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Bronchiectasis is a complex chronic respiratory condition traditionally characterized by 
chronic infection, airway inflammation, and progressive decline in lung function. Early 
diagnosis and intensive treatment protocols can stabilize or even improve the clinical 
prognosis of children with bronchiectasis. However, understanding the host immunologic 
mechanisms that contribute to recurrent infection and prolonged inflammation has been 
identified as an important area of research that would contribute substantially to effective 
prevention strategies for children at risk of bronchiectasis. This review will focus on the 
current understanding of the role of the host immune response and important pathogens 
in the pathogenesis of bronchiectasis (not associated with cystic fibrosis) in children.
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iNTRODUCTiON

Bronchiectasis is a complex chronic respiratory condition traditionally characterized by recurrent 
infection, airway inflammation, and progressive decline in lung function. The defining symptom 
common to children with bronchiectasis is chronic wet cough. Region-specific studies suggest that 
geographic locality and socioeconomic environment play a large role in determining the likely etiol-
ogy of bronchiectasis in children. Cystic fibrosis, primary immune deficiency, defects in mucociliary 
clearance mechanisms (primary ciliary dyskinesia, congenital malformations), and aspiration of a 
foreign body increase susceptibility to respiratory infection and are known to be associated with 
bronchiectasis in children. However, on a global scale, lower respiratory infection in the absence of 
known underlying conditions accounts for the greatest number of bronchiectasis cases (1). The focus 
of this review will be bronchiectasis with no known underlying disorder in children.

In underprivileged populations, including populations within affluent societies (such as Indigenous 
populations of Australia, New Zealand, and Alaska), severe lower respiratory infection early in life 
is the most likely cause of bronchiectasis (2–4). Globally, it is estimated that severe bacterial or viral 
pneumonia accounts for approximately 60% of the cases of postinfection pediatric bronchiectasis. 
Measles and tuberculosis combined account for 25% (1). Although pneumonia is a significant risk 
factor for bronchiectasis, only a proportion of children develop bronchiectasis following an episode 
of pneumonia (5). The mechanisms involved in progressing from acute lower respiratory infection 
to chronic inflammation and persistent infection are poorly understood.

Early diagnosis and intensive treatment protocols can stabilize or even improve the clinical prog-
nosis of children with bronchiectasis (6, 7). Over the decades, considerable advances have been made 
in identifying the pathogens associated with recurrent or chronic infection. However, understanding 
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the host immunologic mechanisms that contribute to recurrent 
infection and prolonged inflammation has been identified as an 
important area of research that would contribute substantially to 
effective prevention strategies for children at risk of bronchiec-
tasis (8, 9).

This review will begin by exploring the role of the child’s 
immune response in establishing an environment conducive to 
the recurrent infection and chronic inflammation characteristic 
of bronchiectasis. This will be followed by a discussion of the 
important pathogens associated with bronchiectasis in children 
and the obstacles in treating and preventing these infections. The 
review will conclude with “the road forward” areas of research 
identified by the authors as important for the advancement of 
understanding and addressing the pathogenesis of bronchiectasis 
in children.

PATHOPHYSiOLOGY OF 
BRONCHieCTASiS

Over recent years, considerable efforts have been made to under-
stand airway inflammation associated with bronchiectasis. Some 
parallels exist between bronchiectasis and other chronic respira-
tory disorders, including cystic fibrosis and chronic obstructive 
pulmonary disease (COPD), in relation to airway inflammation. 
As a result, inflammatory processes involved in cystic fibrosis 
and COPD are sometimes used in an attempt to understand the 
pathophysiology of bronchiectasis. However, cystic fibrosis and 
COPD have distinctly different etiologies from bronchiectasis 
in children and extrapolating data, particularly to the pediatric 
setting, should be done with caution. Nevertheless, similarities 
between the chronic respiratory conditions suggest that bronchi-
ectasis arises from exaggerated and/or dysregulated inflamma-
tion in response to challenge from respiratory pathogens. Thus, 
the “vicious circle” hypothesis of self-perpetuating infection, 
inflammation, and tissue damage first described by Cole in 1986 
(10) remains the most likely explanation for the pathogenesis 
of bronchiectasis. What remains in question is, what causes the 
highly controlled immune response to become dysregulated?

The innate inflammatory response is one of the rapid response 
units of the immune system. When pathogens penetrate the 
physiological barriers, such as the epithelium, a series of highly 
regulated cellular and non-cellular events coordinate to rapidly 
contain the infection. In addition to its role as a first response 
unit, the inflammatory response also orchestrates the initiation 
of the pathogen-specific adaptive response. When functioning 
optimally, the initial inflammatory process resolves as rapidly as 
it begins, maintaining tissue homeostasis. Dysfunction, whether 
an exaggerated initial response or delay in resolution, may cause 
an accumulation of potent cytotoxic compounds that can dam-
age host tissue and provide an environment conducive to further 
infection.

AiRwAY iNFLAMMATiON

Difficulties associated with obtaining lower airway specimens 
from young children have precluded comprehensive study 
of the localized inflammatory mechanisms contributing to 

bronchiectasis. As a result, much of the current knowledge of 
airway inflammation in children with bronchiectasis is derived 
from small, cross-sectional studies, retrospective chart reviews 
and extrapolation of data from studies of bronchiectasis in adults. 
Despite these limitations, studies of bronchiectasis in children 
from various environments consistently show neutrophilic 
inflammation of the airways (11–13) as well as elevated levels 
of associated proinflammatory cytokines (IL-8, TNFα, IL-1β, 
and IL-6) (11, 14–16) and anti-microbial compounds (IP-10 
and LL-37) (16), consistent with an inflammatory response to 
bacterial assault. However, in addition to neutrophilic inflam-
mation, eosinophilic inflammation has been described in young 
Australian Indigenous children newly diagnosed with bronchi-
ectasis (13), suggesting complex inflammatory pathways may 
contribute to bronchiectasis.

Neutrophilic airway inflammation is also characteristic of 
bronchiectasis in adults. Neutrophil counts and inflammatory  
cytokines including IL-1β, IL-6, IL-8, and TNFα are elevated 
during periods of infective exacerbation (17, 18) and these key 
markers of inflammation continue to persist during periods  
of apparent clinical stability (17, 19). Increased levels of inflam-
matory markers in the lungs are associated with more severe res-
piratory symptoms, including poorer lung function (11, 20–22)  
and correlate positively with the anatomical extent of bronchi-
ectasis (20).

Pediatric studies are important to our understanding of the 
pathogenesis of bronchiectasis. Inflammation in the absence of 
bacterial infection in children with relatively newly recognized 
disease could mean that neutrophilic inflammation is an indica-
tion of abnormal immune regulation, rather than a symptom of 
chronic infection.

SYSTeMiC iNFLAMMATiON

Although traditionally recognized as an inflammatory disease of 
the airways, there is a growing body of evidence that bronchiecta-
sis may also include a systemic inflammatory component. While 
studies in children have found limited indication of systemic 
inflammation using standard clinical markers of inflamma-
tion [C-reactive protein (CRP), total white cell count, protein, 
platelets] (16), a study of 22 children found that children with 
bronchiectasis (clinically stable) had a higher proportion of 
circulating proinflammatory lymphocytes (producing TNFα, 
IFN-γ, perforin, and granzyme), compared with children with-
out suppurative lung conditions (23). This study was small and 
cross-sectional in design; however, it raises the possibility that a 
low-grade level of systemic inflammation is present in children 
with bronchiectasis and not currently detected by standard 
investigations.

