometry) for validation on
upper respiratory tract specimens.
2. Methods

2.1. Resource availability
2.1.1. Lead contact
Further information and requests for resources and reagents

should be directed to and will be fulfilled by the Lead Contact, Cather-
ine Hogan (hoganca@stanford.edu).



C.A. Hogan et al. / EBioMedicine 71 (2021) 103546 3
2.1.2. Materials availability
This study did not generate new unique reagents.

2.1.3. Data and code availability
The data and code generated during this study will be made avail-

able at https://github.com/stanfordmlgroup/influenza-qtof.

3. Experimental model and subject details

For the discovery cohort, we selected stored specimens collected
from April 23 2015 to October 13 2019 to achieve a 1:1 ratio of posi-
tive to age and sex-matched negative controls. Age-matching was
performed to the identical age, or within 2 years if not available. We
included specimens from 96 children (2�17 years-old) and 140
adults (�18 years-old). These corresponded to 123 males and 113
females. Mixed infections and samples from other sites (e.g., oropha-
ryngeal swab, bronchoalveolar lavage and lung tissue) were
excluded. Individual retrospective chart review was performed for all
subjects in the untargeted phase of the study to identify age, sex,
immunocompromised status, comorbidities, disease severity, antivi-
ral treatment and clinical outcomes. LC/Q-TOF testing was performed
to generate raw data on mass-to-charge ratio and retention time for
each sample tested.

For the validation cohort, we prospectively selected negative and
positive nasopharyngeal and nasal swab specimens from December
21 2019 to February 18 2020 in a 1:1 ratio without exclusion. Sam-
ples were subsequently stored at -80 °C until testing. Testing was
performed at the Stanford Biochemical Genetics Laboratory using a
validation sample set of 96 samples tested by LC/MS-MS. Of the indi-
viduals with available demographic data, there were 14 children and
80 adults, corresponding to 39 females and 55 males. There were
three individuals with documented viral coinfection (seasonal coro-
navirus, RSV or CMV) in the validation cohort.

4. Method details

4.1. Study design and patient population

The research objective was to assess the diagnostic test perfor-
mance of the LC/Q-TOF (biomarker discovery cohort) and targeted
analysis (validation cohort) for the diagnosis of influenza-infected vs
uninfected individuals, and to identify key metabolites for classifica-
tion of these two groups. In both the discovery and validation
cohorts, target sample size calculation was based on the DeLong
method. The test cohort, which represented 20% of the discovery
cohort corresponding to 48 patients, provides over 90% statistical
power to detect an AUC of 0.925 between influenza-infected and
uninfected individuals using an AUC hypothesis test of 0.50, with a
significance level of 0.05.

A secondary endpoint of influenza A vs influenza B was estab-
lished in the study design phase, and used as an exploratory end-
point. The target sample size was not changed during the study.
Nasopharyngeal samples collected from adult patients from Stanford
Health Care (SHC) and children from the Lucille Packard Children’s
Hospital (LPCH) were processed per routine clinical procedures.
Briefly, a flocked swab is inserted in the nasal passage, rotated for col-
lection of cells for 10�15 s and placed in viral transport medium
(MicroTest M4RT, Remel Inc., San Diego, CA). Respiratory viral testing
was performed on the ePlex Respiratory Pathogen (RP) panel (Gen-
Mark Diagnostics, Carlsbad, CA) at the Stanford Clinical Virology Lab-
oratory, as per routine clinical test procedures. This automated
qualitative (detected/not detected) nucleic acid amplification test
(NAAT) identifies 15 viral targets, including influenza A, influenza
H1N1 2009, influenza A H3 and influenza B. Results from this assay
were used as the reference for this study. Specimens tested by the
ePlex RP panel and resulted as indeterminate were not included for
the study. Specimens were aliquoted and stored at -80 °C without
additional handling until subsequent LC/Q-TOF testing. Specimen
processing was performed the same way for specimens from individ-
uals with and without influenza infection. There were no adverse
effects related to use of the reference (RT-PCR) and index tests
(metabolomics).

For the discovery cohort, we selected stored specimens from indi-
viduals assessed at Stanford Health Care and Stanford Children’s
Health with and without influenza infection collected from April 23
2015 to October 13 2019 to achieve a 1:1 ratio of positive to age and
sex-matched negative controls. A convenience set was selected.
Specimens from pediatric individuals were included given the bur-
den of respiratory viruses in these groups, with age-matching to
account for potential metabolomic changes by age group. Infants
aged less than 2 years-old were excluded due to the limited number
of specimens available from this age group. Age-matching was per-
formed to the identical age, or within 2 years if not available. We
included specimens from 96 children (2�17 years-old) and 140
adults (�18 years-old). These corresponded to 123 males and 113
females. Mixed infections and samples from other sites (e.g., oropha-
ryngeal swab, bronchoalveolar lavage and lung tissue) were
excluded. Individual retrospective chart review was performed for all
subjects in the untargeted phase of the study to identify age, sex,
immunocompromised status, comorbidities, disease severity, antivi-
ral treatment and clinical outcomes. Data collection was performed
after the reference test (RT-PCR) and before the index test (metabolo-
mics). Testing was performed for symptomatic individuals, most
commonly from an upper respiratory tract infection (URTI) viral syn-
drome. LC/Q-TOF testing was performed to generate raw data on
mass-to-charge ratio and retention time for each sample tested. Sin-
gle replicate testing was performed, and outlier data points were
included for analysis. Clinical and reference testing data were not
available to the individuals performing processing and performing
set-up for metabolomics testing.

