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Abstract: Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in 

eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer) 

which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor 

by activating the soluble transducer. This article reviews the detailed photoreaction 

processes of ASR, which were studied by low-temperature Fourier-transform infrared 

(FTIR) and UV-visible spectroscopy. The former research reveals that the retinal 

isomerization is similar to bacteriorhodopsin (BR), but the hydrogen-bonding network 

around the Schiff base and cytoplasmic region is different. The latter study shows the stable 

photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100%  

all-trans. These results suggest that the structural changes of ASR in the cytoplasmic 

domain play important roles in the activation of the transducer protein, and photochromic 

reaction is optimized for its sensor function.  

Keywords: photosensor; rhodopsin; photochromism; FTIR spectroscopy; UV-visible 

spectroscopy 

 

1. Introduction 

 

Photosynthesis is one of the most important chemical reactions in living cells because almost all 

energy spent by living things on Earth originates from it. Photosynthesis mainly takes place in the 
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chloroplasts of plants, where a photoinduced electron transfer reaction first stores light energy, but 

eventually a proton gradient is formed across the membrane. The proton gradient is used for the 

synthesis of ATP, because it is a driving force of an enzyme ATP-synthase. Some bacteria directly 

convert light energy into a proton gradient through a proton pump. Light sensing is also important: 

Plants must avoid ultra-violet (UV) light, because it can possibly damage their genes. In addition, they 

have to sense orange or red light, as photosynthesis is more efficiency under these lights. 

Four archaeal type rhodopsins [Bacteriorhodopsin (BR), Halorhodopsin (HR), Sensory rhodopsin I 

(SRI), and Sensory rhodopsin II (SRII); also called phoborhodopsin (pR)] were discovered in the 

cytoplasmic membrane of Halobacterium salinarum [1-4]. The former two (BR and HR) function as 

light-driven proton and chloride pumps, respectively, while the latter two (SRI and SRII) are 

responsible for attractive and repellent phototaxis, respectively (Figure 1). They have a retinal molecule 

as a chromophore, which forms a Schiff base linkage with a lysine residue of the 7th helix. An all-trans 

form (all-trans, 15-anti) is the functional form in BR, HR, SRI and SRII, and absorption of light leads 

to isomerization to the 13-cis, 15-anti form, which triggers protein structural changes for function. In 

the case of BR, a cyclic reaction comprises the series of intermediates, K, L, M, N, and O  

(Figure 2) [5,6]. During the photocycle, a proton is transported from the cytoplasmic to the 

extracellular side. They have been extensively studied as model systems converting light energy to 

chemical potential or environmental signals. Although such archaeal type rhodopsins were considered to 

exist only in Archaea, during the last decade the various genome sequencing projects have revealed that 

archaeal rhodopsins also exist in Eukaryota and Bacteria. In eucaryotes, archaeal rhodopsins have been 

found in fungi [8], green algae [9,10], dinoflagellates [11], and cryptomonads [12].  

Figure 1. The bacteriorhodopsin photocycle (PDB code: 1C3W) [7]. The reaction starts 

with light and returns to the initial state through the various intermediates within 10 ms.  
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Figure 2. There are four archaeal rhodopsins in Halobacterium salinarum: 

bacteriorhodopsin, halorhodopsin, sensory rhodopsin I and II. All of them have seven 

transmembrane helices and an all-trans retinal as a chromophore.  

 

 

Eubacterial rhodopsins were found both in - and -proteobacteria [13,14] as well as in Anabaena 

(Notstoc) sp. PCC7120, a freshwater cyanobacterium [15], which was called Anabaena Sensory 

Rhodopsin (ASR). The gene encoding ASR, which is a membrane protein of 261 residues (26 kDa), and 

a smaller gene encoding a soluble protein of 125 residues (14 kDa), which is called ASRT (ASR 

transducer), are under the same promoter in a single operon [15]. The opsin expressed heterologously 

in Escherichia coli membranes binds all-trans retinal to form a pink pigment (max = 549 nm) with a 

photochemical reaction cycle half-life of 110 ms (pH 6.8, 18 °C) [15]. The previous study revealed that 

co-expression with ASRT increased the rate of the photocycle, indicating physical interaction with ASR 

and the possibility that ASR works as a photosensor protein (Figure 3) [15]. It should be noted that SRI 

and SRII activate transmembrane transducer proteins (Figure 1). In this sense, ASR is closer to visual 

rhodopsins that activate soluble G-proteins. 

According to the X-ray crystal structure of ASR (Figure 4), it is similar to those of other archaeal-

type rhodopsins. ASR accommodates both all-trans and 13-cis retinal in the ground state, which can be 

interconverted by illumination with blue (480 nm) or orange (590 nm) light (Figure 3) [16]. Such 

photochromic behavior has never been observed in other archaeal rhodopsins such as BR, HR, SRI and 

SRII, being characteristic to ASR. These results suggested that ASR could be a photochromic color 

sensor, whereas nothing was well-known about the structural changes and scheme of its photochromic 

reactions when we started the study. 
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Figure 3. Proposed function of Anabaena sensory rhodopsin (1XIO[16]). ASR is 

interconverted into two isomeric states, which have different interactions with ASRT  

(2II9) [17]. ASRT maybe controls the expression level of phycobilisome proteins 

(phycocyanin and phycoerythrin) [15]. Phycobilisome graphic is from Grossman et al. [18] 

 

Figure 4. (Left) X-ray crystallographic structure of ASR (1XIO[16]). Purple ribbons, green 

spheres, yellow and white sticks correspond to helices, water molecules, retinal and amino 

acid residues, respectively. (Right) The Schiff base region of ASR and BR (translucent 

structure, 1C3W [7]), respectively. Each retinal molecule between ASR and BR is fitted to 

compare the hydrogen-bonding networks by using Swiss-PdbViewer [19]. Top and bottom 

regions correspond to the cytoplasmic and extracellular sides. The green sphere (Water 402) 

represents a water molecule which forms a hydrogen bond bridge between the protonated 

Schiff base and its counterion, Asp75. Hydrogen-bonds (blue dashed lines) are inferred from 

the structure and the numbers are the hydrogen-bond distances in Å. This figure is adapted 

with permission from Furutani et al. [20]. Copyright 2005 American Chemical Society. 
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Amino acid sequence comparison between ASR and BR reveals that some important residues for 

pumping protons are replaced in ASR. The proton donor to the Schiff base (Asp96 in BR) and one of 

proton release groups (Glu194 in BR) are replaced by serine residues, Ser86 and Ser188, respectively 

(Figure 5).  