Systemic inflammation is relatively common in adults with 
bronchiectasis. Elevated levels of circulating inflammatory cells 
(neutrophils and total white cell count) as well as soluble serum 
mediators [including transforming growth factor (TGF)-β, CRP, 
fibrinogen, and soluble adhesion molecules] have been described 
in adults with long-standing disease (17, 24–27). A high level of 
systemic inflammation is associated with an accelerated decline 
in lung function (28). Therefore, novel markers to monitor 
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low-grade systemic inflammation may be important for manag-
ing and preventing progression of disease in children.

THe ROLe OF NeUTROPHiLS iN 
BRONCHieCTASiS

Neutrophilic inflammation of the airways is often present in 
bronchiectasis, both in the presence and apparent absence of bac-
terial infection. In the healthy lung, the neutrophil is one of the 
key cells involved in driving the inflammatory response against 
invading pathogens. Neutrophils are recruited from peripheral 
circulation by local populations of macrophages and neutro-
phils. Circulating neutrophils rapidly migrate to the airways in 
response to proinflammatory mediators including IL-1β, IL-8, 
and TNFα. The primary role of the neutrophil is to eliminate the 
invading pathogen, first by phagocytosis, followed by release of an 
arsenal of antimicrobial products within the phagosome. When 
significantly stimulated, neutrophils degranulate and deploy 
potent proteases (including neutrophil elastase, cathepsin, and 
myeloperoxidase). Inadvertently, the release of these proteases 
can also degrade matrix proteins of the host’s airway walls and 
promote further inflammation. In the healthy lung, this process 
is tightly regulated to prevent excessive damage to host tissue. 
Impaired function and/or dysregulation of neutrophils are pro-
posed as important in the pathogenesis of bronchiectasis.

There are currently no data regarding neutrophil function 
in children. However, impaired neutrophil function has been 
described in adults with bronchiectasis, and this is associated 
with more severe disease (29–31). King and colleagues (30) 
demonstrated a high prevalence of impaired bacterial-specific 
oxidative burst function by circulating neutrophils in a large 
group of adults with bronchiectasis. Furthermore, patients with 
a low capacity for neutrophil-generated oxidative burst also dem-
onstrated a reduced capacity for intracellular bactericidal activity 
by the neutrophils. These data, however, were not reflected in 
two small studies of adult bronchiectasis where no impairment 
in oxidative burst by circulating neutrophils was found (29, 32), 
although impairment of airway neutrophils was observed (29). 
The discrepancies between these data may be attributed to the 
methods used to induce oxidative burst (bacterial phagocytosis 
versus synthetic peptide) or the clinical characteristics of the 
study cohorts (age and severity of disease). In the study by 
King and colleagues, phagocytosis and intracellular killing were 
investigated using a bacterial challenge, which may represent 
an alternate and more accurate pathway of activation compared 
with using peptide as the challenge. Despite the conflicting data, 
both studies found evidence of impaired microbicidal activity, 
albeit in different populations of neutrophils, suggesting that 
functional phagocytosis accompanied by impaired intracellular 
killing may be one strategy employed by pathogens to establish 
an intracellular niche and avoid host clearance mechanisms. The 
possibility that impaired phagocytosis and intracellular killing 
mechanisms correlate with disease severity highlights the need 
to investigate the role of neutrophil function in the progression 
of bronchiectasis in children who are in the early stage of chronic 
disease.

eosinophils
Eosinophils comprise a small but potent proportion of the leuko-
cyte population in circulation and in the lungs. Recruitment and 
activation of eosinophils are associated with several respiratory 
disorders including asthma and eosinophilic bronchitis, as well 
as parasite infection. Although rarely reported in association 
with bronchiectasis, our studies have identified a high prevalence 
of airway eosinophilia in Australian Indigenous children with 
bronchiectasis, which correlates with circulating eosinophils  
(13, 16). Limited investigations implicated a possible role for 
viruses in elevated airway eosinophils (16); however, it is likely 
that airway eosinophilia in children with bronchiectasis has 
multiple etiologies, including parasite infection, coexistent 
asthma, and hypersensitivity to fungi. In adults with chronic 
airway diseases, including bronchiectasis, eosinophilia is thought 
to be associated with more severe disease (33). Therefore, it is 
important to understand the etiology of airway eosinophilia and 
its contribution to the perpetuation of chronic inflammation and 
the pathogenesis of bronchiectasis.

Macrophages
Macrophages are phagocytic cells with multiple phenotypes. 
They are the most abundant cell in the uninflamed lung, typically 
comprising 85–95% of the cellular profile of bronchoalveolar lav-
age (BAL) fluid (34). They reside in and around interstitial tissue 
(interstitial macrophages) and within the surfactant fluid lining 
the alveoli (alveolar macrophages).

Hodge and colleagues recently showed, for the first time, 
alveolar macrophage dysfunction in children with bronchiectasis 
(15). Compared with control children, alveolar macrophages 
from children with bronchiectasis had a reduced capacity for 
both efferocytosis of bronchial epithelial cells and phagocytosis of 
non-typeable Haemophilus influenzae (NTHi). Impaired effero-
cytosis of apoptotic epithelial cells and neutrophils has also been 
described in adults with asthma and COPD (35, 36). Efficient 
efferocytosis is paramount in preventing secondary necrosis and 
the release of toxic factors into the lung microenvironment. An 
impaired ability to clear both apoptotic host cells and pathogens 
would likely contribute to an environment conducive to tis-
sue damage and persistent infection and the pathogenesis of 
bronchiectasis.

ADAPTive iMMUNe ReSPONSeS

Bacterial infection plays an important role in the pathogenesis 
of bronchiectasis in children. Severe lower respiratory infection 
during infancy is a significant risk factor for bronchiectasis (37), 
and idiopathic bronchiectasis in adults is often traced back to a 
history of lower respiratory infection in childhood (38). NTHi is 
the pathogen most commonly associated with bronchiectasis [as 
reviewed in Grimwood 2011 (9)]. However, NTHi is also present 
as a commensal organism in children without respiratory disease 
(39, 40). Despite the dual existence of NTHi as commensal organ-
ism and important respiratory pathogen (41), little is known 
about the development of natural immunity to NTHi. While it 
remains undisputed that the localized physiologic characteristics 
of bronchiectasis itself contribute to an environment supportive 
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of recurrent and persistent infection (dilated airways, excessive 
mucus retention, dysfunctional cilia), complementary studies 
in children (42) and adults (43–45) have shown that the adap-
tive immune response, particularly the cell-mediated immune 
response, is an important factor contributing to recurrent respira-
tory infection with NTHi.