For the validation cohort, we prospectively selected negative and
positive nasopharyngeal and nasal swab specimens from December
21 2019 to February 18 2020 in a 1:1 ratio without exclusion. Sam-
ples were subsequently stored at -80 °C until testing. Testing was
performed at the Stanford Biochemical Genetics Laboratory. A valida-
tion sample set of 96 samples was tested. Of the individuals with
available demographic data, there were 14 children and 80 adults,
corresponding to 39 females and 55 males. There were three individ-
uals with documented viral coinfection (seasonal coronavirus, RSV or
CMV) in the validation cohort. LC/MS-MS testing was performed to
generate raw data on mass-to-charge ratio and retention time for
each sample tested. Single replicate testing was performed, and out-
lier data points were included for analysis. This method served to
confirm the results from the LC/Q-TOF analysis in a separate partici-
pant cohort.

4.2. Ethics

This study was approved by the Stanford Institutional Review
board (IRB protocol #48973). Per IRB assessment, informed consent
was waived for this study.

4.3. LC/Q-TOF method

Liquid chromatography (LC) separation was performed on an Agi-
lent 1290 Quaternary LC system (Agilent Technologies). In this
unique chromatographic arrangement, two columns are used in-line:
a reverse-phase (RP) column of 2.1 £ 50 mm 1.8 mm HSS T3 (Waters
Corporation, Milford, MA) is placed first followed by an ion exchange
(IEX) column of 2.0 £ 30 mm 3 mm Intrada (Imtakt USA, Portland,
OR). Both columns are joined with EXP2 fittings (Optimize Technolo-
gies, OR). Mass spectrometry was performed on an Agilent 6545 Q-

https://github.com/stanfordmlgroup/influenza-qtof
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TOF instrument with electrospray ionization. The mobiles phases
were (A) 150 mg of ammonium formate per liter water with 0.4% for-
mic acid (v/v), (B) 1.2 g of ammonium formate per liter of methanol
with 0.2% formic acid, and (C) water with 1% each formic acid and
ammonium hydroxide, as previously described [20]. The flow rate
was 0.5 mL/min, column temperature of 45 °C and injection volume
of 5 mL, for a total run time of 20 min (inject-to-inject). MS was per-
formed on an Agilent 6545 Q-TOF with dual Agilent JetStream elec-
trospray ionization, as previously described [20]. This LC/Q-TOF
method has previously been shown to demonstrate high analytical
data quality including peak area precision, with most QC samples
showing <30% coefficient of variation [20]. The instrument was oper-
ated in sensitivity-mode with extended dynamic range and positive
polarity, scanning from 50 to 1100 m/z. Two reference ions were
used: purine (m/z 121.050873), and hexakis (1H,1H,3H-tetrafluoro-
propoxy) phosphazene (m/z 922.009798).

4.4. LC/Q-TOF metabolite extraction and analysis

A volume of 100 mL of nasopharyngeal sample eluted in VTM was
processed by ultrafiltration using Pall Omega 3kDa centrifugal devi-
ces (VWR, Radnor, PA) at 4 °C for 15 min at 17,000 x g. The filtrate
was transferred to glass vials and analyzed, and each sample was run
once. Two quality control (QC) samples one pooled QC sample and an
independent normalization QC sample were used to assess for batch
effect. The pooled QC was created by pooling an equal volume of ali-
quots from all the samples included in the run. Unsupervised princi-
pal component analysis was performed to visually assess appropriate
performance of the pooled QC. The normalization QC was picked as a
random nasopharyngeal swab clinical specimen not included in this
study. In addition, blank VTM was run in triplicate to generate a
mean background spectral distribution. Progenesis QI software
(Waters Corporation) was used for run alignment, peak picking
(automatic, level 4), adduct deconvolution, and feature identification.
Positive polarity analysis was performed using the adducts [M+H],
[M+NH4] and [M+Na]. The fragment ions were obtained for the top
20 ion features by subjecting the samples to triple quadrupole system
using a collision energy of 15V with the precursor ions identified
from Progenesis analysis. Metabolite identification was first per-
formed using a previously-developed authentic standard library [20].
If there was no identification match, preliminary annotation was per-
formed in Progenesis QI software using the HMDB [21] and KEGG
[22] plug-ins, and by manual review in the NIST 20 MSMS library and
METLIN. A mass error setting of 30 ppm was used. Data were directly
exported from Progenesis for machine learning analysis using peak
area filter thresholds of 0; �5000; �10,000 and �20,000 relative
abundance values. Outlier values were not excluded, and no addi-
tional instrument data processing was performed.