Figure 5. Comparison of amino acid sequences of ASR and BR. The transmembrane 

topology is based on the crystallographic three-dimensional structures. The sequence 

alignment was done using CLUSTAL W [21] with the default settings. Single letters in a 

circle denote residues common to ASR and BR. The residues that are different in ASR and 

BR are denoted at the top and bottom of the circles, respectively. The residues forming the 

retinal binding site within 5 Å of the chromophore are shown by bold or filled circles. This 

figure is reprinted with permission from Furutani et al. [20]. Copyright 2005 American 

Chemical Society. 

 

Ten amino acid residues out of twenty-five which constitute the retinal binding site are different from 

those of BR, probably accounting for the different absorption maximum and photochromic behavior of 

ASR. Among them, the most characteristic replacement is Pro206 located at the position of Asp212 in 

BR, which is one of the counterions of the Schiff base and a well conserved amino acid residue in 

archaeal type rhodopsins (Figure 6). The influence of Pro206 on the hydrogen bonds around the Schiff 

base should be studied precisely for elucidating the difference in the structural changes of retinal and 

protein between ASR and BR upon their activation.  

As shown above, ASR is a unique archaeal-type rhodopsin. However, the molecular properties, 

particularly the nature of its photochromic behavior, were much less known. Thus, in the last five years, 

we have studied various properties of ASR, mainly by use of spectroscopic techniques. Since ASR 

possesses visible absorption, UV-visible spectroscopy is the basic technique to study the properties of 

this molecule. Low-temperature UV-visible spectroscopy was used to study the photochromism of ASR 

described in Section 4. In the photochromic reaction, the isomeric states of the retinal chromophore 
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play an important role, and HPLC analysis is the direct method to determine the isomeric composition 

of the retinal chromophore. We used this method in the work described in Section 3. On the other  

hand, in our studies we have mostly used low-temperature Fourier-transform infrared (FTIR)  

spectroscopy [22,23]. Infrared frequencies cover the 4,000–100 cm
-1

 region, which corresponds to the 

molecular vibrations of interest, so infrared spectroscopy is a particularly suitable experimental tool to 

study structural changes in proteins. In this review article, Sections 2 and 3 cover the local structural 

analysis of retinal photoisomerization (77 K) of the all-trans and 13-cis forms of ASR, respectively, 

while Section 5 describes cytoplasmic surface structural perturbation of all-trans ASR at 170 K. 

Figure 6. The 25 amino acid sequence of archaeal-type rhodopsin around retinal. First, 

second, third, fourth and fifth categories represent the families of bacteriorhodopsin, 

halorhodopsin, sensory rhodopsin I, sensory rhodopsin II and other archaeal-type 

rhodopsins, respectively. position S: near the Schiff base, P: near the polyene chain, : 

around the -ionon ring. 
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2. FTIR Spectroscopy of the All-trans Form of Anabaena Sensory Rhodopsin at 77 K: Hydrogen 

Bond of a Water between the Schiff Base and Asp75 

 

As mentioned, comparison of the amino acid sequences of ASR and BR shows that some important 

residues for the proton pump in BR are replaced in ASR (Figure 5). The most characteristic 

replacement is Pro206 at the corresponding position of Asp212 in BR, Asp212 counterions a 

counterion complex of the Schiff base in BR, and the aspartate is highly conserved among archaeal 

rhodopsins. How is the hydrogen bonding network around the Schiff base modified in ASR by the 

presence of Pro206? 

We have used low-temperature Fourier transform infrared (FTIR) spectroscopy to detect and study 

X-H and X-D (X = O, N) stretching vibrations in the mid-infrared region (4,000–1,800 cm
-1

) [22,23]. 

These vibrations are direct indications of the hydrogen bonding network, including internal water 

molecules. In fact, comparison of the K intermediate (BRK) minus BR difference spectra between 

hydration with D2O and D2
18

O in the X-D stretching region (2,700–1,800 cm
-1

) enabled us to assign the 

O-D stretching vibrations of water molecules not only with a weak hydrogen bond (at >2,500 cm
-1

) but 

also with a strong hydrogen bond (at <2,400 cm
-1

). A mutation study showed that one of the O-D 

stretches (2,171 cm
-1

) originates from a bridging water molecule between the Schiff base and its 

counterion (Asp85) [25]. Hydration switch of the water plays an important role in the proton transfer 

reaction in BR [26]. In addition and interestingly, comprehensive studies of BR mutants and other 

rhodopsins have revealed that strongly hydrogen-bonded water molecules are only found in the proteins 

exhibiting proton pump activities [27]. This suggests that a strongly hydrogen bonded water molecule 

that bridges the Schiff base and its counterion is essential for proton pumping, but in terms of this idea, 

our FTIR study of ASR is intriguing, because ASR possesses a bridged water like BR [16], but does 

not pump protons [15].  

Here, we applied low-temperature FTIR spectroscopy to the all-trans form of ASR, and compared 

the difference spectra at 77 K with those of BR. The K intermediate minus ASR difference spectra show 

that the retinal isomerizes from the all-trans to the distorted 13-cis form, like BR. The N-D stretching 

of the Schiff base was observed at 2,163(−) and 2,125(−) cm
-1

, while the O-D stretchings of water 

molecules were observed in the region >2,500 cm
-1

. These results indicate that the protonated Schiff 

base forms a strong hydrogen bond with a water molecule, which is connected to Asp75 with a weak 

hydrogen bond. This result supports our working hypothesis about the strong correlation between the 

proton pump activity and the existence of strongly hydrogen bonded water molecules in archaeal 

rhodopsins. We shall discuss in some detail the structural reason why the bridged water molecule does 

not form a strong hydrogen bond in ASR. 