CeLL-MeDiATeD iMMUNe ReSPONSeS

In vitro challenge assays of blood mononuclear cells indicate that 
the cell-mediated immune response to NTHi may be compro-
mised in children with bronchiectasis. This was demonstrated by 
a reduced capacity to produce IFN-γ in response to NTHi (42). 
Importantly, this compromised cell-mediated immune response 
was strongly associated with airway inflammation, specifically, 
elevated levels of IL-1β and IL-6 (16), indicating a possible link 
between localized inflammation and systemic adaptive immunity. 
The mechanisms driving the association between airway inflam-
mation and NTHi-driven IFN-γ in children with bronchiectasis 
have not been determined. However, IL-1β and IL-6 are integral 
to the initiation and phenotype of the adaptive immune response. 
IL-1β drives the inflammatory cascade by localizing neutrophils 
and promoting the production of inflammatory modulators such 
as IL-6 and IFN-γ-inducible protein 10 (IP-10; CXCL10). IL-6 
plays a complex role in the inflammatory response, from pro-
moting inflammation to wound healing. Dysregulation of IL-6 
pathways is associated with chronic inflammation (46). In addi-
tion to its inflammatory modulating properties, IL-6 is integral to 
initiating the adaptive response and in directing its primary phe-
notype. In the lung, IL-6 polarizes the adaptive immune response 
in favor of the humoral response by inhibiting IL-12 production 
(47, 48) and by promoting the differentiation of B-cells into 
antibody-producing plasma cells (49). These data suggest that 
IL-6 and IL-1β may be more than simply markers of inflamma-
tion, but rather indicative of suboptimal T-helper pathways that 
result in impaired clearance mechanisms and persistent infection. 
Collectively these data support an association between impaired 
cell-mediated immune responses to NTHi, dysregulated airway 
inflammation, and the pathogenesis of bronchiectasis in children.

These data in children complement extensive studies of NTHi-
specific immune responses in adults (43, 44) to show that a Th1 
polarized cell-mediated immune response contributes to protec-
tive immunity against NTHi. In these studies, King and colleagues 
showed that circulating CD4+ T-helper cells from healthy adults 
responded to an in vitro NTHi challenge with increased expres-
sion of IL-2 and IFN-γ, in a predominantly classic Th1 manner. In 
contrast, the cytokine response from adults with bronchiectasis 
and chronic NTHi infection was polarized in favor of IL-4 and 
IL-10 and complemented by low expression of IL-2 and IFN-γ.

Several factors may contribute to the differences in cytokine 
profiles generated in response to NTHi, including a reduction in 
the size of the pool of CD4+ memory T-cells. However, King and 
colleagues (44) showed that polarization of cytokine profiles was 
in direct relation to a skewing of the cytokines produced, rather 
than an overall reduction in the absolute number of CD4+ T-cells. 
In addition to CD4+ T-cells, CD8+ cytotoxic T-cells have been 
implicated in chronic infection with NTHi (44). CD8+ T-cells 

have the capacity to switch between IFN-γ (Th1) and IL-4 (Th2) 
polarized responses (50). CD8+ phenotype switching has not 
been investigated with respect to chronic NTHi infection; how-
ever, CD8+ T-cells from adults with bronchiectasis demonstrated 
a non-specific capacity to produce IFN-γ that was not realized 
in response to a specific challenge with NTHi (44). Phenotype 
switching is one mechanism that may explain this.

Collectively, these studies suggest that children and adults 
with bronchiectasis likely have the necessary cell-mediated 
immune architecture to respond to NTHi. Children with recent 
onset disease and adults with established bronchiectasis have a 
universal capacity to produce IFN-γ that is similar to healthy 
controls, but fail to do so in response to NTHi. This raises the 
possibility of using therapeutic strategies, such as vaccination, 
to improve immunity to NTHi by promoting the protective Th1 
response. Data in support of this strategy showed that in children 
with bronchiectasis, the capacity to produce IFN-γ in response to 
NTHi was highest in those who had received three or more doses 
of a pneumococcal conjugate vaccine that contained H. influenzae  
protein D (PHiD-CV) (51), a surface protein expressed by  
H. influenzae, not present in the HiB vaccine (52). Protein D has 
adjuvant properties that likely contributed to the higher cytokine 
responses in the PHiD-CV-vaccinated children.

HUMORAL iMMUNe ReSPONSeS

The role of the humoral response in the pathogenesis of bronchi-
ectasis is unclear. There are considerable published data showing 
chronic colonization and active infection of the lower airways 
with NTHi, despite the presence of an active humoral immune 
response (42, 51, 53–55). Adults with chronic respiratory condi-
tions, including bronchiectasis, chronic bronchitis, and COPD, 
also exhibit a comprehensive humoral immune response against 
NTHi, with ample amounts of specific total IgG, IgG subclasses, 
IgA and IgM present in circulation (43, 45, 56). These antibodies 
are functional against NTHi in vitro and, when combined with 
serum complement, form a potent NTHi-clearance mechanism. 
Although the amount of circulating immunoglobulin is age 
dependent, children also appear to be proficient at producing 
NTHi-specific IgG (42, 51, 57, 58). It is thought that this strong, 
universal humoral response is one of the main reasons why NTHi 
rarely causes systemic infection. However, high systemic antibody 
levels do not appear to correlate with protection from respiratory 
infections (42, 45).

Secretory IgA is the main immunoglobulin associated with 
mucosal immunology. While data on NTHi-specific secretory 
IgA are lacking, a small study of 25 adult patients indicated that 
deficient secretory IgA was not associated with bronchiectasis or 
chronic bronchitis (56). In contrast, in vitro studies have shown 
that NTHi produces human IgA proteases that may facilitate its 
internalization and persistent survival within lung epithelial cells 
(59). It is plausible that impaired antibody function rather than 
deficient levels of antibody may contribute to recurrent infection 
with NTHi in bronchiectasis. Alternatively, the presence of bacte-
rial biofilm or host bronchial secretions may impede the activity 
of antibodies; however, there are no data to confirm or refute this 
in children or adults with bronchiectasis.
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Collectively, these data indicate that chronic infection with 
NTHi is unlikely attributed to an overall deficiency in antibody 
production. However, NTHi is a heterogeneous species and can 
induce the production of strain-specific antibodies (54, 60). 
Thus, it has been suggested that antibody specificity may explain 
the inability of a previous infection to protect against a future 
infection with NTHi. Contrary to this hypothesis, a considerable 
degree of functional antibody cross-reactivity has been demon-
strated between different NTHi strains (45). Furthermore, in 
children and adults, there is a high turnover of strain carriage, and 
multiple strains are often carried concurrently (61, 62). Hence, 
it would be expected that a high level of antibody diversity is 
circulating at any one time, which should significantly restrict the 
number of infections regardless of strain specificity. These data do 
not preclude the role of humoral immunity in protection against 
respiratory infections with NTHi as humoral immunity likely 
plays a significant role in protection from systemic and airway 
disease. However, high prevalence of recurrent infection in the 
presence of high levels of antibody supports the argument that 
an increased susceptibility to infection with NTHi is more closely 
linked to the cell-mediated immune response than the humoral 
immune response.