4.5. LC-MS/MS targeted method

The targeted analysis was performed using a clinically-validated
method that detects pyroglutamic acid, as previously described
[23,24]. Mass spectrometry was performed on an Agilent 6460 Triple
Quadrupole mass spectrometer equipped with an Agilent JetStream
electrospray ionization. Selected reaction monitoring (SRM) pairs
based on the important ion features were added to the method
(Table S4). The data were acquired using MassHunter WorkStation
Acquisition version B.08.02 (Agilent) and exported for machine learn-
ing analysis.

4.6. LC-MS/MS metabolite extraction and analysis

A volume of 100 mL of respiratory specimen eluted in VTM or
phosphate buffered saline (PBS) and 10 mL of pyroglutamic acid-D5
0.025 nm/L as internal standard (Cambridge Isotope Laboratories, Inc,
Tewksbury, MA) was processed by ultrafiltration using Pall Omega
3kDa centrifugal devices (VWR, Radnor, PA) at 4 °C for 15 min at
17,000 x g. The filtrate was transferred to glass vials and analyzed.
The data were acquired using MassLynx version 4.2 (Waters Corp).
The median percent coefficient of variation (CV) of the D5-pyrogluta-
mic acid across all samples was <15%.

5. Quantification and statistical analysis

5.1. Statistical analysis

Statistical analysis was performed by Chi-squared test (categorical
variables if 5 or more variables per cell) or Fisher’s exact test (cate-
gorical variables if less than 5 variables per cell) and Mann-Whitney
U test (continuous variables), using Stata v15.1 (Stata Corp, College
Station, TX). Missing data are identified as unknown. A two-sided p
value of <0.05 was considered significant. The sample size calcula-
tion was based on the DeLong method. The test cohort with 48
patients provides over 90% statistical power to detect an AUC of
0.925 between influenza-infected and uninfected individuals using a
two-sided AUC hypothesis test of 0.50, with a significance level of
0.05.

5.2. Machine learning analysis

We developed machine learning methods for the task of deter-
mining whether a sample was positive or negative for influenza
based on its metabolic profile. Machine learning is a class of techni-
ques that uses data to learn a model that maps an input (the meta-
bolic profile of a sample; includes mass-to-charge ratio (m/z),
retention time and relative abundance for each sample) to its associ-
ated output (the influenza infection outcome of the sample based on
the reference standard) and uses this learned model on new inputs
(the metabolic profiles of new samples) to make predictions of new
outputs (the influenza outcomes of new samples). We implemented
two machine learning methods: gradient boosted decision trees and
random forests (RFs). Each of these methods was used separately to
build an independent model.

Gradient boosted decision trees and RFs are both ensemble learn-
ing methods that improve upon the performance of decision tree
models. Decision tree learners construct a model by iteratively identi-
fying which feature most effectively divides the data into groups with
low within-group variation in the outcome and high between-group
variation in outcome, and then repeat the process within each group.
Gradient boosted decision trees (GBDT) construct several decision
trees such that each tree learns from the errors of the prior tree [25].
Light gradient boosted model (LGBM) is a particular implementation
of GBDT that is based on a unique algorithm to identify the split value
of categorical variables. Random forests (RF) construct several deci-
sion trees such that each tree is constructed using different subsets of
the data. The machine learning approaches of LGBM and RF were
chosen over alternative machine learning methods because they can
handle mixes of categorical and continuous covariates, capture non-
linear relationships, and scale well to large amounts of data.

Ion features showing zero values through all samples tested were
removed from the dataset. The remaining dataset was partitioned
without normalization into a training set used to develop machine
learning models, and a holdout test set used to evaluate the predic-
tive performance of the machine learning models. The partitioning of
the dataset was random such that 80% of the samples were included
in the training set, and the other 20% in the test set. There was no
overlap between the samples and patients between the two sets.

All models were developed on the training set, and their final per-
formance reported on the holdout test set and/or the prospective
cohort. The models were not retrained using SRM data to avoid over-
fitting and overestimating test performance. In addition, within the
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training set, cross-validation was used to develop the models to avoid
overfitting to the training set. In the cross-validation procedure, the
training dataset was randomly partitioned into k = 4 equal sized sub-
samples consisting of an approximately equal percentage of each
class. Of the k subsamples, a single subsample was retained as the
validation data for the model, and the remaining k � 1 subsamples
were used to train a model. The cross-validation process was then
repeated k times, with each of the k subsamples used exactly once as
the validation data. Grid search was used to find the best set of hyper-
parameters for model training; the same hyperparameter settings
were used across all k folds. The resulting k models (one from each
fold) were used to make k sets of predictions on the test set, which
were then averaged using a simple mean to make the final prediction
for each sample in the test set.