In spectroscopic studies of archaeal rhodopsins, it is important to distinguish between the separate 

the photocyclization products of the all-trans from the 13-cis forms. In the case of BR, a well-known 

light adaptation procedure leads to a complete all-trans form. On the other hand, Vogeley et al. 

reported that ASR has a maximal amount of the all-trans form in the dark (>75%), while light 

adaptation rather decreases the amount of the all-trans form [16]. This was reproduced in this study, 

and hence, we used the dark-adapted ASR sample. The absorption maximum of the all-trans enriched 

ASR was located at 549 nm, which was the same value previously reported [16]. Low-temperature  

UV-visible spectroscopy of ASR showed that the red-shifted intermediate (ASRK) is formed at 77 K. 
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The difference absorption maximum was located at 593 nm, and we estimated the absolute absorption 

maximum of ASRK at 589 nm (data not shown).  

 

2.1. Comparison of the Difference Infrared Spectra Obtained by the Photoreactions of Anabaena 

Sensory Rhodopsin (ASR) at 77 K with Those of Bacteriorhodopsin (BR).  

 

Figure 7 shows the ASRK minus ASR (a) and BRK minus BR spectra (b), which were measured  

at 77 K upon hydration with H2O (solid lines) and D2O (dotted lines). Unlike those of BR, the 

difference spectra of ASR contain a mixture of photoproducts of the all-trans and 13-cis form. 

However, we estimated by use of the marker band (1,178 cm
-1

) that the 13-cis form contribution under 

our illumination conditions is less than 20% (see below). Almost all vibrational bands described in this 

chapter originate from the photoreaction of the all-trans form. 

Figure 7. The ASRK minus ASR (a) and the BRK minus BR (b) spectra in  

the 1,800–850 cm
-1

 region measured at pH 7 and 77 K upon hydration with H2O (solid line) 

and D2O (dotted line), respectively. In the hydrated film, ASR molecules are oriented 

randomly, while BR molecules are highly oriented. Spectrum in (b) is reproduced from  

Kandori et al. [28], where the sample window is tilted by 53.5
o
. One division of the y-axis 

corresponds to 0.005 absorbance units. This figure is reprinted with permission from 

Furutani et al. [20]. Copyright 2005 American Chemical Society. 

 

 

The negative band at 1,537 cm
-1

 corresponds to the ethylenic stretching vibration of the all-trans 

chromophore in ASR, which exhibits an absorption maximum at 549 nm [16]. The frequency is in good 

agreement with the well-known linear correlation between the ethylenic stretching frequencies  



Sensors 2009, 9              

 

 

9749 

and absorption maxima for various retinal proteins [29]. In the case of BR, the bands  

at 1,530(–)/1,514 (+) cm
-1

 correspond to the ethylenic stretching vibrations of the unphotolyzed and K 

intermediate (BRK) states, respectively (Figure 7b). On the other hand, two positive bands appeared  

at 1,545 and 1,523 cm
-1

 for ASR (Figure 7a). According to the ethylenic stretching frequencies and 

absorption maxima correlation we predicted the ethylenic stretch of ASRK (589 nm) to be at 1,525 cm
-1

. 

Therefore, the 1,523 cm
-1

 band is likely to be the latter, and the band at 1,545 cm
-1

 can possibly be 

assigned to the amide II mode. A similar observation was made for halorhodopsin [30], where the K 

intermediate exhibits two positive bands at 1,538 and 1,514 cm
-1

 with a negative band at 1,525 cm
-1

. 

Remarkable spectral differences between ASR and BR were seen in the 1,500–1,450 cm
-1

 region. 

Two negative bands at 1,457 and 1,451 cm
-1

 and a positive band at 1,471 cm
-1

 were observed for ASR 

(Figure 7a). Among these three bands, the 1,457 cm
-1

 band is insensitive to H-D exchange, whereas the 

bands at 1,471 and 1,451 cm
-1

 are reduced to the half the intensity in D2O. On the other hand, such 

strong bands are absent for BR (Figure 7b). This frequency region corresponds to the imide II 

vibrations of proline. 

 

2.2. Comparison of the Vibrational Bands of the Retinal Chromophore between ASR and BR 

 

The C-C stretching vibrations of retinal in the 1,290–1,100 cm
-1

 region are sensitive to the local 

structure of the chromophore. In Figure 8b, the negative bands at 1,217, 1,169, 1,254, and 1,203 cm
-1

 

were assigned to the C8-C9, C10-C11, C12-C13, and C14-C15 stretching vibrations of BR, 

respectively [31]. These frequencies are characteristic of the all-trans retinal protonated Schiff base, 

though the frequencies are higher because of the charge delocalization of the retinal molecule in BR. 

Upon formation of BRK, retinal isomerizes to the 13-cis form, resulting in the appearance of a strong 

positive band at 1,194 cm
-1

, which is assigned to C10-C11 and C14-C15 stretching vibrations [32].  

A more complex spectral feature was observed for ASR in the 1,290-1,100 cm
-1

 region (Figure 8a). 

One reason is that the photoreaction of the 13-cis form to its photoproduct contributes to these spectra. 

It is known that a positive band at ~1,180 cm
-1

 is a marker band of such a reaction in BR [33]. Similarly, 

in this study for ASR, we found that the bands at 1,183(−)/1,178(+) cm
-1

 increase in intensity when 

illumination wavelengths are changed. Thus, we interpreted that these bands originate from the 

photoreaction of the 13-cis form in ASR as well as in BR. In other words, we established the 

illumination conditions to maximally reduce the bands at 1,183(-)/1,178(+) cm
-1

 in this study.  