PeRSiSTeNT iNFeCTiON AND 
BRONCHieCTASiS

Respiratory pathogens employ a variety of strategies to avoid 
clearance by host defense mechanisms. When successful, these 
strategies inhibit the host from effectively clearing infection and 
contribute to an environment supportive of chronic infection 
and associated inflammation. Some of the primary strategies 
employed by common respiratory pathogens include formation of 
protective structures such as biofilm (H. influenzae, Pseudomonas 
aeruginosa, Staphylococcus aureus, and Streptococcus pneumo-
niae) (63, 64), secretion of immune-blocking agents such as 
IgA proteases (H. influenzae) (65), and the secretion of toxins 
which damage mucus-clearing structures (including cilia) of the 
epithelium (66). Secreted proteases can damage the structure of 
the bronchial wall, including cilia, hampering sputum clearance 
from the lungs and promoting inflammatory processes by the 
host. Biofilm has been reported in the lower airways of children 
with bronchiectasis (67) and can impede the action of antibiotics 
(68). Some pathogens associated with chronic respiratory infec-
tions, including H. influenzae and Mycobacterium tuberculosis, 
can avoid the host humoral response by manipulating the host’s 
own phagocytic cells; hijacking antimicrobial mechanisms and 
establishing an intracellular niche (69).

BACTeRiAL PATHOGeNS

Studies reporting bacteria associated with bronchiectasis in 
children are listed in Table  1. H. influenzae (specified as non-
typeable, NTHi, in three studies) was the most common pathogen 
identified, followed by S. pneumoniae and Moraxella catarrhalis 
(2, 12, 70–75). These three species are commonly associated 
with acute exacerbations in adults with bronchiectasis (76, 77). 
While less common, combined results from all pediatric studies 
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indicate that P. aeruginosa and S. aureus have similar prevalence 
to M. catarrhalis, although results are difficult to compare given 
the different specimen types used (Table 1). The prevalence of 
H. influenzae, S. pneumoniae, and M. catarrhalis in bronchiec-
tasis forms the basis of empiric antibiotic therapy to treat acute 
exacerbations in children (78). However, this evidence is based 
primarily on cross-sectional studies of children who are clinically 
stable and from retrospective chart reviews. Evidence for the role 
of the five main bacteria in bronchiectasis is reviewed in the 
following sections, together with data on resistance to β-lactam 
and macrolide antibiotics, which are commonly used to treat 
respiratory infections.

NON-TYPeABLe Haemophilus influenzae

Haemophilus influenzae is a Gram-negative pleomorphic coc-
cobacillus and non-capsulated (non-typeable) strains (NTHi) 
are common colonizers of the upper respiratory tract (URT) 
(40). As the bacterium most commonly isolated from the 
airways of children and adults with bronchiectasis, NTHi likely 
contributes substantially to recurrent respiratory infections. In 
fact, the significance of NTHi in pediatric bronchiectasis was 
noted 60 years ago (79) with the conclusion that “non-capsulated  
H. influenzae is responsible for keeping the chronic inflamma-
tory process smoldering in bronchiectatic individuals.” NTHi is 
also an opportunistic pathogen associated with other respiratory 
infections such as otitis media (OM), sinusitis, and pneumonia 
in children (80).

There are a number of virulence factors employed by NTHi 
that provide an environment conducive to infection and chronic 
colonization (41). Some of these, including production of biofilm 
and secretion of proteases, have been mentioned previously in 
this review. Biofilm has recently been described in children with 
bronchiectasis (67) and recent evidence from in  vitro studies 
suggests that NTHi may manipulate activated neutrophils into 
facilitating the production of biofilm (81). NTHi also produces 
human IgA proteases that, in vitro, contribute to invasion of and 
survival within human respiratory epithelial cells (59).

Accurate identification of NTHi is important, since non-
hemolytic strains of the closely related and primarily commensal, 
Haemophilus haemolyticus, may be misidentified as NTHi by 
phenotypic methods. Molecular detection methods found that 
12–27% of nasopharyngeal (NP) isolates from healthy and otitis-
prone children, initially identified as NTHi using phenotypic 
methods, were actually H. haemolyticus (82, 83). In Australian 
Indigenous children with bronchiectasis, most phenotypic NTHi 
isolates from the NP (87%) and BAL (88%) were confirmed as  
H. influenzae using hpd#3 PCR, whereas most oropharyngeal 
(OP) isolates (65%) were presumptive H. haemolyticus (84). NTHi 
lower airway infection was also confirmed by using the hpd#3 PCR 
quantitatively and comparing measures of bacterial density with 
total and differential cell counts to gage the airway inflammatory 
response to infection (85). These molecular studies differentiating 
NTHi from H. haemolyticus have reaffirmed the importance of 
NTHi as a lower airway pathogen in pediatric bronchiectasis and 
shown that the NP rather than the OP is the preferred site for 
NTHi carriage studies in this pediatric population.

Resistance to ampicillin and other β-lactam antibiotics in  
H. influenzae is generally limited to the production of β-lactamase 
or, in the case of β-lactamase negative ampicillin-resistant 
(BLNAR) strains, the presence of altered penicillin-binding 
proteins (PBPs) (86). The overall prevalence of β-lactamase posi-
tive respiratory tract strains was 16.6% in a large international 
surveillance study (PROTEKT) from 1999 to 2000, ranging from 
3% in Germany to 65% in South Korea; only 0.07% of strains were 
BLNAR (87). In another large international study, most clinical 
H. influenzae strains were found to have an intrinsic macrolide 
efflux mechanism and azithromycin minimum inhibitory con-
centrations (MICs) between 0.25 and 4  mg/L; only 1.3% had 
high-level macrolide resistance (MIC >4 mg/L) due to ribosomal 
alterations, while 1.8% were defined as hyper-susceptible (MIC 
<0.25 mg/L) (88). In a cross-sectional study of 104 Australian 
Indigenous children with bronchiectasis, 19 and 33% of NTHi 
isolates from the NP and BAL, respectively, were β-lactamase 
positive and 6% and 13%, respectively, were azithromycin resist-
ant (MIC >4  mg/L); all other isolates tested had intermediate 
azithromycin resistance (89).

Streptococcus pneumoniae
Streptococcus pneumoniae (pneumococcus) is a Gram-positive 
diplococcus and the second most common pathogen associated 
with bronchiectasis in children (Table 1). At least 98 serotypes 
have been identified on the basis of its polysaccharide capsule 
(90). The capsule is an important virulence factor shielding 
the organism from the host’s immune system (91) and also an 
important vaccine target. Pneumococci colonize the nasophar-
ynx of healthy individuals (92), but as opportunistic pathogens 
they can cause acute local infections, such as OM, sinusitis, 
and community-acquired bacterial pneumonia, or invade the 
bloodstream resulting in meningitis or sepsis. These acute pneu-
mococcal infections and their complications have been studied 
extensively in children. Emerging evidence indicates a role for 
Th17 immune pathways in protection from mucosal infection 
with S. pneumoniae (93); however, little is known about the role 
of pneumococci in establishing and maintaining persistent lower 
airway or endobronchial infections in bronchiectasis. As severe 
and recurrent pneumonia episodes early in life are significant risk 
factors for bronchiectasis (37), it is plausible that early infection 
with S. pneumoniae initiates immunologic events that contribute 
to the pathogenesis of bronchiectasis.