To determine the usefulness of capturing non-linear relationships
with machine learning models, the modelling approaches using two
machine learning methods, gradient boosted decision trees and ran-
dom forests, were compared with two traditional linear models, Least
absolute shrinkage and selection operator (Lasso) and Ridge. These
models are variants of Logistic regression, a statistical model that
uses the logistic function to model the outcome assuming a linear
relationship between the features and the outcome. Lasso makes the
same linear assumption but alters the model fitting process to select
only a subset of the features for use in the final model rather than
using all of them. Unlike Lasso, Ridge will not result in a sparse
model, but rather addresses multicollinearity in the features by
shrinking the weights assigned to correlated variables. The training
and test sets, and the cross-validation strategy were identical across
the machine learning models and traditional linear models.

The SHAP (SHapley Additive exPlanations) method was used to
quantify the impact of each feature on the models. The method
explains prediction by allocating credit among the input features;
feature credit is calculated using Shapley Values [26,27] as the change
in the expected value of the model’s prediction of improvement for a
symptom when a feature is observed versus unknown. To uncover
clinically important ion features that were globally predictive of the
outcome, the Shapley values for the top 20 ion features on individual
predictions were aggregated and reported along with their averaged
absolute Shapley contributions as a percent of the contributions of all
the features. Our goal was to select the top 20 differentiating metabo-
lites capable of performing classification in a prospective cohort of
samples. While Lasso produces a sparse model, its top features are by
no means guaranteed to perform well on the prospective cohort.
Hence, we chose to use SHAP to identify the top metabolites used by
the LGBM model, which recorded the highest performance on the
retrospective dataset, as they would be the most likely to perform
strongly in prospective analysis. Thus, the SHAP method assessment
was based on the highest performing of the four classification models
(RF, LGBM, Lasso, or Ridge) for the discovery and validation datasets.
Limiting the number of features to the top 20 was also consistent
with an approach to reduce the risk of overfitting.

An exploratory subgroup analysis was used to evaluate variation
in model performance across patient subpopulations. We trained an
LGBM model using the previously described cross-validation strategy
on the discovery training set and generated predictions with this
model on the discovery test set. We then split the test samples into
disjoint subpopulations and reported the AUC and confidence inter-
val using DeLong’s method for each subgroup. We investigated the
following subgroups: adult vs pediatric individuals, immunocompro-
mised vs not, ICU-admitted vs not, antibiotic-treated vs not, bacterial
coinfection vs not, and by time since symptom onset at the time of
respiratory viral testing (<7 days vs �7 days).

A multivariable analysis was used to investigate the significance
of potential confounders in the analysis. We first trained our model
and generated predictions on the discovery test set using the previ-
ously described methods. We then performed an additional logistic
regression on the true label with predictors comprising predicted score,
age, sex, number of days since symptom onset, Charlson comorbidity
index score, and hospitalization status. The significance of each predictor
was determined using the p-value from this regression.

The primary measure of model performance was the area under
the receiver operating characteristic curve (AUC), which illustrates
the diagnostic discriminative performance of the models. Perfor-
mance measures for the models also included sensitivity, specificity,
and accuracy at a high-sensitivity operating point used to binarize
the model predictions. The high-sensitivity operating point was
selected by selecting a high-sensitivity operating point on each of the
k validation folds and averaging them: on each validation fold, an
operating point that maximized the Youden’s J statistic and produced
a sensitivity of at least 0.9 was selected. To assess the variability in
estimates, we provide 95% Wilson score confidence intervals for sen-
sitivity, specificity, and accuracy and 95% DeLong confidence intervals
for AUC [28].

Analyses were performed in Python version 3.6.8, using the
LightGBM v2.2.3 implementation for gradient boosted decision trees,
scikit-learn v0.20.2 for RF, stratified k-fold cross-validation and grid
search [29], SHAP (SHapley Additive exPlanations) v0.29.1 for com-
puting feature importance, and R version 3.5.0 for statistical analysis.

5.3. Role of the funding source

The funders had no role in study design, data collection and analy-
sis, decision to publish, or preparation of the manuscript.