In the case of the all-trans form of ASR, the negative bands at 1,218, 1,174 (and/or 1,167), 1,249, 

and 1,196 cm
-1

 were tentatively assigned to the C8-C9, C10-C11, C12-C13, and C14-C15 stretching 

vibrations, respectively (Figure 8a). These frequencies are similar to those of BR (each frequency 

difference is <10 cm
-1

), supporting the fact that the retinal configuration of ASR in the dark-adapted 

state is all-trans. However, the relatively large difference in C12-C13 (6 cm
-1

) and C14-C15 (7 cm
-1

) 

stretching vibrations suggests that the retinal structure near the Schiff base region is somehow different 

in ASR and BR. In addition, the intensity of the band at 1,218 cm
-1

 is three times larger than that of BR, 

which also suggests different retinal structure around the C8-C9 bond. Upon formation of ASRK, the 

retinal molecule is considered to isomerize to the 13-cis form in analogy to the case of BR. However, 

unlike BR, there are three positive bands at 1,199, 1,189, and 1,149 cm
-1

. The 1,199 cm
-1

 band is not 

sensitive to H-D exchange, suggesting the origin as a C-C stretching vibration in the polyene chain of 
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the retinal molecule. The bands at 1,189 and 1,149 cm
-1

 are upshifted upon hydration with D2O, 

suggesting that they are influenced by the Schiff base vibration. The 1,189 cm
-1

 band can be assigned to 

the C14-C15 stretching vibration, while the 1,149 cm
-1

 band is difficult to identify at present. The 

downshift of the C14-C15 stretching vibration from 1,196 to 1,189 cm
-1

 upon formation of ASRK 

suggests that the retinal configuration is 13-cis in ASRK. Splitting into two negative bands at 1,174  

and 1,167 cm
-1

 may suggest the presence of a positive band at 1,171 cm
-1

, which can be assigned to the 

C10-C11 stretching vibration.  

Figure 8. The ASRK minus ASR (a) and the BRK minus BR (b) spectra in  

the 1,290–1,100 cm
-1

 region, which correspond to C-C stretching vibrations and N-H  

in-plane bending vibrations of the retinal chromophore. The sample was hydrated with H2O 

(solid lines) or D2O (dotted lines). One division of the y-axis corresponds to 0.004 

absorbance units. This figure is reprinted with permission from Furutani et al. [20]. 

Copyright 2005 American Chemical Society. 

 

 

The H-D exchangeable band at 1,255 cm
-1

 was assigned to one of the modes containing the N-H  

in-plane bending vibration of the Schiff base of BR [34], while similar negative bands appear  

at 1,249 cm
-1

 in the spectra of ASR. The band disappearing upon hydration with D2O can be assigned to 

the modes of the Schiff base. The neighboring negative band at 1,237 cm
-1

 is also sensitive to 

deuteration and seen only in ASR, but its origin remains unknown. The result suggests that the 

hydrogen bonding environment of the Schiff base of ASR is similar to that of BR. 

The difference spectra in the 1,110–890 cm
-1

 region are expanded in Figure 9.  

Hydrogen-out-of-plane (HOOP), N-D in-plane bending, and methyl rocking vibrations are observed 

here, and the presence of strong HOOP modes represents the distortion of the retinal molecule at the 

corresponding position. The most intense HOOP band in the BRK minus BR difference spectra  

(Figure 9b) was observed at 957 cm
-1

 (in H2O) and 951 cm
-1

 (in D2O), which were assigned to the  

C15-H HOOP vibration of BRK [34]. The origins of the bands at 941, 962, and 974 cm
-1

 remain 
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unknown, but they may be assigned to HOOP vibrations. On the other hand, the weak negative band  

at 911 cm
-1

 was assigned to the C15-H and N-H HOOP vibrations of the original state of BR [35]. 

These results have been interpreted as an increase in the retinal distortion around the Schiff base upon 

the retinal isomerization in BR. In the case of ASR, similar but slightly upshifted bands were observed. 

The positive bands at 1,001, 973, 968, and 957 cm
-1

 of ASRK (Figure 9a) possibly correspond to those  

at 974, 962, 957, and 941 cm
-1

 of BRK, respectively (Figure 9b). The negative bands at 932  

and 927 cm
-1

 have probably the same origin as that at 911 cm
-1

 in BR, which was assigned to the C15-H 

and N-H HOOP vibrations [35].  

The negative band at 976 cm
-1

 and the positive band at 969 cm
-1

 in Figure 9b were assigned to the  

N-D in-plane bending vibrations of BR and BRK, respectively [34]. The 1,009 cm
-1

 band is insensitive to 

H-D exchange and was assigned to the methyl rocking vibration of the retinal in BR. The band  

at 1,006 cm
-1

 in Figure 9a can also be assigned to the methyl rocking vibration in ASR similarly. On the 

other hand, the bands at 1,088(–), 1,080(+), and 1,025(–) cm
-1

 are highly characteristic of the ASRK 

minus ASR difference spectra, and never observed in other archaeal-type rhodopsins such as BR, ppR, 

and NR [34,36,37]. According to the literature, the antisymmetric NC3 stretchings of tertiary amines 

appear in the 1,250–1,000 cm
-1

 region [38]. Thus, these bands may originate from the skeletal vibrations 

of Pro206 as well as those at 1,471(+), 1,457(–), and 1,451(–) cm
-1

 (Figure 7a).  

Figure 9. The ASRK minus ASR (a) and the BRK minus BR (b) spectra in  

the 1,110–890 cm
-1

 region, which correspond to hydrogen-out-of-plane (HOOP) vibrations 

of the retinal chromophore. The sample was hydrated with H2O (solid lines) or D2O  

(dotted lines). One division of the y-axis corresponds to 0.002 absorbance units. This figure 

is reprinted with permission from Furutani et al. [20]. Copyright 2005 American  

Chemical Society. 

