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Abstract: Determining sensitive biomarkers in the peripheral blood to identify interstitial lung
abnormalities (ILAs) is essential for the simple early diagnosis of ILAs. This study aimed to
determine serum metabolic biomarkers of ILAs and the corresponding pathogenesis. Three groups
of subjects undergoing health screening, including healthy subjects, subjects with ILAs, and subjects
who were healthy initially and with ILAs one year later (HealthyÑILAs), were recruited for this
study. The metabolic profiles of all of the subjects’ serum were analyzed by liquid chromatography
quadruple time-of-flight mass spectrometry. The metabolic characteristics of the ILAs subjects were
discovered, and the corresponding biomarkers were predicted. The metabolomic data from the
HealthyÑILAs subjects were collected for further verification. The results indicated that five serum
metabolite alterations (up-regulated phosphatidylcholine, phosphatidic acid, betaine aldehyde and
phosphatidylethanolamine, as well as down-regulated 1-acylglycerophosphocholine) were sensitive
and reliable biomarkers for identifying ILAs. Perturbation of the corresponding biological pathways
(RhoA signaling, mTOR/P70S6K signaling and phospholipase C signaling) might be at least partially
responsible for the pathogenesis of ILAs. This study may provide a good template for determining
the early diagnostic markers of subclinical disease status and for obtaining a better understanding of
their pathogenesis.

Keywords: interstitial lung abnormalities; biomarkers; serum metabolic profiles

1. Introduction

Interstitial lung abnormalities (ILAs), the asymptomatic or subclinical lung disease stage often
present in the cigarette smoking, aging, and male population, are characterized by mild radiologic
changes in the pulmonary interstitium [1–6]. The widespread use of high-resolution computed
tomography (HRCT) in clinical and research settings has increased the detection of ILAs [7].
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Accumulating evidence has suggested that individuals with ILAs have reductions in total lung
capacity, functional limitations, histopathologic changes, and molecular profiles similar to those
observed in patients with clinically significant interstitial lung disease (ILD) [1,6,8,9]. Growing findings
have demonstrated that ILAs are risk factors for ILD, emphysema, pulmonary fibrosis and lung
cancer. Specifically, ILAs represent the early stages of subclinical ILD or idiopathic pulmonary fibrosis
(IPF) [3,10–12]. A clinical survey showed that approximately 37% of ILAs progressed to IPF in cigarette
smokers [13]. ILAs are the main reason for the reduced lung capacity in paraseptal emphysema [5,6,9].
More seriously, ILAs are related to an increased risk of lung cancer [14]. A study showed that higher
ILAs scores were associated with shorter overall survival, indicating that ILAs could be a marker of
shorter survival in advanced non-small-cell lung cancer (NSCLC) [15]. As of today, however, ILAs lack
simple and reliable diagnostic indicators, and their pathogenesis is unclear. These findings provide an
important motivation to seek sensitive biomarkers in the peripheral blood for identifying ILAs and to
reveal the pathogenesis of ILAs.

Increasing evidence has shown that lung function impairment in adults was associated with
systemic metabolic disorders [16–20]. Therefore, exploring the pathogenesis of this impairment from
the systemic metabolism becomes an important study focus. Metabolomics technology provided
technical support for this study. Metabolomics is the quantitative measurement of the dynamic
multi-parametric metabolic response of living systems to pathophysiological stimuli or genetic
modifications [21]. By measuring and mathematically modeling changes in the products of metabolism
found in biological fluids and tissues, metabolomics offers fresh insight into disease [22]. As a
monitoring tool of human metabolism and endogenous biochemical pathways [23], metabolomics has
been successfully applied to identify potential biomarkers and to reveal the metabolic changes and the
underlying mechanisms of a great variety of diseases [24–27]. It has also been used in some respiratory
illnesses, such as chronic obstructive pulmonary disease (COPD) and lung cancer [28,29].

In this study, a metabolomics-based liquid chromatography quadruple time-of-flight mass
spectrometry (LC–Q–TOF–MS) technique was used for demonstrating the serum metabolic
characteristics. We predicted ILAs biomarkers on the basis of comparing the metabolic data of
subjects with ILAs and healthy control subjects and, subsequently, we verified the predicted results
using metabolomic data from the subjects who were disease-free initially and then one year later
suffered from ILAs (HealthyÑILAs). We aimed to determine the sensitive and reliable biomarkers
responsible for ILAs and to reveal the corresponding metabolic pathways.