6. Results

6.1. Biomarker discovery phase

A total of 248 samples were analyzed by LC/Q-TOF for metabolite
discovery. Of these, 6 were excluded prior to analysis due to technical
errors and their 6 corresponding controls were excluded (Fig. S2).
The final analysis included a total of 236 samples, with 118 positive
influenza samples (40 influenza A 2009 H1N1, 39 influenza A H3 and
39 influenza B) and 118 negative age and sex-matched controls
(Table 1). The discovery cohort training set consisted of 186 samples
(94 positive, 92 negative), and the test set consisted of 50 samples
(24 positive, 26 negative). Compared to individuals without influ-
enza, those with a positive influenza result were more likely to have
been tested at an outpatient clinic (63.6% vs 26.3%; p < 0.001 [Chi-
squared]), less likely to be immunocompromised (22.9% vs 45.8%;
p = 0.001 [Chi-squared]), less likely to have been hospitalized (24.6%
vs 69.5%; p < 0.001 [Chi-squared]) and less likely to have been admit-
ted to the intensive care unit (ICU) (5.1% vs 22.0%; p < 0.001 [Chi-
squared]). Furthermore, individuals with a positive influenza result
were more likely to have received antibiotic therapy (32.2% vs 13.6%;
p < 0.001 [Chi-squared]), and to have confirmed bacterial coinfection
or colonization (32.2% vs 6.7%; p < 0.001 [Chi-squared]). Symptoms
most commonly involved an upper respiratory tract infection (URTI)
syndrome, and patient characteristics were otherwise similar. All-
cause 30-day mortality was identical in each group at 3/118 (2.5%).

6.2. LC/Q-TOF metabolomics combined with machine learning
demonstrates high classification performance

Untargeted metabolomics by LC/Q-TOF identified a total of 3366
ion features. Of these, 48 ion features were removed given they
showed zero values for all clinical samples tested, but were detected
in a QC sample, leaving 3318 ion features for analysis. Principal com-
ponent analysis representation of these data is presented separately
(Fig. S3). Application of machine learning models to these features,
specifically the LightGBM (LGBM) and random forest (RF) models,
based on the 20% of data reserved for testing, achieved an area under



Table 1
Baseline demographic characteristics of all patients in the biomarker discovery (LC/Q-TOF) phase of the study.

Non-influenza acute
respiratory disease (n = 118)

Influenza acute respiratory
disease (n = 118)

p-value*

Age (No. [%]) �2yo�17yo 48 (40.7%) 48 (40.7%) 1.0
�18yo 70 (59.3%) 70 (59.3%)

Sex (No. [%]) Male 62 (52.5) 61 (51.7) 0.9
Female 56 (47.5) 57 (48.3)

Immunocompromised (No. [%]) Yes 54 (45.8%) 27 (22.9%) 0.001
No 63 (53.4%) 87 (73.7%)
Unknown 1 (0.8%) 4 (3.4%)

Comorbidities (No. [%]) Leukemia/lymphoma 27 (22.9%) 10 (8.5%) 0.005
Active malignancy 10 (8.5%) 2 (1.7%) 0.02
Asthma 6 (5.1%) 7 (5.9%) 0.5

Median Charlson comorbidity index score (IQR) 1 (0�3) 0 (0�2) 0.002
Days of symptoms at the time of testing (mean; SD) 3 (1�7) 3 (2-9) 0.4
Patient location (No. [%]) ED 41 (34.8%) 36 (30.5%) <0.001

ICU 16 (13.6%) 4 (3.4%)
Inpatient ward 30 (25.4%) 3 (2.5%)
Outpatient clinic 31 (26.3%) 75 (63.6%)

Antiviral treatment at time of testing (No. [%]) Yes 0 3 (2.5%) 0.1
No 114 (96.6%) 96 (81.4%)
Unknown 4 (3.4%) 19 (16.1%)

Antibiotic treatment at time of testing (No. [%]) Yes 16 (13.6) 38 (32.2) <0.001
No 82 (69.5%) 76 (64.4)
Unknown 20 (17.0) 4 (3.4)

Confirmed bacterial coinfection or colonization at time of testing (No. [%]) Yes 8 (6.7) 38 (32.2) <0.001
No 110 (92.4) 76 (64.4)
Unknown 1 (0.8) 4 (3.4)

Hospitalization (No. [%]) Yes 82 (69.5%) 29 (24.6%) <0.001
No 36 (30.5%) 89 (75.4%)

ICU admission (No. [%]) Yes 26 (22.0%) 6 (5.1%) <0.001
No 92 (78.0%) 112 (94.9%)

30-day all-cause mortality (No. [%]) Yes 3 (2.5%) 3 (2.5%) 1.0
No 115 (97.5%) 116 (97.5%)

