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ABSTRACT Recent attempts to sequence regions of the Rhodomicrobium vannielii
ATCC 17100 genome revealed discrepancies with the previously published genome.
We report the revised draft genome sequences of the type strains Rhodomicrobium
vannielii ATCC 17100 and Rhodomicrobium udaipurense JA643. These revisions will
facilitate genetic studies of phototrophic metabolism in these bacteria.

The genus Rhodomicrobium is represented by three species, R. vannielii, R. udaipur-
ense, and R. lacus (1–3). Rhodomicrobium strains are microaerobic to anaerobic,

Gram-negative, budding, freshwater, purple nonsulfur bacteria capable of photoheter-
otrophic and photoautotrophic metabolism, including phototrophic iron oxidation by
R. vannielii and R. udaipurense (1, 4–8). To date, six Rhodomicrobium genome sequences
are publicly available, including those of R. vannielii ATCC 17100 (GenBank accession
number NC_014664.1) and R. udaipurense JA643 (JFZJ00000000). Recent attempts to
amplify and sequence regions of the phototrophic iron oxidation (pio) three-gene op-
eron using ATCC 17100 genomic DNA (gDNA) revealed discrepancies between the pioA
nucleotide sequence in the published genome and our sequencing data. The previously
published ATCC 17100 genome was assembled using Newbler v. 2.3, which performs
poorly relative to similar assemblers (9, 10) and contains a bug that reduces its effective-
ness (https://cals.arizona.edu/swes/maier_lab/kartchner/documentation/index.php/home/
docs/newbler). The use of this assembler might account for the discrepancies we
observed. Here, we resequenced the ATCC 17100 and JA643 genomes, as the JA643 as-
sembly used ATCC 17100 as a reference.

The R. vannielii type strain ATCC 17100 was purchased from DSMZ (Leibniz Institute,
Braunschweig, Germany). The R. udaipurense type strain JA643 was acquired from the
University of Hyderabad (Hyderabad, India). The strains were saved immediately as
freezer stocks and regrown for genomic DNA isolation. Cell cultures, prepared in sterile
anaerobic Balch tubes, were grown in bicarbonate-buffered anaerobic freshwater me-
dium (6) supplemented with 10mM sodium acetate and purged with H2-CO2 (80%/
20%) to ;70 kPa in the headspace. The cultures were incubated without shaking at 30°
C, at a 30-cm distance from a 60-W incandescent light bulb. Genomic DNA was isolated
from logarithmic-phase cultures using the DNeasy blood and tissue kit following the
manufacturer’s recommendations (Qiagen, Dusseldorf, Germany). Paired-end 150-bp
Illumina sequencing libraries were prepared as follows: 500 ng of gDNA was frag-
mented using a Covaris E220 sonicator. The DNA was blunt ended and had an A base
added to the 39 ends, and Illumina sequencing adapters were ligated to the ends. The
ligated fragments were amplified for eight cycles using primers incorporating unique
dual-index tags. The fragments were sequenced on a NovaSeq 6000 S4 instrument
(Illumina, Inc.) to .200� coverage for both ATCC 17100 and JA643. The read quality
was assessed with FastQC v. 0.11.9 (11), and the reads were trimmed with
Trimmomatic v. 0.38 (12). These reads were assembled de novo with CLC Genomics
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Workbench v. 10.1.2 (Qiagen Bioinformatics) (13). The draft genome sequences were
quality assessed with QUAST v. 5.0.2 (14) and submitted for annotation to the NCBI
Prokaryotic Genome Annotation Pipeline (15). The resequenced genomes were com-
pared to the previous genomes with OrthoANI (16) and BLASTn (17). Default parame-
ters were used for all software.

The genome statistics for the draft genome sequences are found in Table 1.
Average nucleotide identity (ANI) analyses confirmed discrepancies with the previously
published genomes. The revised ATCC 17100 (AB38) genome has an ANI value of
94.73% compared with the previously published genome, with an average aligned
length of 2,222,458 bp, or 55.37% reference coverage. The revised JA643 (AB60) ge-
nome has an ANI value of 99.94% compared to JA643, with an average aligned length
of 2,634,102 bp, or 75.29% reference coverage. BLASTn alignments show that AB38
shares 88%, 80%, and 89% identities with each of the three pio operon genes, respec-
tively, compared to the previously published ATCC 17100 genome. Importantly, AB38
pioA sequencing products from cultures originating from freezer stocks that we pre-
pared upon receipt of each strain and prior to whole-genome sequencing (WGS) share
100% identity with the revised genome, compared to 88% with the reference. BLASTn
alignments between AB60 and JA643 revealed 100% identity for each of the pio op-
eron genes. These revised draft genome sequences will facilitate future efforts to inves-
tigate the genetics underlying these organisms’ metabolic strategies.

Data availability. The whole-genome shotgun projects for AB38 and AB60 have
been deposited in GenBank under the accession numbers JAEMUJ000000000 and
JAEMUK000000000, respectively. The raw sequencing reads for AB38 and AB60 have
been deposited in the NCBI Sequence Read Archive under the accession numbers
SRX9703844 and SRX9703096, respectively. The versions described in this paper are
JAEMUJ010000000 and JAEMUK010000000.
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TABLE 1 Genome statistics

Strain No. of reads Assembly size (bp) Coverage (×) No. of contigs N50 (bp) G+C content (%) Total no. of genes
AB38 4,992,886 3,849,085 185 177 81,079 62.2 3,644
AB60 15,446,669 3,652,920 500 94 113,688 62.5 3,387
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