From 1998 to 2000, the worldwide prevalence of pneumococ-
cal pediatric respiratory tract isolates with high-level penicillin 
resistance (MIC ≥2 mg/L) was estimated at 18%, with conspicu-
ous differences between countries (94). Pneumococcal resist-
ance to β-lactams is primarily mediated through alterations in 
PBPs, with highly penicillin-resistant strains having more PBP 
alterations than strains exhibiting intermediate resistance (MIC 
0.12–1  mg/L). Macrolide resistance in pneumococcal pediatric 
respiratory tract isolates worldwide was 25% overall (erythromycin  
MIC ≥1 mg/L), exceeding penicillin resistance in 19 of 26 coun-
tries surveyed (94). Macrolide resistance occurs through two main 
mechanisms; a ribosomal methylase and macrolide efflux system 
(95). Azithromycin is reported to be effective against susceptible 
strains of S. pneumoniae; however, the relevant MIC breakpoint 
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is controversial and depends on the site of infection. Treatment 
failure has mostly been reported for community-acquired pneu-
monia (96), generally with MIC ≥8 mg/L (97). However, treat-
ment failure has been reported for OM with MIC ≥2 mg/L (98). 
In the cross-sectional study of 104 Australian Indigenous children 
with bronchiectasis, 32 and 41% of S. pneumoniae isolates from 
the NP and BAL, respectively, were penicillin non-susceptible 
(no high-level penicillin resistance was detected) and 34 and 
59%, respectively, were azithromycin resistant (azithromycin  
MIC ≥12 mg/L) (89).

In a randomized controlled trial (RCT) of weekly azithromy-
cin versus placebo in 78 Indigenous children with bronchiectasis 
for up to 2 years, azithromycin resistance in S. pneumoniae from 
NP swabs was significantly higher in the azithromycin (79%) 
compared to placebo (8%) groups (99). However, resistance 
declined (to 7%) following the conclusion of the intervention 
(median 6 months later), indicating a fitness cost for macrolide 
resistance in S. pneumoniae (100). Similarly, studies of single-
dose azithromycin and biannual mass treatments for trachoma 
have shown increased rates of pneumococcal macrolide resist-
ance followed by a decline in resistance after removal of antibiotic 
pressure (101–103). This fitness cost of macrolide resistance in  
S. pneumoniae will likely ensure its eventual elimination (replace-
ment of resistant strains by susceptible strains) in the absence of 
antibiotic selection (104).

Moraxella catarrhalis
Moraxella catarrhalis is a Gram-negative, mostly β-lactamase 
positive, diplococcus. Although much of the research into pediat-
ric respiratory conditions focusses on NTHi and pneumococcus, 
M. catarrhalis should not be overlooked. In a large cohort study 
of children presenting with cough, M. catarrhalis was the only 
pathogen that distinguished children with and without persistent 
cough 28 days later (105). M. catarrhalis is also a common cause 
of OM in infants and children and causes an estimated 2–4 mil-
lion exacerbations of COPD in adults annually in the USA (106).

Most M. catarrhalis strains produce β-lactamase; 92% in 
the PROTEKT study (87). In contrast, M. catarrhalis is almost 
universally susceptible to azithromycin (87, 95, 107, 108), 
although macrolide resistance has recently been reported in 
China (109, 110), Japan (111, 112), and Pakistan (113). In 
Australian Indigenous children with bronchiectasis, most  
M. catarrhalis isolates from the NP (91%) and BAL (100%) were 
β-lactamase positive; however, azithromycin resistance was not 
tested (89). No data were located on macrolide resistance in 
M. catarrhalis from children with bronchiectasis. Given the 
increasing use of azithromycin for a range of conditions, it 
may be prudent to monitor M. catarrhalis for development of 
macrolide resistance.

Staphylococcus aureus
Staphylococcus aureus is a Gram-positive coccal bacterium fre-
quently found in the nose and on the skin and is a common cause 
of skin and respiratory infections. It is commonly associated with 
bronchiectasis in adults (76, 114). Although sometimes found 
in the BAL of children with bronchiectasis (Table 1), its role in 
pathogenesis is unknown.

Interest in S. aureus has intensified with the increasing 
prevalence of infections caused by methicillin-resistant S. aureus  
(MRSA) (115). MRSA is now endemic in many hospitals throughout  
the world, with the highest rates (>50%) in North and South 
America and south-east Asia (116). Studies of long-term mac-
rolide treatment in cystic fibrosis patients with bronchiectasis 
have also found high rates of macrolide resistance (up to 100%) 
in S. aureus (117–119). We similarly found significantly higher 
macrolide resistance in S. aureus NP isolates from Indigenous 
children with bronchiectasis randomized to long-term azithro-
mycin (100%) compared to placebo (40%); MRSA was present 
but less common in both treatment groups (19 and 20% of  
S. aureus isolates, respectively) (100). Importantly, all S. aureus 
isolates were macrolide resistant following the conclusion of 
the intervention (median 6-months later), providing the first 
evidence (to our knowledge) of a lack of fitness cost for macrolide 
resistance in this pathogen (100).

Pseudomonas aeruginosa
Pseudomonas aeruginosa is a Gram-negative rod-shaped bacte-
rium and opportunistic pathogen. P. aeruginosa is uncommon 
in young children with bronchiectasis (12, 72) but is found in 
older children (73, 74, 120) and adults with bronchiectasis  
(76, 114, 121, 122). Lower respiratory infection with  
P. aeruginosa is a predictor of accelerating lung function decline  
(28, 123), severe disease, and mortality (124), and is therefore 
likely associated with more advanced disease. Numerous mecha-
nisms of antibiotic resistance have been attributed to P. aeruginosa 
including intrinsic and acquired β-lactamases and multidrug 
efflux pumps (125). No data were located on antibiotic resistance 
in P. aeruginosa from children with bronchiectasis.

iNiTiATiON OF LOweR ReSPiRATORY 
iNFeCTiON

Since lower airway infections result from aspiration of patho-
genic bacteria originating in the upper airways (92), differences 
in URT carriage in different populations may be important. Four 
of the five main bacteria (P. aeruginosa being the exception) 
associated with bronchiectasis are common colonizers of the 
URT in children. Nasal or NP carriage of NTHi, S. pneumoniae, 
and M. catarrhalis is common in young children, particularly 
in day care centers (126, 127) and low-income countries 
(128). However, very high rates (80–90%) have been reported 
in Australian Aboriginal children (127, 129) and children in 
some developing countries such as Papua New Guinea (PNG) 
(130) and the Gambia (131, 132), which also have high rates 
of pneumonia morbidity and mortality (133, 134). Australian 
Aboriginal and Gambian infants acquire NP carriage of all three 
main respiratory pathogens at a very early age (132, 135), and 
the URT burden is higher in Indigenous than non-Indigenous 
Australian children (127, 136).

Nasopharyngeal carriage of S. aureus is high in infants 
<3 months old but declines rapidly as carriage of the three main 
respiratory bacteria increases, reaching a low point at 1–2 years 
(132, 137). Carriage increases again to reach its highest preva-
lence in children >5 years old (138, 139), as NP carriage of the 
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other three bacteria declines. If aspiration of S. aureus from the 
URT contributes to bronchiectasis, then S. aureus lower airway 
infection may be more common in older children.

In contrast, P. aeruginosa is not considered part of the normal 
pharyngeal flora. In children with cystic fibrosis, carriage in the 
URT has only been found in those with established lower airway 
colonization (140). A recent study evaluated swabbing methods 
to estimate URT bacterial carriage and found very low prevalence 
of P. aeruginosa in all age groups (138). Aspiration of P. aeruginosa 
into the lower airways is thus likely a rare event, which may help 
to explain why this pathogen is especially uncommon in young 
children with bronchiectasis.