The p values were calculated by Chi-squared if categorical variables, by Fisher’s exact test if categorical variables with less than 5 datapoints per cell, and by MannWhitney U test
for continuous variables.
ED: emergency department; ICU: intensive care unit; IQR: inter-quartile range; SD: standard deviation; yo: years-old.
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the receiver operating characteristic curve (AUC) of 1.00 (95% CI 0.99,
1.00) and 0.93 (95% CI 0.86, 1.00), respectively, on the test set (Fig. 2).
Statistical models, specifically the Lasso and Ridge regression models,
obtained AUCs of 0.94 (95% CI 0.88, 1.00) and 0.92 (95% CI 0.85, 1.00),
Fig 2. Area under the receiver operating characteristic curve test performance of the
biomarker discovery set. ROC curves comparing the performance of the machine learn-
ing models (RF, LGBM) with the traditional linear models (Lasso, Ridge) on the test set;
bracketed values are 95% AUC confidence intervals calculated from a normal fit of the
curves. AUC: area under the receiver operating characteristic curve; RF: random for-
ests; ROC: receiver operating characteristic curve.
respectively. Subtraction of the background spectral data from the
blank VTM replicates did not impact test performance of the model
(Fig. S4). At an operating point optimized for sensitivity and Youden’s
J statistic, LGBM achieved a sensitivity of 1.00 (95% CI 0.86, 1.00) and
a specificity of 0.96 (95% CI 0.81, 0.99), superior to other models
(Table S1). Subgroup analysis of the performance of the LGBM model
on adults and children showed an AUC of 0.99 (95% CI 0.97, 1.00) for
adults and an AUC of 1.00 (95% CI 0, 1.00) for children (Table S2). The
same model demonstrated an AUC of 1.00 (95% CI 0, 1.00) in immu-
nocompromised hosts, and an AUC of 0.99 (95% CI 0.97, 1.00) in non-
immunocompromised hosts (Table S2). Data from the other models
including for individuals admitted to the ICU, with bacterial coinfec-
tion, antibiotic treatment, and by time since symptom onset are pre-
sented in Table S2. Furthermore, a separate multivariable model was
performed including the variables age, sex, days since symptom onset
and Charlson comorbidity index, and demonstrated evidence that
only model outcome was significantly associated with influenza sta-
tus classification (Table S3).

6.3. Top 20 signature validation by LC/MS-MS maintains high
classification performance

After ranking the overall LC/Q-TOF features by importance, we
identified the top 20 ion features associated with classification,
of which only 13 contributed more than 1% to model predictions
(Fig. 3). The top 20 ion feature signature identified by LC/Q-TOF was
validated in a cohort of samples from 96 symptomatic individuals
with nasopharyngeal swabs including 48 positives (24 influenza A
H1N1, 5 influenza A H3 and 19 influenza B) and 48 negatives. Testing
was performed by LC/MS-MS using the same sample set. The top 20
ion feature signature revealed an overall AUC of 1.00 (95% CI 0.998,



Fig 3. Feature importance analysis by SHapley Additive exPlanation (SHAP) values.
Top 20 ion features by percentage importance using the SHAP method. Ion features are
identified by mass-to-charge ratio @ retention time, and colors indicate the association
between feature value and positive influenza classification. For example, low values of
84.0447@0.81 are indicative of positive classification, while the relative value of
106.0865@10.34 does not have a clear interpretation, despite being an important feature.
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1.00), sensitivity of 0.94 (95% CI 0.83, 0.98) and specificity of 1.00
(95% CI 0.93, 1.00) (Fig. 4). High classification performance was main-
tained with parsimonious signatures including only the top 1, 3, 5
and 7 ion features (Fig. S5). Area under the curve for the top 20 fea-
tures showed significantly lower pyroglutamic levels in influenza-
infected individuals (Fig. S6). Heatmap analysis showed the top 20
ion feature signature varied slightly by influenza subtype compared
to the negative subgroup (Fig. S7).

6.4. Pyroglutamic acid identified as top differentiating metabolite

Metabolite identification through in-house library matching
revealed a Tier 1 match for compound 130.0507@0.81 as pyrogluta-
mic acid [30], and compound 84.0447@0.81 as an in-source fragment
ion of pyroglutamic acid (Table S4). Furthermore, compound
350.0774@9.34 was identified to be consistent with formylmethyl
glutathione [31], though this identification will require further con-
firmation. Further metabolite annotation work will be required for
the other metabolites listed as these did not definitively match the
Fig 4. Area under the receiver operating characteristic curve test performance of the
validation set. The ROC curve demonstrates the LGBM model performance on the 96-
sample validation test set.
in-house library or large database screening (Table S5), and as larger
mass error was noted for larger m/z ion features (Fig. S8).