2. Results

2.1. Baseline Characteristics of Study Subjects

The characteristics of the enrolled subjects, including sex, age, smoking status, and results of
blood routine and biochemical tests, are shown in Table 1. The smoking rates of the ILAs group, initial
stage (healthy) group and outcome stage (ILAs) group were much higher than that of the control
group. There was no significant difference in other examination indicators among the groups.

2.2. Evaluation of the Repeatability and Stability of the LC–Q–TOF–MS Method

The repeatability was evaluated through continuously injecting extracts from six aliquots of a
random blood sample [30,31]. Five common extracted ion chromatograms (EICs) shared by these
injections were selected on the basis of their different chemical polarities and m/z values. The relative
standard derivations (RSDs) of these peaks were 4.13%–13.13% for peak areas and 0.04%–0.98% for
retention times.

The stability for the large-scale sample analysis was demonstrated by the test of pooled quality
control (QC) samples. The principal component analysis (PCA) result indicated that the QC samples
were tightly clustered. In addition, the peak areas, retention times and mass accuracies of five selected
EICs from five QC samples also showed good system stability. The RSDs of the five peaks were
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4.94%–14.88% for peak areas, 0.03%–1.10% for retention times and 0.14 ˆ 10´4%–0.76 ˆ 10´4% for
mass accuracies. The result showed that the large-scale sample analysis had no apparent effect on the
reliability of the data.

Table 1. Characteristics among the groups of the enrolled subjects.

Indicators/Groups ILAs Initial Stage (Healthy) Outcome Stage (ILAs) Control

Sex (M/F) 22/7 16/4 16/4 22/8
Age (years) 63.90 ˘ 6.04 60.70 ˘ 10.00 61.20 ˘ 9.47 61.11 ˘ 7.53

Smoking rate (%) 48.28 * 50.00 * 50.00 * 18.95
WBC (109/L) 6.31 ˘ 1.25 6.51 ˘ 1.21 6.45 ˘ 1.38 5.92 ˘ 1.21

LY (109/L) 1.93 ˘ 0.54 1.91 ˘ 0.50 1.93 ˘ 0.62 1.82 ˘ 0.46
NE (109/L) 4.29 ˘ 0.97 4.29 ˘ 0.96 4.41 ˘ 1.19 3.79 ˘ 1.07

RBC (1012/L) 4.72 ˘ 0.33 4.79 ˘ 0.47 4.80 ˘ 0.39 4.68 ˘ 0.45
HGB (g/L) 141.97 ˘ 11.61 145.05 ˘ 12.69 141.95 ˘ 13.29 141.38 ˘ 10.96
PLT (109/L) 190.14 ˘ 41.78 200.50 ˘ 52.00 203.35 ˘ 51.09 205.82 ˘ 46.46

ALT (mmol/L) 18.79 ˘ 7.61 21.85 ˘ 6.68 16.90 ˘ 5.15 18.15 ˘ 8.48
AST (mmol/L) 23.31 ˘ 6.48 22.15 ˘ 3.56 22.05 ˘ 3.30 25.00 ˘ 14.16
CRE (mmol/L) 76.52 ˘ 19.56 79.2 ˘ 11.22 68.45 ˘ 11.39 70.38 ˘ 13.02
SUA (µmol/L) 329.79 ˘ 70.61 341.15 ˘ 85.76 318.30 ˘ 85.42 304.54 ˘ 57.58

The comparisons of clinical indicators among the ILAs group, initial stage (healthy) group, outcome stage (ILAs)
group and control group. Chi-square test was used for count variables analysis. Unpaired t-test was applied
to continuous variables analysis, and the data are expressed as the mean ˘ SD when appropriate (95% CI).
The ILAs group, initial stage (healthy) group and outcome stage (ILAs) group vs. control group respectively:
* p < 0.01.

2.3. Identification of the Differential Metabolites in Interstitial Lung Abnormalities (ILAs)

Typical base peak chromatograms (BPCs) of serum samples were obtained from the control and
ILAs groups. Multiple pattern recognition methods of partial least squares discriminant analysis
(PLS-DA) were adopted on the basis of the metabolic changes in these subjects as revealed by BPCs.
These methods facilitated the classification of the metabolic phenotypes and enabled us to identify the
differential metabolites. As shown in score plots (Figure 1), there was obvious separation between the
control and ILAs groups.
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Eleven metabolites were identified in the ILAs subjects when compared to those in healthy control
subjects (Table 2). Representative value (RV), a value used for showing the power of the metabolite to
reflect the abnormal state in the disease, was reduced in sequence from phosphatidylcholine (PC)(28:1)
to betaine aldehyde (BA), which implied that PC(28:1) was the most representative metabolite for
indicating the characteristic of ILAs.