 

 

C=N stretching vibrations of the protonated retinal Schiff base are observed in the 1,650–1,600 cm
-1

 

region (Figure 10). The C=N stretching vibrations are sensitive to H-D exchange, and the difference in 

frequency has been considered as the probe for its hydrogen bonding strength [39,40], that is, the larger 
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the difference is, the stronger the hydrogen bond is. The C=NH and C=ND stretching vibrations of BR 

were observed at 1,641 and 1,628 cm
-1

, while those of BRK were at 1,608 and 1,606 cm
-1

,  

respectively [41]. The former difference in frequency is 13 cm
-1

, and the latter is 2 cm
-1

, suggesting that 

the protonated Schiff base forms a hydrogen bond in BR that is broken upon retinal isomerization. The 

C=N stretches were observed at 1,642 (C=NH) and 1,624 cm
-1

 (C=ND) in ASR, and its difference  

is 18 cm
-1

, suggesting that the hydrogen bonding strength is stronger than that of BR. On the other hand, 

it is difficult to assign the positive bands because of the more complicated spectral features. There are 

two sets of candidates for the C=N stretching vibrations of ASRK. One set is the bands at 1,621 (C=NH) 

and 1,610 cm
-1

 (C=ND), while another set is the bands at 1,600 (C=NH) and 1,595 cm
-1

 (C=ND). The 

differences in frequency are 11 and 5 cm
-1

 for the former and latter, respectively. If the former is the 

case, the hydrogen bond may not be broken upon retinal isomerization in ASR. Conclusive assignment 

of the C=N stretching of ASRK needs stable isotope labeling on the Schiff base, which is shown in next 

chapter. On the other hand, the N-D stretching vibration of the Schiff base in D2O provides more direct 

information about the hydrogen bond of the Schiff base, as described below.  

Figure 10. The ASRK minus ASR (a) and the BRK minus BR (b) spectra in  

the 1,760–1,570 cm
-1

 region, most of which are ascribable for vibrations of the protein 

moiety. The underlined peaks are C=N stretching vibrations of the chromophore. The 

sample was hydrated with H2O (solid lines) or D2O (dotted lines). One division of the y-axis 

corresponds to 0.003 absorbance units. This figure is reprinted with permission from 

Furutani et al. [20]. Copyright 2005 American Chemical Society. 

 

 

2.3. Comparison of the C=O Stretching Vibrations of Carboxylate, Carbonyl, and Amide Groups of 

the Protein Moiety between ASR and BR 

 

In the BRK minus BR difference spectra (Figure 10b), the bands at 1,742 and 1,733 cm
-1

 were 

assigned to the C=O stretching vibrations of the protonated Asp115, which are downshifted upon 
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hydration with D2O [42]. In contrast, there is no band in the same frequency region of the ASR spectra 

(Figure 10a), implying that Asp and Glu residues are located far from the retinal molecule even if they 

are protonated. ASR has a glutamine residue at the corresponding position of Asp115 in BR, whose 

vibrational bands are probably observed at 1,698(–) and 1,694(+) cm
-1

 (Figure 10a). Similar bands were 

also observed at 1,704(–) and 1,700(+) cm
-1

 in the difference spectra of ppR, which has an asparagine 

residue at the corresponding position [43]. These observations suggest that the structural changes 

around Asp115 in BR are similar among ASR, BR, and ppR.  

The band pairs at 1,668(–)/1,664(+) cm
-1

 and at 1,623(+)/1,617(–) cm
-1

 were assigned to the  

amide I C=O stretching vibrations. The former was assigned to the amide I of II helix [44] and the 

latter to the amide I of Val49 [45]. In the case of ASR, a band pair at 1,679(–)/1,673(+) cm
-1

 could be 

similar in origin to the bands at 1,668(–)/1,664(+) cm
-1

 in BR. It should be noted that the spectral 

changes of amide I vibrations at <1,660 cm
-1

 are much smaller in ASR than in BR, which is clearly seen 

in D2O. This suggests that the structural changes of the peptide backbone in ASR upon retinal 

isomerization are very small. On the other hand, the structural perturbation of Pro206 was suggested  

for ASR.  

 

2.4. Comparison of the X-D Stretching Vibrations between ASR and BR 

 

X-D stretching vibrations of protein and water molecules appear in the 2,750–1,950 cm
-1

 region 

(Figure 11). A spectral comparison between the samples hydrated with D2O and D2
18

O identifies O-D 

stretching vibrations of water molecules which change their frequencies upon retinal photoisomerization. 

Green-labeled bands in Figure 11 can be assigned to the O-D stretching vibrations of water because of 

the isotope shift. In BR, six negative peaks at 2,690, 2,636, 2,599, 2,321, 2,292, and 2,171 cm
-1

 were 

earlier assigned to vibrations of water molecules (Figure 11b) [26,46]. The bands are widely distributed 

over the possible frequency range for stretching vibrations of water. Since the frequencies of the 

negative peaks at 2,321, 2,292, and 2,171 cm
-1

 are much lower than those of fully hydrated tetrahedral 

water molecules [46], the hydrogen bonds of those water molecules must be very strong, possibly 

indicating their association with negative charges. Indeed, we assigned the 2,171 cm
-1

 band to the O-D 

group of a water molecule associated with deprotonated Asp85 [25]. This water molecule, called  

water 402 in the crystal structure of BR (PDB entry 1C3W), is located between the Schiff base and 

Asp85 (Figure 4). A previous QM/MM calculation of the Schiff base region of BR also supported the 

existence of an extremely strong hydrogen bond between water 402 and Asp85 [47]. Water stretching 

vibrations of BRK tend to be higher in frequency, implying that the overall hydrogen bonding becomes 

weaker upon photoisomerization.  

In contrast, interestingly only three negative peaks at 2,690, 2,640, and 2,608 cm
-1

 could be assigned 

to the O-D stretching vibrations of water in ASR (Figure 11a). The bands at 2,701, 2,653,  

and 2,573 cm
-1

 were assigned as water stretching vibrations of ASRK. It should be emphasized that 

there are no water bands in the <2,400 cm
-1

 region, which is a significant difference from the published 

results for BR and ppR. In the case of ppR, two pairs of peaks were observed in the <2,400 cm
-1

 region, 

located at 2,369(+)/2,307(–) cm
-1

 and at 2,274(+)/2,215(–) cm
-1

 [47]. Since ASR has a bridged water 

molecule between the Schiff base and Asp75 (Figure 4) as well as BR and ppR, one may expect similar 
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water bands at <2,400 cm
-1

. However, that is not the case for ASR. We will discuss the structural 

reason for the lack of strongly hydrogen bonded water molecules below.  