7. Discussion

In this study of 236 nasopharyngeal swab samples from symp-
tomatic individuals, we showed that the described LC/Q-TOF method
combined with machine learning could differentiate between influ-
enza-positive (including influenza A 2009 H1N1, H3 and influenza B)
and influenza-negative samples with high test performance including
AUC, sensitivity and specificity over 0.90. Given this untargeted
approach presents significant upfront instrument expense and com-
plexity in data reproducibility and processing, this was followed by a
clinically-applicable targeted approach using tandemmass spectrom-
etry (LC/MS-MS). The top 20 ion feature signature identified by LC/Q-
TOF was adapted to LC/MS-MS testing on a 96-sample set, and dem-
onstrated sustained high performance. Given LC/MS-MS is already
employed in multiple laboratories for routine clinical testing, this
work provides a model for feasibility of adaptation and roll-out to
other centralized laboratory facilities [32,33]. This is particularly
important given the significant burden of respiratory viruses in the
U.S. and internationally [34,35]. Indeed, although molecular testing
has revolutionized the diagnosis of respiratory viral infections in clin-
ical laboratories, limitations to this technique remain, including high
cost, target-specific approach and inability to differentiate active
infection from persistent nucleic acid detection [1,36]. Furthermore, the
high complexity of many molecular assays limits their use at the point of
care where the patient need for a rapid and actionable diagnosis is high-
est. Similarly, an important gap remains for point-of-care influenza test-
ing due to the lack of sensitivity rapid influenza diagnostic tests and
digital immunoassays and resulting inability to confidently rule-out
influenza [6]. Metabolomics, or the large-scale study of small molecules,
represents the ‘-omics’ technology closest to phenotype and thus holds
promise to address current gaps in molecular testing of infectious dis-
eases [37�39]. This metabolomics approach allows for real-time moni-
toring of host response, uses very little sample volume, may be cost-
effective, and allows for hypothesis-free untargeted exploration of novel
biomarkers. Furthermore, our finding of a 20-ion feature signature dem-
onstrating reproducible high test performance suggests that these bio-
markers may be developed into an assay that could be performed at the
point-of-care provided adaptation to a simple diagnostic such as a dip-
stick lateral flow test is performed.

Given the unique in-line two-column method of the approach
presented in this study, comprehensive comparative test perfor-
mance datapoints for metabolomics applications are lacking. None-
theless, several published studies have described similar potential
applications, mostly from cell culture or animal models [13�16].
However, this approach compared favorably to a previous study
using unbiased proteomics from nasopharyngeal lavage sampling
with normal saline from 15 previously healthy hosts experimentally
infected with influenza A H3N2 or human rhinovirus [12]. The 10-
peptide signature from that study was validated in a cohort of 80 sub-
jects, achieving overall AUC of 0.86, sensitivity of 75% and specificity
of 97.5% including paired samples. The metabolomics sample proc-
essing presented here is simpler and faster than the proteomic work-
flow (approximately 30 min for ultrafiltration compared to >20 h for
proteomics), thus conferring a relative advantage even at similar per-
formance. Previous studies using an untargeted metabolomics
approach for the diagnosis of respiratory viruses present important
heterogeneity in analytical methods (including MS (LC/Q-TOF, GC-
MS) and nuclear magnetic resonance (NMR)), specimen type (includ-
ing nasopharyngeal aspirate, serum, urine, cell culture), hosts (animal
and human), viruses (including influenza, RSV, human rhinovirus)
and metabolic signatures (ranging from 10 to 285 metabolites)
[8,9,14,40]. These studies profiled metabolites and metabolic path-
ways but did not include quantitative analytical results of
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classification model performance thus limiting assessment of poten-
tial clinical utility as diagnostic assays.

The top 20 ion features retained in our biomarker signature likely
represent a heterogeneous group of compounds from a variety of bio-
logical pathways. The top two ion features were successfully identi-
fied through in-house library matching as pyroglutamic acid
(130.0507@0.81) and an in-source fragment ion of pyroglutamic acid
(compound 84.0447@0.81), which are decreased in specimens from
influenza-infected individuals. Pyroglutamic acid (synonyms: pidolic
acid, 5-oxoproline) is a cyclized derivative of L-glutamic acid which
can form in one of three ways in the living cell: from the degradation
of glutathione, from incomplete reactions following glutamate activa-
tion, or from the degradation of proteins containing pyroglutamic
acid at the N-terminus [41]. Several recent studies have highlighted
the complex interaction between glutathione metabolism important
in reactive oxygen species (ROS) regulation and infection with influ-
enza, which is known to increase the formation of ROS [42�45]. In a
study using ultra-high-pressure LC/Q-TOF to detect early metabolic
disturbances following infection with influenza H1N1 in A549 human
lung epithelial cells, significant differences were found in 50 metabo-
lites which were mainly mapped to purine, glutathione and lipid
metabolism pathways [14]. In the reference study, the infected A549
cells were washed and lysed prior to metabolite analysis, and showed
upregulation of glutathione metabolism with an increase in the intra-
cellular concentration of pyroglutamic acid. Our results show a
decrease in pyroglutamic acid in NP swabs from influenza-infected
individuals. Given our specimens are not washed or lysed, the
observed decrease in pyroglutamic acid in NP swabs from infected
individuals may be due to decreased extracellular concentrations
from increased use of glutathione in the intracellular space. Alterna-
tively, a more complex mechanism involving oxidative stress and
upstream metabolic effects may be at play. Though the mechanism
giving rise to differential concentrations of pyroglutamic acid in our
specimens is not yet known, our results conform to the findings in
the current literature which highlight glutathione metabolism as a
key pathway altered during influenza infection. In addition, the
detected pyroglutamic acid was not identified to be an in-source frag-
ment of glutamate, further supporting its independent role. In addi-
tion, although annotation was only preliminary for the additional
features, an important characteristic noted was that several features
demonstrated a closest match to terpinoids. The presence of non-rou-
tine compounds in human samples will require further investigation.