Table 2. Identified differential metabolites in the interstitial lung abnormalities (ILAs) group.

n Rt (min) Exact Mass Formula Compound Fold Changes RV

1 7.3660 675.4839 C36H70NO8P Phosphatidylcholine (PC)(28:1) 7.4118 0.0511
2 11.6928 674.4886 C37H71O8P Phosphatidic acid (PA)(34:1) 12.0640 0.0437
3 11.798 467.3012 C22H46NO7P 1-Acylglycerophosphocholine (1-acyl-GPC) ´17.2178 0.0283
4 8.8195 776.7257 C50H96O5 Triacylglycerol 8.9617 0.0187
5 11.8360 715.5152 C39H74NO8P Phosphatidylethanolamine (PE)(34:2) 3.5377 0.0166
6 12.3754 148.0194 C5H8O3S 2-Keto-4-methylthiobutyric acid ´19.2816 0.0033
7 9.3124 116.0837 C6H12O2 Caproic acid 2.83241 0.0021
8 8.5394 100.0888 C6H12O Caproaldehyde 3.6839 0.0013
9 8.7894 128.1201 C8H16O Octanal 4.2036 0.0012
10 7.5562 102.0919 C5H12NO Betaine aldehyde (BA) 2.9631 0.0005
11 7.6113 72.0575 C4H8O 2-Butanone 8.4656 0

Fold change value refers to “ILAs group vs. control group” change values.

2.4. Verification of the Identified Metabolites by HealthyÑILAs Subjects

Based on the metabolic changes in the subjects who were healthy initially and who subsequently
were identified with ILAs one year later, we verified the predicted metabolites responsible for the
progression from healthy to ILAs. Multiple pattern recognition methods were adopted. PLS-DA score
plots showed obvious separation between the initial stage (healthy) group and outcome stage (ILAs)
group, as shown in Figure 2.
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Compared with the initial stage (healthy) subjects, 9 metabolites were identified in the outcome
stage (ILAs) subjects (Table 3).

Through the comparison between these metabolites and the predicted metabolites, we found
that up-regulated phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylethanolamine (PE)
and betaine aldehyde (BA), as well as down-regulated 1-acylglycerophosphocholine (1-acyl-GPC),
were their common metabolites. The correlations between the metabolites were identified using
IPA. As shown in Figure 3, these metabolites are correlated with some canonical pathways, such as
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phospholipases, triacylglycerol biosynthesis, RhoA signaling, P70S6K signaling, mTOR signaling,
etc. (Table S1). The associated biological functions were focused on lipid metabolism, carbohydrate
metabolism and energy production.

Table 3. Identified differential metabolites in the outcome stage (ILAs) group vs. initial stage
(healthy) group.

n Rt (min) Exact Mass Formula Compound Fold Changes

1 14.4294 690.5223 C45H70O5 Diacylglycerol ´9.9068
2 11.6928 674.4886 C37H71O8P PA(34:1) 1.4748
3 11.8360 715.5152 C39H74NO8P PE(34:2) 7.3538
4 7.3660 675.4839 C36H70NO8P PC(28:1) 1.6725
5 11.798 467.3012 C22H46NO7P 1-Acylglycerophosphocholine (1-acyl-GPC) ´12.9007
6 1.9809 274.2297 C19H30O 3-Oxosteroid 11.3056
7 6.7841 121.0891 C8H11N Phenylethylamine ´3.3337
8 7.5562 102.0919 C5H12NO Betaine aldehyde 1.1937
9 8.7372 202.1205 C10H18O4 Sebacic acid 10.5327

Fold change value refers to the “outcome stage (ILAs) group vs. initial stage (healthy) group” change value.
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Database, while the blue symbols represent canonical pathways that are related to the identified specific
metabolites. Solid lines between molecules show a direct physical relationship between molecules,
while dotted lines show indirect functional relationships.