MULTiPLe STRAiN CARRiAGe AND 
PeRSiSTeNCe OF iNFeCTiON

A notable feature of NTHi carriage in populations with high 
carriage rates is regular turnover of strains, and the multiplicity 
of NP strains carried at any one time (62, 130, 141). Populations 
with high S. pneumoniae carriage, such as Australian Aboriginal  
(141, 142), Gambian (131), and PNG children (130), also have high 
rates of simultaneous multiple serotype carriage; 10-fold higher 
than that reported in other populations (143). Pneumococcal 
serotypes are also regularly replaced; the mean duration of  
S. pneumoniae carriage in Kenyan children was just over 30 days 
(range 6.7–50 days for 28 serotypes) (144).

The high level of concordance between bacterial strains (NTHi 
ribotypes and pneumococcal serotypes) in the nasopharynx and 

lungs of Australian Indigenous children with bronchiectasis and 
concurrent carriage and lower airway infection (72) suggests 
recent aspiration of NP secretions, given the high turnover of NP 
strains. However, multiple strains of NTHi and S. pneumoniae 
have consistently been found more frequently in BAL compared 
to NP specimens (72, 89). This suggests accumulation of strains 
in the lower airways resulting from recurrent aspiration and 
failure to eliminate prior strains. Multiple NTHi strains have also 
been reported in sputum microbiology from adults with chronic 
respiratory conditions (54, 76).

It is probable that the high and early burden of pathogens 
in the nasopharynx of Indigenous children and children in low 
income countries contributes to the high burden of acute and 
chronic lower respiratory infections. Figure  1, adapted from 
Cole’s original model (10) and modified to explain chronic lung 
disease (145), illustrates an “extended vicious circle” hypothesis 
to explain high rates of chronic endobronchial disorders such as 
bronchiectasis.

CHALLeNGeS AND LiMiTATiONS

Despite what we have learned about the microbiology of the lower 
airways in children with bronchiectasis, there are challenges asso-
ciated with identifying the pathogen responsible for a respiratory 
exacerbation. Spontaneous or induced sputum is a reliable and 
accessible source of specimen routinely used for microbiologic 
analysis in adults. However, collecting sputum from young 
children is problematic as they find it difficult to expectorate. 
Although NP swabs may be a useful proxy, in practice, the 
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organism responsible for an exacerbation is rarely identified, and 
physicians generally rely on empiric evidence to treat respiratory 
exacerbations in children with bronchiectasis.

Contamination with upper airway microflora is a potential 
problem when lower airway specimens are obtained for bacterial 
culture (146). Despite careful technique, contamination may 
occur during BAL collection in young children as the tube used is 
too narrow for the protected brush method. Quantitative culture 
is used to exclude bacteria present in low numbers in BAL fluid 
due to upper airway contamination; however, the threshold used 
to define lower airway infection varies between studies. We and 
others have used a cutoff of 104 colony forming units (CFU)/mL 
BAL (72, 147, 148) in children. However, others have used dif-
ferent cutoffs, e.g., 103 CFU/mL in some adult studies (19, 146) 
and 105 CFU/mL for infants with cystic fibrosis (149). Although 
we validated a threshold of 104 CFU/mL to define NTHi lower 
airway infection using correlation with quantitative PCR and 
airway neutrophilia (85), alternative thresholds and other bacte-
rial pathogens need investigation.

Identifying the pathogens responsible for lower airway 
infections is further complicated by limitations in laboratory 
methods. Only a small proportion of bacteria are detectable 
using routine laboratory culture and identification of respiratory 
pathogens from sputum or BAL alone does not prove causality 
of infection.

MiCROBiOMe

Improvements in culture-independent molecular technologies 
show that the bronchial tree is host to a diverse microbiota, includ-
ing respiratory pathogens, in people without respiratory illness 
(150). Thus, it is difficult to distinguish pathogenic colonization 
from commensal or opportunistic colonization in an individual 
patient. Nevertheless, members of the phylum Proteobacteria 
(which includes Haemophilus and Moraxella spp.) were strongly 
associated with airway disease (COPD and asthma) in adults and 
children (150).

The concept of dysbiosis (microbial imbalance) in intestinal 
flora has a long history and the associated literature is huge. In 
contrast, the healthy lung was long considered to be sterile, so 
that characterization of a healthy lung microbiome is a relatively 
recent development. Studies using 16S rRNA gene sequencing 
found that bacterial communities of the healthy lung overlapped 
those found in the mouth but at lower concentrations, while NP 
samples showed a different composition (151, 152). Bacteroidetes, 
particularly Prevotella spp., were frequently found in the mouth 
and lungs of healthy adults and children (150–152).

A recent study using 16S rRNA gene sequencing found that 
the microbiota in BAL specimens from 78 young children with 
chronic lung disease (36 had bronchiectasis) includes taxa present 
in both NP and OP specimens (153). Diversity using Simpson’s 
index was significantly lower in NP swabs compared to OP and 
BAL specimens, reflecting the more common dominance of indi-
vidual operational taxonomic units (OTUs) in the NP microbiota 
(153). Dominant OTUs (>50% relative abundance) in NP and 
BAL specimens included M. catarrhalis, H. influenzae, S. aureus, 
and mitis group streptococci (which includes S. pneumoniae); 

only Porphyromonas sp. was dominant in OP specimens (153). 
These data support the hypothesis that the dynamics of bacterial 
populations in the nasopharynx are primarily responsible for 
dysbiosis in the lungs of children with bronchiectasis although 
both OP and NP analysis should be included in studies of the 
lower airways.

viRUSeS

There are few data available with which to characterize the role of 
viral infection in the pathogenesis of bronchiectasis in children. 
However, recent data from two separate, prospective Australian 
studies of children with bronchiectasis indicate that attention to 
viruses is warranted. Respiratory viruses were associated with 
48% of exacerbations in 69 Queensland children with bronchi-
ectasis (154) and detected in the BAL of 44% of 68 clinically 
stable children, primarily Indigenous, in the Northern Territory 
(16). Furthermore, in a study of bronchiectasis in 58 adults in 
Guangdong, China, respiratory viruses were detected during 
49% of 100 exacerbations (155). In the two pediatric studies, 
rhinovirus was the most commonly detected virus, while corona-
virus, followed by rhinovirus and influenza were most common 
in the adult study. Whether this difference in viral dominance 
is demographically driven or associated with disease severity is 
unknown. However, in both children and adults, the presence of 
virus during respiratory exacerbation was associated with more 
severe symptoms.

Respiratory viruses are an important cause of exacerbations in 
other chronic respiratory illnesses including asthma and COPD 
(156, 157). It has been postulated that viruses may alter immune 
responses and promote respiratory exacerbations from bacte-
rial infection (158). Furthermore, bacteria/virus coinfections 
reportedly result in more severe symptoms (158, 159). Australian 
Indigenous children carry a high burden of respiratory bacteria 
from a very young age (135, 160). Increased nasopharyngeal 
NTHi density has been shown in the presence of any one of 
several respiratory viruses in Indigenous children with acute OM; 
the most commonly detected viruses being rhinovirus, polyoma-
virus, and adenovirus (161). Adenovirus has also been associated 
with suppurative lung conditions in children, particularly with 
respect to bacterial coinfection (162).