The frequency region shown in Figure 11 also contains X-D stretching vibrations other than water 

molecules. In the BRK minus BR spectrum, the bands at 2,507(–)/2,466(+) cm
-1

 labeled in purple and 

the underlined bands at 2,466(+), 2,171(–), and 2,124(–) cm
-1

 were assigned to the O-D stretching 

vibrations of Thr89 [48,49] (the corresponding residue in ASR is Thr79) and the N-D stretching 

vibrations of the retinal Schiff base [41], respectively. Thus, the negative 2,171 cm
-1

 band contains both 

the O-D stretch of water and the N-D stretch of the Schiff base. In the ASRK minus ASR spectrum, 

there are 10 bands other than water bands: 2,547(–), 2,537(+), 2,508(–), 2,470(–), 2,446(+), 2,383(+), 

2,336(–), 2,258(–), 2,163(–), and 2,125(–) cm
-1

. The bands at 2,547(–)/2,537(+) cm
-1

 are attributed to 

the H-D unexchangeable S-H stretching vibration of a cysteine residue as described below. The bands  

at 2,508(–)/2,470(+) cm
-1

 can be assigned to the O-D stretching vibrations of Thr79 in analogy to BR. 

The O-D frequencies of Thr79 in ASR and ASRK (2,508 and 2,470 cm
-1

) are almost identical to those 

of Thr89 in BR and BRK (2,507 and 2,466 cm
-1

), respectively, indicating that the strength of hydrogen 

bonding between Thr79 and Asp75 is identical to that between Thr89 and Asp85 in BR.  

Figure 11. Comparison of the difference infrared spectra of ASR (a) and BR (b) hydrated 

with D2O (red lines) or D2
18

O (blue lines) in the 2,730-1,950 cm
-1

 region. Green-labeled 

frequencies correspond to those identified as water stretching vibrations. Purple-labeled 

frequencies are O-D stretches of Thr89 [48,49], while the underlined frequencies are N-D 

stretches of the Schiff base [41]. Spectrum in (b) is reproduced from Tanimoto et al. [26], 

where the sample window is tilted by 53.5
o
. One division of the y-axis corresponds  

to 0.0007 absorbance units. This figure is reprinted with permission from Furutani et al. 

[20]. Copyright 2005 American Chemical Society. 

 

 

Though not assigned directly by use of the labeled protein, the bands at 2,163 and 2,125 cm
-1

 are 

likely to originate from N-D stretching of the Schiff base, whose frequencies are very similar to those in 
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BR (2,171 and 2,124 cm
-1

). This fact indicates similar hydrogen bonding strengths between ASR and 

BR. The slightly lower frequency of the strong band (2,163 cm
-1

 in ASR and 2,171 cm
-1

 in BR) may 

correspond to the results obtained for the C=N stretching vibrations as shown before (Figure 10). The 

analysis of the C=N stretching vibrations of ASRK suggested two possibilities for the hydrogen bonding 

strength of the Schiff base. Figure 10a clearly shows the presence of the negative bands at 2,163  

and 2,125 cm
-1

, implying that the N-D stretch is upshifted in ASRK. We infer that one of the bands  

at 2,470, 2,446, and 2,383 cm
-1

 can be assigned to the N-D stretch in ASRK. Thus, we can safely 

conclude that the hydrogen bond of the Schiff base in ASR becomes much weaker upon retinal 

photoisomerization as well as in BR.  

 

2.5. S-H Stretching Vibrations of the Cysteine Residues 

 

Figure 12 shows the ASRK minus ASR spectra in the 2,590–2,500 cm
-1

 (top panel)  

and 1,890–1,800 cm
-1

 (bottom panel) regions, which correspond to S-H and S-D stretching vibrations 

of cysteine residues, respectively. There are a negative band at 2,547 cm
-1

 and a positive band  

at 2,538 cm
-1

, while no band is observed in the S-D stretching upon hydration with D2O.  

Figure 12. The ASRK minus ASR spectra in the 2,590–2,500 cm
-1

 (the upper panel)  

and 1,890-1,800 cm
-1

 (the lower panel) region, which correspond to S-H and S-D stretching 

vibrations of cysteine residues, respectively. The sample was hydrated with H2O (solid lines) 

or D2O (dotted lines). One division of the y-axis corresponds to 0.0001 absorbance units. 

This figure is reprinted with permission from Furutani et al. [20]. Copyright 2005 American 

Chemical Society. 

 

 

In fact, S-H stretching vibrations in D2O are observed in Figure 11a (2,547 and 2,537 cm
-1

). The S-H 

stretching frequency of cysteine appears in the 2,580–2,525 cm
-1

 region. Thus, the frequency change 

from 2,547 to 2,538 cm
-1

 suggests that the cysteine forms a considerably strong hydrogen bond upon 

retinal isomerization. The non H-D-exchangeable nature of the cysteine S-H group presumably results 

from either the hydrophobic environment or the strong hydrogen bond.  



Sensors 2009, 9              

 

 

9756 

The lower-frequency shift in ASR is the opposite of the cysteine signal in the NRK minus NR  

spectra [37]. In addition, the H-D exchange is different between ASR and NR. These facts suggest that 

the cysteine residues are located in different environments and their hydrogen bonds change differently. 

There are three cysteine residues in ASR, Cys134 and Cys137 in helix E and Cys203 in helix G. Not all 

of them are conserved in archaeal-type rhodopsin, but Cys134 and Cys137 are located at a position 

similar to that of Cys170 in NR, which is conserved in halorhodopsin. The X-ray crystal structure of 

ASR also revealed that only the S-H group of Cys203 is directed to the inside of the protein. From 

these results, the observed band can be assigned to the S-H stretching of Cys203. 