3. Discussion

ILAs are regarded as risk factors for ILD, emphysema, pulmonary fibrosis and even lung cancer.
Early identification and removal of this risk factor are crucial for preventing disease progression.
Currently, the identification of ILAs depends mainly on HRCT, which is not widely available for health
screening in rural areas, and the pathogenesis of ILAs is not clear. Therefore, this study aimed to
explore sensitive and reliable biomarkers to identify ILAs and the pathogenesis of ILAs. Based on ILAs
subjects from large-sample health-screening populations, using LC–Q–TOF–MS and molecular network
analysis, we discovered for the first time the serum biomarkers and corresponding pathogenesis of
ILAs (Figure 3). Five metabolites, including up-regulated phosphatidylcholine (PC), phosphatidic
acid (PA), phosphatidylethanolamine (PE) and betaine aldehyde (BA), as well as down-regulated
1-acylglycerophosphocholine (1-acyl-GPC), were identified as biomarkers for ILAs. Accordingly,
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disturbances in RhoA signaling, mTOR/P70S6K signaling and phospholipase metabolism could be
partially responsible for ILAs pathogenesis.

PC is a major component of biological membranes in higher eukaryotes, and it can be
secreted by specialized tissues for important extracellular tasks. PC levels can be regulated by
multifarious phospholipases, such as phospholipase A (PLA) and phospholipase D (PLD), which
catalyze the hydrolysis of PC [32]. In the lungs, PC is synthesized within the alveolar type II
epithelium, and it is secreted into the alveoli as the major phospholipid component of pulmonary
surfactant [33,34]. PC molecular species in lung surfactant are composed relative to respiratory rate
and lung development [35]. The evidence indicated that the hepatic and plasma homeostasis of choline
and PC was correlated with lung function and inflammation [36]. Increased PLA2 and lyso-PC levels
were associated with surfactant dysfunction in lung contusion injury in mice [37]. The up-regulated
PC in this study might be partially associated with the epithelial injury in ILAs. PA is the most critical
metabolite generated in PC hydrolysis that is catalyzed by PLD, and it can be metabolized into lyso-PA
and diacylglycerol, which function as first- and second-generation messengers, respectively [38]. PA
is involved in a variety of cellular functions, such as cell proliferation, cytoskeleton organization,
morphogenesis and vesicle trafficking [38–40]. In the lungs, PA and its metabolic products play
central roles in modulating endothelial and epithelial cell functions [41]. PA was capable of inducing
lung endothelial cell cytotoxicity, suggesting a possible bioactive lipid-signaling mechanism of the
microvascular disorders encountered in IPF [42]. PA signaling mediated lung cytokine expression and
lung inflammatory injury after hemorrhage in mice [43]. Wound-induced epithelial cell motility might
be mediated by PA signaling [44]. Up-regulated PA in this study was also partially responsible for the
epithelial injury in ILAs. Biological pathway analysis revealed that PC and PA were mainly involved
in some bio-pathways, such as RhoA signaling, mTOR signaling and P70S6K signaling. A previous
study showed that RhoA signaling modulated cyclin D1 expression in human lung fibroblasts and
was implicated in IPF [45]. The mTOR complex is a highly conserved intracellular serine/threonine
kinase. The mTOR expression in pulmonary fibrosis patients was significantly correlated with the
fibrosis score and decreased lung function, indicating that it might be related to the prognosis of
pulmonary fibrosis [46]. Furthermore, inhibiting mTOR activation could enhance autophagy and
suppress fibrotic markers in IPF [47]. The mTOR signaling pathway is a key regulator of cell growth
and proliferation [48]. PA directly interacted with the domain in mTOR, and this interaction was
positively correlated with mTOR’s ability to activate downstream effectors [49]. P70S6K is the major
downstream molecule of mTOR, and it could be activated by mTOR [50–52]. PA could activate P70S6
independent of mTOR [53].