Respiratory viruses are likely an under-recognized factor 
contributing to acute exacerbations and persistent airway inflam-
mation in children with bronchiectasis. Large, population-based 
pediatric studies investigating the effect of viruses on airway 
immunopathology are important to fully appreciate the contribu-
tion of viruses to chronic inflammation and the pathogenesis of 
bronchiectasis in children.

iMPACT OF ANTiBiOTiCS

Antibiotic therapy forms the cornerstone of bronchiectasis 
management in children. Antibiotics are prescribed to reduce 
symptoms, prevent exacerbations, and preserve lung function 
by reducing lower airway bacterial load and inflammation (163). 
Amoxicillin remains the antibiotic of choice for acute respiratory 
infections due to its long history of clinical success, acceptability, 
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limited side effects, and relatively low cost. High doses of amoxi-
cillin can be prescribed for penicillin-resistant pneumococci, but 
clinical failure may indicate another infecting pathogen that is a 
β-lactamase producer. This mode of resistance can be overcome 
by antibiotics containing β-lactamase inhibitors such as clavu-
lanic acid. Oral amoxicillin-clavulanate is usually prescribed 
as initial empiric therapy for children with bronchiectasis and 
mild-to-moderate exacerbations (163).

The macrolide antibiotic azithromycin is often used long term 
for the management of bronchiectasis in children and adults (8). 
Azithromycin does not require refrigeration and can be taken 
orally once a week and is therefore more easily managed in resource 
poor settings. Azithromycin has been used in pediatric patients 
since 1991 and has been found to be safe and well-tolerated in 
the single-dose regimen as well as the conventional 3-day and 
5-day regimens (164). Macrolides are active against S. pneumo-
niae, H. influenzae, M. catarrhalis, and S. aureus (165, 166); they 
have no bactericidal effects against P. aeruginosa but do inhibit 
biofilm formation (166). Macrolides have immunomodulatory 
properties and antibacterial effects (166), decreasing inflamma-
tion, inhibiting bronchial hyper-responsiveness, and improving 
mucus clearance (167), and may therefore play an important role 
in the management of bronchiectasis.

Three reviews (166, 168, 169) of maintenance macrolide 
therapy (2–24 months duration) for bronchiectasis have reported 
six RCTs in adults and four in children (99, 170–172). Macrolide 
therapy was associated with reduced frequency of exacerbations 
in adults (risk ratio [RR] 0.42, P < 0.001) and children (RR 0.50, 
P < 0.001) (169), often with other improvements in pulmonary 
function and reduced sputum volume. Only one RCT of low-
dose erythromycin versus placebo in children with HIV-related 
bronchiectasis found no difference in the frequency of exacer-
bations (172). Increased macrolide resistance in NP bacteria 
(S. pneumoniae and S. aureus) was found in the only RCT in 
children which detailed microbiologic outcomes (99). However, 
adherence to medication in the Australian azithromycin group 
was significantly associated with lower carriage of any pathogen 
and fewer macrolide-resistant pathogens (95% of New Zealand 
children took ≥70% of their weekly doses as directly observed 
therapy was practiced) (100). Better adherence to treatment will 
not only optimize clinical benefit (99) but also by lowering the 
bacterial load and minimizing prolonged periods of sub-MIC 
antibiotic concentrations, it may also reduce the risk of macrolide 
resistance (100). This has important implications for physicians 
when considering long-term macrolide antibiotics for children 
with bronchiectasis, since adherence <70% was a significant risk 
factor for macrolide resistance (100).

iMPACT OF vACCiNeS

Currently, there is no commercially available vaccine specifi-
cally targeting NTHi, the main bacterial pathogen in pediatric 
bronchiectasis. Oral vaccines against infection with NTHi have 
been successful in reducing the number and severity of exacer-
bations, as well as carriage, in adults with COPD and chronic 
bronchitis (173–176). However, a systematic review found 
the benefit was too small to advocate widespread NTHi oral 

vaccination of people with COPD (177). A more effective oral 
vaccine may improve mucosal protection (178) and reduce the 
incidence and/or severity of respiratory infections caused by 
NTHi.

Pneumococcal polysaccharide vaccines were developed to 
prevent pneumonia caused by S. pneumoniae and include sero-
types causing the most invasive pneumococcal disease (IPD). The 
23-valent polysaccharide vaccine was introduced in 1983 (179) 
and is still in use today. However, while the antibody response to 
immunization with polysaccharide is satisfactory in most people 
over the age of two, the response is less satisfactory between 
6 months and 2 years of age and very poor in children < 6months 
old (180). Conjugation of pneumococcal polysaccharides to a car-
rier protein improves immune responses among infants. The first 
licensed pneumococcal conjugate vaccine (PCV7) introduced in 
2000 contained seven serotypes causing most IPD in children 
<5 years old in the USA (181). Vaccines including more serotypes 
have subsequently been produced, including a 10-valent pneu-
mococcal NTHi protein D conjugate vaccine (PHiDCV) (182) 
and PCV13, licensed in 2010 (183).

PCVs have been very effective in reducing the incidence of 
IPD caused by vaccine serotypes (184–186). However, PCVs 
have been less effective in reducing pneumonia (a risk factor for 
bronchiectasis); reductions in radiologically confirmed (likely 
bacterial) pneumonia of 20–22% have been described in some 
populations (187, 188) but no reduction in others (189). Limited 
impact on pneumonia incidence may be due to the relative 
contribution of vaccine-type pneumococci in a setting where 
multiple other pathogens (including pneumococcal serotypes not 
in the vaccine) are prevalent.

There are few published clinical trials assessing the impact 
of PCVs in children with bronchiectasis, although vaccination 
is currently recommended (78). A clinical trial of PHiDCV in 
children with protracted bacterial bronchitis, chronic suppura-
tive lung disease, and bronchiectasis (collectively referred to as 
chronic endobronchial disorders), with respiratory exacerbation 
as the primary outcome, is currently underway (190). We have 
recently found that carriage serotypes of S. pneumoniae (mostly 
non-vaccine types in PCV-vaccinated populations) have a similar 
propensity to cause lower airway infection in Australian children 
with chronic endobronchial disorders (191). From these data, 
it may be argued that PCVs will have little impact on lower 
respiratory infection in this population. However, PHiDCV may 
be effective against mucosal infection with NTHi (192), and we 
await the full findings of the clinical trial (190).

Further molecular studies are required, since not all H. influ-
enzae strains have the hpd genes encoding Haemophilus protein 
D (193). This has implications for H. influenzae identification, 
and other gene targets have been used (194, 195). There are also 
important implications for vaccine targeting, and studies are 
needed to determine the prevalence of hpd negative strains in 
different populations and different sites of carriage and infection 
and to investigate other potential NTHi vaccine antigens.