 

2.6. Unique Structure of the All-trans Form of ASR 

 

In this study, we measured the ASRK minus ASR spectra by means of low-temperature FTIR 

spectroscopy. For this purpose, ASR was expressed in E. coli, and the wild-type protein was 

reconstituted into PC liposomes. It is noted that the ASR molecule is not embedded in the native 

membrane, which could modify the FTIR spectra. For instance, H-D exchange could be different 

between PC liposomes and the native membrane, a fact that should be elucidated in the future. However, 

this study focuses on the structural changes near the retinal upon photoisomerization, and the  

light-induced difference FTIR spectra are not significantly affected by different lipid environments.  

Despite the presence of the 13-cis form, the obtained spectra  are predominantly due to the 

photoreaction of the all-trans form, and the spectra were compared with those of BR. These results 

clearly show that the all-trans to 13-cis photoisomerization takes place in ASR like in BR, though the 

C-C stretching and HOOP vibrations are somehow different. The protonated Schiff base forms a strong 

hydrogen bond in ASR, presumably with the bridged water (Figure 4), and the hydrogen bond is 

cleaved by the rotation of the N-H (N-D) group, as in BR. We also observed S-H stretches of a cysteine 

residue which is insensitive to hydration with D2O. We observed small amide I bands and large bands 

that can be ascribed to imide II [1,471(+), 1,457(–), and 1,451(–) cm
-1

] and NC3 [1,088(–)  

and 1,080(+) cm
-1

] stretchings of proline residues. A previous resonance Raman spectroscopic study 

showed that the imide II vibration of the X-Pro bond appears at around 1,450 cm
-1

 [50]. BR has three 

Pro residues in the transmembrane region, Pro50, Pro91, and Pro186 (Figure 5). The previous FTIR 

study suggested that the environment around these proline residues changes upon retinal isomerization 

via observation of the isotope effect of [
15

N]proline in the 1,450–1,420 cm
-1

 region [51]. It should be 

noted that spectral changes are much smaller in BR than in ASR in this frequency region. In the case of 

ASR, there are additional three Pro residues (Figure 5). It is Pro206, a corresponding residue of 

Asp212 in BR (Figure 4). Figure 4 shows that the peptide C=O group of Pro206 forms a hydrogen 

bond with the peptide amide (N-H group) of Lys210, which connects to a retinal chromophore. Thus, 

retinal photoisomerization strongly perturbs the peptide C-N bond of Pro206 in ASR, presumably 

leading to the appearance of these unusually intense bands in the 1,500–1,450 cm
-1

 region. It should be 

noted, however, that we can conclude this argument only when these bands are assigned by use  

of [
15

N] proline-labeled ASR.  

A significant difference between ASR and BR was seen for water bands. We have so far observed 

the O-D stretching vibrations of water molecules under strongly hydrogen bonded conditions in the BRK 

minus BR and ppRK minus ppR difference spectra [26,36,46]. The X-ray crystal structures of BR and 
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ppR reported the presence of a bridged water molecule between the Schiff base and its counterion 

(Asp85 in BR and Asp75 in ppR) [7,52,53]. Therefore, the hydrogen bond of the water is expected to 

be strong, and such strongly hydrogen bonded water molecules were observed in the FTIR studies. The 

water molecules possess O-D stretches at 2,400–2,100 cm
-1

 in D2O [23,27]. Since ASR has a bridged 

water molecule between the Schiff base and Asp75 (Figure 4) as well as BR and ppR, one may expect 

similar water bands at <2,400 cm
-1

. However, that was not the case for ASR. Therefore, the structural 

reason for the lack of strongly hydrogen bonded water molecules has to be explained on the basis of the 

structural background. Since both structures of ASR and BR are known (Figure 4), we will try to 

explain the reason here.  

Our analysis of the Schiff base mode (C=N stretch and N-D stretch) in ASR showed that the 

hydrogen bonding strength of the Schiff base is similar in ASR and BR. This observation is consistent 

with the similar distance between the Schiff base nitrogen and water oxygen (2.6 Å for ASR and 2.9 Å 

for BR). A slightly stronger hydrogen bond in ASR than in BR is also consistent with the distance that 

is shorter in ASR. In contrast, water bands in ASR were entirely different from those in BR, although 

the distance between the water oxygen and the oxygen of the counterion are similar (2.7 Å for ASR  

and 2.6 Å for BR). The O-D stretch of the bridged water in BR is located at 2,171 cm
-1

 (Figure 11b), 

whereas that in ASR is probably one of the bands at 2,690, 2,640, and 2,608 cm
-1

 (Figure 11a). How is 

such difference observed between ASR and BR? It may be explained by the difference in the geometry 

of the hydrogen bond. Figure 13 shows that the N-Owater-OAsp75 (the Schiff base nitrogen, the water 

oxygen, and the oxygen of Asp75, respectively) angle in ASR is 83°. The corresponding N-Owater-OAsp85 

angle in BR is 106° (Figure 13). As the consequence, if the water oxygen fully accepts the hydrogen 

bond of the Schiff base, the O-H group of water points toward the oxygen of Asp85 in BR, but not 

toward that of Asp75 in ASR (Figure 13). Such a small difference in angle possibly determines the 

hydrogen bonding strength of water molecules.  