Betaine aldehyde is the degradation product of choline via the choline degradation pathway.
An increased betaine aldehyde level indicates that the hydrolysis reaction of PC by PLD might be
activated excessively. Furthermore, the increase could convert into betaine through dehydrogenation.
Disturbance of this series of reactions can aggravate the metabolic disorders of PC. PE is also a class
of phospholipids found in biological membranes. Synthesis of PC and PE occurred in relation to the
concentration of membrane-bound diacylglycerols of rat lung microsomes [54]. PE-binding protein
4 promoted lung cell proliferation and invasion via the PI3K/Akt/mTOR axis [55]. Up-regulated
betaine aldehyde and PE were also partially responsible for epithelial injury in ILAs. 1-acyl-GPC is
one of the metabolites of PC in the catalysis of PLA2, and it is involved in phospholipase metabolism
and triacylglycerol biosynthesis, together with PC and PA. Secretory PLA2 (sPLA2) is an emerging
class of mediators of inflammation. These enzymes accumulate in the plasma and other biological
fluids of patients with inflammatory, autoimmune and allergic diseases. Lung mast cells are a source
of sPLA2 [56]. sPLA2s are secreted at low levels in normal airways, and they tend to increase
during inflammatory lung diseases (e.g., bronchial asthma, chronic obstructive pulmonary disease,
interstitial lung fibrosis, and sarcoidosis) as the result of plasma extravasation and/or local production.
Thus, sPLA2s could play a major role in inflammatory lung diseases by acting as a proinflammatory
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connection between macrophages and mast cells [57]. In this study, 1-acyl-GPC was down-regulated,
which might have been result of the suppressed hydrolysis of PC by PLA2.

Taken together, five metabolite alterations, including up-regulated PC, PA, betaine aldehyde and
PE, as well as down-regulated 1-acyl-GPC, served as reliable biomarkers to identify ILAs. Accordingly,
altered RhoA signaling, mTOR/P70S6K signaling and phospholipase metabolism could be partially
responsible for ILAs pathogenesis. This study provided a good template for determining the early
diagnostic markers of subclinical disease status and a better understanding of their pathogenesis.
A limitation of this study was that most of the recruited subjects were office workers; their prevalence
of ILAs might be lower than that in manual workers. It is necessary to expand the sample size in
future studies.

4. Materials and Methods

4.1. Study Population

In total, 8401 individuals (5928 men and 2473 women) underwent health screenings at Hangxin
Hospital, Beijing, China, from 2011 to 2013. Specifically, 2763 individuals underwent health screenings
in 2011, 2706 in 2012 and 2932 in 2013.

ILAs were identified by HRCT. Some subjects were excluded for the following reasons:
age ě75 years old or age ď18 years old; other causes of chronic lung diseases or mixed etiologies
(asthma, emphysema, cor pulmonale, chronic obstructive pulmonary disease, lung fibrosis,
pneumoconiosis and lung cancer); complications such as cardiovascular and cerebrovascular diseases,
chronic liver disease, gastrointestinal disease, nephropathy, and metabolic syndrome; domestic and
occupational environmental exposure histories; and intake of certain drugs (bleomycin, cyclosporine,
sirolimus, mycophenolic acid, amiodarone, Dilantin, statins and azathioprine).

Consequently, 79 subjects comprised the cohort for this study, including 30 healthy subjects
(control group: 22 men and 8 women), 29 ILAs subjects (ILAs group: 22 men and 7 women), and
20 HealthyÑILAs subjects (initial stage (healthy) group and outcome stage (ILAs) group: 16 men
and 4 women) (Figure 4). This study was approved by the Ethics Committee at the Institute of Basic
Research in Clinical Medicine, China Academy of Chinese Medical Sciences, and was conducted
according to the standards of the Declaration of Helsinki. Written informed consent was obtained from
the participants.
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4.2. Questionnaire

All of the subjects were asked to complete a questionnaire in regard to their symptoms, medical
histories, drug usage, smoking histories, and domestic and occupational environmental exposure
histories. The questions on smoking included the frequency of tobacco consumption per week and the
usual amount that was consumed.

4.3. Peripheral Blood Sampling and Biochemical Testing

Fasting blood samples were drawn via venipuncture from the study subjects by experienced
clinical nurses. After standing for 2 h at 4 ˝C, the blood samples were centrifuged at 3500ˆ g for
15 min. The obtained serum was divided into two parts: one part was used for blood routine
examination and biochemical examination according to the manufacturers’ instructions of the
respective commercial test kits, including white blood cell count (WBC), red blood cell count (RBC),
blood platelet count (PLT), lymphocyte count (LY), neutrophil count (NE), hemoglobin count (HGB),
alanine aminotransferase(ALT), aspartate aminotransferase (AST), creatinine (CRE) and serum uric
acid (SUA). The remaining 100 µL of serum was mixed with 200 µL of acetonitrile, and the mixture
was vortexed for 30 s. After centrifugation at 9560ˆ g for 10 min at 4 ˝C, the supernatant was stored at
´80 ˝C for LC/MS analysis.