Vaccines targeting the other three main bacterial pathogens 
in pediatric bronchiectasis, M. catarrhalis, P. aeruginosa, and  
S. aureus are not yet commercially available; their development 
has been reviewed by others (196–198).
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ANTi-iNFLAMMATORieS

Inhaled anti-inflammatories may be a strategy to manage the 
intense and persistent airway inflammation associated with 
bronchiectasis. Inhaled non-steroidal anti-inflammatories 
(NSAIDs) and corticosteroids have been proposed as potential 
agents in the management of bronchiectasis (8). However, two 
recent systematic reviews of randomized, controlled clinical 
trials found no evidence to support the use of inhaled NSAIDs 
(199) or corticosteroids (200) in children with bronchiectasis. 
These reviews emphasize a gap in knowledge regarding novel 
therapeutics to address airway inflammation in children with 
bronchiectasis. There is a need for clear data regarding the effect 
of inhaled anti-inflammatories on airway inflammation and the 
long-term effect of anti-inflammatories on recurrent infection in 
children with bronchiectasis, prior to introducing them into the 
therapeutic regime.

THe ROAD FORwARD

The past decade has seen tremendous advances in our understand-
ing of the immunologic parameters associated with bronchiecta-
sis. Bronchiectasis is a complex condition involving suboptimal 
adaptive immune responses and dysregulated inflammatory 
responses that culminate in recurrent and persistent infection. 
However, current management strategies for children continue to 
rely primarily on antibiotic therapy for the treatment or preven-
tion of acute bacterial infection and physiotherapy for airway 
clearance. While these strategies are important, a novel, multidi-
rectional approach is required to address the impaired adaptive 
immune responses and dysregulated inflammatory mechanisms 
responsible for chronic inflammation and persistent infection. 
Novel, plausible therapeutic directives may include targeting air-
way inflammation through the use of inhaled anti-inflammatories 
or improving adaptive immune responses to pathogens important 
to the pathogenesis of bronchiectasis. However, both approaches 
require a commitment to understanding the complex immunol-
ogy associated with suboptimal immune responses and protective 
immune pathways, prior to developing and incorporating immu-
nomodulating therapeutics to the management of bronchiectasis 
in children. Understanding the mechanisms driving the immu-
nopathology of bronchiectasis has the potential to revolutionize 
therapeutics and management strategies for children. Here, we 
consider future research endeavors to advance management and 
prevention of bronchiectasis in children.

Developing Non-invasive Methods to 
Define and Monitor Airway inflammation
Rapid advancements in therapeutics against persistent inflam-
mation are hindered by difficulties in monitoring their effect 
on airway inflammation. Obtaining lower airway specimens 
from children is challenging. Young children find it difficult to 
expectorate until at least 7 years of age and bronchoscopy with 
lavage is an invasive procedure performed under anesthesia. 
Non-invasive approaches for monitoring inflammation in the 
lungs, including the resolution of inflammation, are required. 
Approaches that warrant investigation include the use of exhaled 

breath condensate (201) and biomarkers from upper airway 
mucosal secretions (202) and blood (23) reflective of lower airway 
inflammatory processes.

Understanding the Mechanisms 
Responsible for immune Dysfunction
Dysregulated airway inflammation appears to be linked to the 
functional phenotype of the adaptive immune response (16); 
however, the direction of this association, be it cause or effect, is 
unknown and likely complex and questions remain regarding the 
transition between acute and chronic responses. Inappropriate 
T-cell responses may increase susceptibility to infection with 
NTHi and prolong inflammation due to ineffective clearance 
mechanisms. Dysregulated IL-6 and IL-1β pathways in the 
lungs may promote an environment supportive of Th2 and Th17 
polarized responses, increasing susceptibility to infection with 
NTHi and viruses. It is also plausible that chronic inflammation 
may contribute to impaired macrophage activation and T-cell 
responses, resulting in an environment of immune tolerance or 
exhaustion. Understanding immunologic mechanisms behind 
the chronic symptoms of bronchiectasis will greatly inform 
targeted management practices.

improving immunity to NTHi
Limited data suggest that it may be possible to improve immunity 
to NTHi in children with bronchiectasis. Vaccination with a PCV 
containing a single-NTHi antigen was associated with higher 
NTHi-driven IFN-γ responses (51). While it appears that a strong 
IFN-γ response is important for immunity to NTHi, the specific 
cytokine profile that correlates with protection is unknown. 
Indeed, while the IFN-γ levels produced by children with bron-
chiectasis who received the vaccine approached levels obtained 
by healthy control children, the children with bronchiectasis also 
produced higher levels of Th2-associated cytokines (IL-13 and 
IL-5), suggesting generation of a mixed Th1/Th2 response. As 
mixed Th1/Th2 responses are associated with suboptimal protec-
tion from pertussis (203), effective vaccine development will rely 
on understanding the functional cell-mediated phenotype that 
best correlates with protection from infection with NTHi.

Does immune Dysfunction extend to 
Pathogens Other Than NTHi?
Non-typeable Haemophilus influenzae is the most common 
known pathogen identified in the lower airways of children with 
bronchiectasis; however, other respiratory pathogens, including 
viruses, are also common. Furthermore, accumulating data indi-
cate that the airways are host to a diverse microbiota, including 
respiratory pathogens, in people without respiratory disease. 
Thus, distinguishing infection from opportunistic coloniza-
tion can be difficult. It has been proposed in the literature that 
respiratory disease may be better characterized by changes in 
the phenotypic profile of the microbiota (150). Detailed data 
investigating the relative effect of changes in the lung microbiota 
on immune function in children are lacking. Such studies would 
provide important information regarding immune development 
and the pathogenesis of bronchiectasis.
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Bacterial Load Thresholds to Define 
Lower Airway infection
Respiratory societies have introduced guidelines for collecting 
BAL fluid for microbiologic and immunologic analysis. However, 
instrumentation, technique, and sample preparation can vary 
widely between centers and between individual operators. The 
effect this has on the phenotype or quality of the sample must be 
considered when reporting results. Although we have validated a 
threshold of 104 CFU/mL to define NTHi lower airway infection 
in our setting (85), alternative thresholds should be investigated. 
Multiple biologic and clinical markers consistent with disrupted 
airway homeostasis should be considered when developing algo-
rithms to define thresholds of infection. Further, the association 
between bacterial load and inflammatory markers may differ 
between bacterial species. Well-defined thresholds of infection 
that can account for operational variables are important for 
understanding the contribution of each pathogen to lower airway 
inflammation in children with bronchiectasis.

Genome Studies
Whole genome sequencing (WGS) is needed to understand 
virulence and antibiotic resistance determinants in important 
bacterial pathogens. We have reported higher rates of resistance 
in BAL compared to NP isolates for NTHi, S. pneumonia, and  
M. catarrhalis (89). Lower airway strains may harbor a signifi-
cantly higher proportion of genetic variants that favor persistence 
or confer antimicrobial resistance compared to NP strains from 
the same children and/or asymptomatic carriers. Further, WGS 

studies are needed to determine the prevalence of hpd-negative 
NTHi strains in different populations and different sites of carriage 
and infection and to investigate other potential vaccine antigens 
in NTHi and other pathogens. This information may prove valu-
able in the development of vaccines and therapeutic agents.

CONCLUDiNG STATeMeNT

Suboptimal adaptive immune responses, in addition to dysregu-
lated local inflammatory responses, likely contribute to an envi-
ronment conducive to chronic or recurrent infection. An effective 
management strategy for bronchiectasis in children requires an 
understanding of the adverse immunologic events leading to 
recurrent infection and persistent inflammation. Promoting an 
environment that supports efficient pathogen clearance and rapid 
resolution of inflammatory responses should be forefront in our 
future endeavors to combat a condition that should be largely 
preventable.
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