In this study, both statistical models and machine learning models
were explored comprehensively to assess for best test performance
for these untargeted metabolomics data. These results were repro-
ducible across datasets and across models, adding confidence to our
findings. Furthermore, the machine learning models were observed
to consistently outperform the statistical models, consistent with
findings in previous studies [46,47].

This study presents several strengths. First, it demonstrated high
test performance in the discovery cohort, which was independently
validated in a distinct cohort of consecutive clinical specimens, sup-
porting the reproducibility, robustness and lack of overfitting of this
approach. Furthermore, high performance on the clinically-applicable
tandem mass spectrometry testing may facilitate uptake by a large
number of laboratories, alleviating the need for complex testing by
LC/Q-TOF, and enabling cost-effective testing. Second, it demon-
strated a large effect size from a limited number of compounds in the
SHAP feature importance analysis. This increases the feasibility of
adapting this diagnostic approach to a point-of-care device such as
portable mass spectrometry, though further work will be required to
determine the optimal number of biomarkers required for this pur-
pose. Third, this study was based on a real-world, diverse patient
population of individuals who were naturally infected with influenza,
which may better approximate metabolic changes compared to
experimentally-infected, previously healthy volunteers. Furthermore,
cases and controls in the discovery cohort were tightly age- and sex-
matched, thus reducing potential confounders in metabolomic analy-
sis due to up- or downregulation of certain metabolic pathways
based on these host factors [48]. Fourth, this cohort included a large
number of samples, conferring over 90% power to detect a difference
between influenza-infected and uninfected individuals. Finally, we
proceeded with a systematic and comprehensive bioinformatics
pipeline analysis strategy to identify the best model for untargeted
and targeted metabolomics data.

This study also presents limitations. First, this study was per-
formed at a single institution only and it is unclear at present if
results are generalizable to other patient populations. However, our
finding of consistent results across diverse patient groups lends sup-
port to the potential generalizability of this diagnostic approach. Sec-
ond, only influenza positive and negative samples were compared in
the untargeted approach such that we could not extrapolate to other
respiratory viruses, and bacterial or viral co-infections. However, lim-
ited coinfection data in the validation cohort supported maintained
performance. Further study will be important to better understand
changes that occur across the spectrum of nasopharyngeal micro-
biome including bacterial colonization or coinfection, and to incorpo-
rate comparisons with other important respiratory viruses such as
RSV and parainfluenza to better rival with current molecular diagnos-
tic methods. Third, this study did not assess the respiratory metabolic
profiles of healthy individuals as negative controls, which may help
further isolate the metabolites that change in response to acute viral
infection. Furthermore, sample adequacy was not assessed due to the
proprietary nature of the internal control included in the commercial
respiratory pathogen panel used for clinical testing. Fourth, we did
not perform repeat longitudinal samples in the same individuals, and
did not include paired plasma or urine samples, which would have
strengthened findings of identified metabolites if reproducible. Fifth, due
to a large proportion of features that could not be matched for identifica-
tion, quantitation work to validate the full 20-ion feature signature could
not be performed. Significant work remains to fully annotate these fea-
tures, and for clinical adaptation using quantitative thresholds; this will
require complementary mass spectrometry techniques, and fresh influ-
enza samples which have not been available over the 2020�2021 season
owing to the absence of influenza cases in our setting in the context of
coronavirus disease (COVID-19). Finally, VTM contains small molecules
that may have confounded the analysis. However, subtraction of back-
ground spectral data from the blank VTM sample replicates did not
impact test performance of our model, suggesting these data did not sig-
nificantly contribute tomodel classification.

In summary, we demonstrated the feasibility and high accuracy of
an untargeted metabolomics approach from nasopharyngeal samples
for the identification of distinct metabolic signatures for the diagnosis
of influenza infection. This approach maintained high performance
after adaptation to clinically-adaptable LC/MS-MS instruments. Sig-
nificant work remains to be done to leverage the full potential of this
method including expansion to other patient settings and in larger
cohorts, additional pathogens and sample types, and to prospectively
assess its potential as a prognostic tool. In addition, this method could
be used to explore metabolic pathways that could eventually be har-
nessed for therapeutic potential.
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