A random blood sample (6 mL) was divided into six parts and extracted by the same method.
These six samples were continuously injected to validate repeatability of the sample preparation
method. 20 µL from each blood sample was pooled to generate a pooled QC sample and aliquots
of 100 µL of this pooled sample were extracted by the same method. This pooled sample was used
to provide a representative “mean” sample containing all analytes that was encountered during the
analysis, and it was used to validate stability of LC–MS system.

4.4. High-Resolution Computed Tomography (HRCT) Examinations

HRCT plays a crucial role in the diagnosis, prognosis, quantification and monitoring of ILAs.
It provides a definite noninvasive diagnosis in typical findings and helps to obtain the most accurate
diagnosis in a multidisciplinary discussion in equivocal cases [58]. In this study, all of the subjects
underwent HRCT examinations. The HRCT findings were categorized on a 3-point scale (0 = no
evidence of ILAs, 1 = equivocal for ILAs, 2 = ILAs) by a sequential reading method previously reported.
ILAs scores of 2 indicated the presence of ILAs. Findings equivocal for ILAs were defined as focal
or unilateral ground-glass opacity (GGO), focal or unilateral reticulation, and patchy GGO (<5% of
the lung). An ILAs was defined as nondependent GGO that affected more than 5% of any lung
zone, nondependent reticular abnormality, diffuse centrilobular nodularity with GGO, honeycombing,
traction bronchiectasis, nonemphysematous cysts, or architectural distortion. Centrilobular nodularity
alone was not considered to be evidence of ILAs.

4.5. LC–Q–TOF–MS Analysis

LC–Q–TOF–MS analysis was undertaken using an Agilent-1200 LC system coupled with an
electrospray ionization (ESI) source (Agilent Technologies, Palo Alto, CA, USA) and an Agilent-6520
Q-TOF mass spectrometer. Separation of all of the samples was performed on an Eclipse plus C18
column (1.8 µm, 3.6 mm ˆ 100 mm, Agilent) with a column temperature set at 45 ˝C. The flow
rate was 0.3 mL/min, and the mobile phase consisted of ultrapure water with 0.1% formic acid and
acetonitrile. The gradient program was as follows: 2% acetonitrile for 0–1.5 min; 2%–100% acetonitrile
for 1.5–13 min; a wash with 100% acetonitrile for 13–16 min; and a re-equilibration step for 5 min.
The sample injection volume was 2 µL.

Mass detection was performed in the positive ion mode with the following settings: drying gas
(N2) flow rate, 8 L/min; gas temperature, 330 ˝C; pressure of nebulizer gas, 35 psig; Vcap, 4000 V;
fragmentor, 160 V; skimmer, 65 V; and scan range, m/z 50–1200. All of the analyses were acquired
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using the instrument mass spray to ensure accuracy and reproducibility. Leucine encephalin was used
as the instrument reference mass (m/z 556.2771) at a concentration of 50 fmol/µL with a flow rate
40 µL/min. The MS/MS analysis was acquired in targeted MS/MS mode with collision energy from
10 to 40 V.

4.6. Sequence Analysis

The stability of the sequence analysis was monitored by the pooled QC sample analysis at the
beginning, at the end and randomly throughout the analytical run. The typical batch sequence of the
serum samples consisted of the consecutive analysis of 1 QC serum sample (at the beginning of the
study), followed by 6 unknown serum samples, and then 1 QC serum sample, before running another
6 unknown serum samples, etc. In the meantime, the samples were analyzed in a random order per
normal, good practices. An identical sequence was repeated to complete the total set of injections
(n = 93, including QCs) analyzed in less than 1 day, as described in previous studies [31].

4.7. Data Processing and Statistical Analysis

The LC–MS raw data were exported by the Agilent Mass Hunter Qualitative Analysis Software
(Agilent Technologies). The parameters were optimized to improve the extraction of ion information,
and the following parameters were chosen: the m/z values ranged from 80 to 1000, peak filters were
set to a centroid height exceeding 100 counts, and compound filters set the base peak to more than
1000 counts. This processing step created MHD files that contained compound IDs (based on neutral
mass and retention times), and further processing was conducted with the Mass Profiler software
(version B.02.00, Agilent Technologies), which aligns mass features across multiple LC–MS data files.
The mass-clustering window was 5 ppm, and the retention time-clustering window was 0.1 min. In this
study, the number of signals was 6169 in the positive mode. The sum of the ion peak areas within each
sample was normalized to 10,000. PLS-DA was used for the metabolic profile. Multivariate analysis
was performed using SIMCA-P software (Umetrics AB, Umeå, Sweden), version 11. The SAS statistical
package (order no. 195557), version 9.1.3, was used for the statistical analysis. The attribute data
were analyzed using χ-square test. The measurement data obtained indicated a normal distribution.
Comparisons between multiple groups were analyzed using analysis of variance. p < 0.05 was regarded
statistically significant.

4.8. Molecular Network Analysis

Molecular networks for the candidate metabolites were built and analysis of bio-functions and
canonical pathways were conducted by using the Ingenuity Pathway Analysis system (IPA, Ingenuity®

Systems, http://www.ingenuity.com), to gain insight into the typical metabolic alterations associated
with the biomarkers and the mechanisms relevant to ILAs.

4.9. Prediction of Metabolites Indication Ability

Human protein–protein interaction (PPI) data and enzyme-metabolite interaction (EMI)
data were retrieved respectively from the HPRD (http://www.hprd.org/), BioGRID databases
(http://thebiogrid.org/) and HMDB database (http://www.hmdb.ca/). PPIs and EMIs supported
by at least one wet experiment study were regarded confident and were selected for further analysis.
Finally, 304705 PPIs and 452985 EMIs were used in this analysis. It has been hypothesized that changes
in metabolites represent changes in the enzymes that involve in catalyzing the metabolites. Due to
the changes in enzymes as a result of deregulating upstream pathways in diseases, the metabolites
can be used to show the internal molecular abnormal state of the disease. Representative value (RV)
is defined as the power of the metabolite to reflect the abnormality of the disease. RV uses the fold
change in the metabolite, the number of enzymes catalyzing the metabolite and the importance of
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every enzyme to evaluate the indicative ability of the metabolite for the disease. RV is calculated by
the following arithmetic formula:

RVm “
FCm

řne
i“1 EPi

řnm
j“1pFCmj

řne
i“1 EPiq

(1)

where RVm refers to the representative value of the metabolite m; EPi refers to the network power
of the enzyme i that involves in catalyzing the metabolite m. (the network power is evaluated by
the protein–protein interaction (PPI) network degree); ne refers to the number of enzymes involving
in catalyzing the metabolite m; FCm refers to the fold change value of metabolite m in the disease
compared with the normal state; and nm refers to the number of deregulated metabolites in the disease.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
7/1148/s1.
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The following abbreviations are used in this manuscript:

1-Acyl-GPC 1-Acylglycerophosphocholine
ALT Alanine aminotransferase
AST Aspartate aminotransferase
AUC Area under the curve
BA Betaine aldehyde
BPCs Base peak chromatograms
COPD Chronic obstructive pulmonary disease
CRE Creatinine
EICs Extracted ion chromatograms
EMI Enzyme-metabolite interaction
ESI Electrospray ionization
HGB Hemoglobin count
GGO Ground-glass opacity
HealthyÑILAs subjects The subjects who were disease-free initially and then one year later suffered from ILAs
HRCT High-resolution computed tomography
ILAs Interstitial lung abnormalities
ILD Interstitial lung disease
IPA Ingenuity pathway analysis
IPF Idiopathic pulmonary fibrosis
LC-Q-TOF-MS Liquid chromatography quadruple time-of-flight mass spectrometry
LY Lymphocyte count
mTOR Mammalian target of rapamycin
NE Neutrophil count
NSCLC Non-small-cell lung cancer
PA Phosphatidic acid
PC Phosphatidylcholine
PCA Principal component analysis
PE Phosphatidylethanolamine
PI3K Phosphatidyl inositol 3-kinase
PLA Phospholipase A
PLD Phospholipase D
PLS-DA Partial least squares discriminant analysis
PLT Blood platelet count
PPI Protein-protein interaction
QC Quality control
RBC Red blood cell count
RhoA Ras homolog family member A
ROC Receiver operating characteristic
RSDs Relative standard derivations
RV Representative value
sPLA Secretory phospholipase A
SUA Serum uric acid
WBC White blood cell count
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