Figure 13. Schematic drawing of hydrogen bonds of the water molecule locating between 

the protonated Schiff base and its counterion. A part of all-trans retinal is depicted, -ionon 

ring and ethylenic part from C6 to C12 are omitted. The numbers are the angle of the  

N-O-O atoms derived from the crystal structures of ASR and BR (PDB entries are 1XIO 

and 1C3W, respectively). Hydrogen bonds are indicated by the dashed lines with their 

strength. This figure is reprinted with permission from Furutani et al. [20]. Copyright 2005 

American Chemical Society. 
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On the basis of our FTIR studies of BR mutants and other rhodopsins, we have found an interesting 

correlation between strongly hydrogen bonded water molecules and proton pump activity. Among 

various BR mutant proteins we have studied, only D85N and D212N lack strongly hydrogen bonded 

water molecules. Other BR mutants possess their O-D stretches at <2,400 cm
-1

, which include T46V, 

R82Q, R82Q/D212N, T89A, D96N, D115N, Y185F, and E204Q [54]. Among these mutants, only 

D85N and D212N do not pump protons. Therefore, strongly hydrogen bonded water molecules are 

only found in the proteins exhibiting proton pumping activities. The correlation between proton 

pumping activity and strongly hydrogen bonded water molecules is true not only for BR mutants but 

also for various rhodopsins. Whether rhodopsins possess strongly hydrogen bonded water molecules 

has been examined systematically. We found that BR and pharaonis phoborhodopsin [26,36,46], both 

of which pump protons, possess such water molecules (O-D stretch at <2,400 cm
-1

 in D2O). In contrast, 

strongly hydrogen bonded water molecules were not observed for halorhodopsin [55], Neurospora 

rhodopsin [37], and bovine rhodopsin [56]. It is known that none of them pumps protons. Such 

comprehensive studies of archaeal and visual rhodopsins have thus revealed that strongly hydrogen 

bonded water molecules are only found in the proteins exhibiting proton pumping activities. Taken 

together, these results for ASR suggest that the strong hydrogen bonds of water molecules and their 

transient weakening may be essential for the proton pumping function of rhodopsins.  

 

3. FTIR Study of the Photoisomerization Processes in the 13-cis and All-trans Forms of Anabaena 

Sensory Rhodopsin at 77 K 

 

We then extended the low-temperature spectroscopic study at 77 K to the 13-cis, 15-syn form of 

ASR (13C-ASR). HPLC analysis revealed that light-adapted ASR with >560 nm light at 4 °C  

possesses 78% 13C-ASR, while dark-adapted ASR has AT-ASR predominantly (97%). Then, we 

established the illumination conditions to measure the difference spectra between 13C-ASR and its K 

state without subtracting the difference between AT-ASR and its K state. Spectral comparison  

between 13C-ASR and AT-ASR provided useful information on structure and structural changes upon 

retinal photoisomerization in ASR. In particular, previous X-ray crystallographic study of ASR reported 

the same protein structure for 13C-ASR and AT-ASR [16], whereas the present FTIR study revealed 

that protein structural changes upon retinal photoisomerization were significantly different  

between 13C-ASR and AT-ASR. The differences were seen for HOOP modes of the retinal 

chromophore, amide I, cysteine S-H stretch, the Schiff base N-D stretch, and water O-D stretch modes. 

These must trigger different global protein structural changes in each photoreaction cycle leading to the 

observed photochromic behavior.  

Dark-adapted ASR is predominantly in the all-trans form, while the light adaptation process 

increases concentration of the 13-cis form [16,57]. This is in contrast to the case of BR, where light 

adaptation leads to a complete conversion into the all-trans form [58]. In this study, we attempted to 

establish the illumination conditions to accumulate the 13-cis form for DM-solubilized and  

PC-liposome-based ASR samples, using HPLC column chromatography. Panels a and b of Figure 14 

show that the dark-adapted ASR (solid lines) possesses 95.5% and 97.1% all-trans form for the  

DM-solubilized and PC-liposome-based samples, respectively. On the other hand, illumination of ASR 
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with >560 nm light for 1 min at 4 °C results in accumulation of 13C-ASR. HPLC analysis showed that 

the light-adapted ASR possesses 78.1% and 77.9% of the 13-cis form for the DM-solubilized and  

PC-liposome-based samples, respectively. Thus, the isomeric composition was not influenced by the 

reconstitution. Dark adaptation was a slow process, with half-time >1 h at 4 °C (data not shown). It 

should be noted that Sineshchekov et al. estimated the ratio of all-trans and 13-cis form to be 67:33 in 

the dark-adapted ASR and 20:80 in the light-adapted ASR [57]. The different value in the dark-adapted 

state may originate from the lipids for reconstitution (E.coli membrane in [57]). 

Figure 14. HPLC of chromophores extracted from ASR in DM micelles (a) and in PC 

liposomes (b). The detection beam was set at 360 nm. After the extraction, retinal oxime 

exists in 15-syn and 15-anti form. In the shown range of retention times, only the 15-syn 

form appears. We used area of both 15-syn and 15-anti forms for calculation of isomeric 

ratios. Dark-adapted ASR (solid lines) is in the all-trans form predominantly [AT-ASR; 

95.5 ± 0.8% in (a) and 97.1 ± 0.1% in (b)], while light-adapted ASR (dotted lines) 

possesses more of the 13-cis form [13C-ASR; 78.1 ± 1.2% in (a) and 77.9 ± 1.7% in (b)]. 

This figure is reprinted with permission from Kawanabe et al. [59]. Copyright 2006 

American Chemical Society. 

 

 

A hydrated film of ASR in PC liposomes was light-adapted as described above and then cooled  

to 77 K, followed by illumination at 501 nm. Figure 15a shows the light minus dark difference FTIR 

spectra of the light-adapted ASR. Vibrational bands at 1,218(–), 1,199(+), 1,196(–), and 1,189(+) cm
-1

 

also appear in the AT-ASRK minus AT-ASR (Figure 15c) [20], indicating that the conversion of AT-

ASR to AT-ASRK is included in the spectrum of Figure 15a. On the other hand, Figure 15a possesses 

additional strong peaks at 1,184 (–) and 1,178 (+) cm
-1

, suggesting the involvement of the 

photoreaction of 13C-ASR. In the previous study for AT-ASR, we illuminated AT-ASRK at >590 nm 

for the photoreversion to AT-ASR [20]. In the present study, subsequent illuminations at >560  

and 501 nm yielded the spectra shown in Figure 15b (dotted and solid lines, respectively). Lack of the 
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bands at 1,218, 1,199, 1,196, and 1,189 cm
-1

 strongly suggests that the spectra should not contain the 

photoreaction of AT-ASR. In other words, the solid line in Figure 15b corresponds to the 13C-ASRK 

minus 13C-ASR spectrum. In fact, the spectrum of Figure 15a is well constructed from the solid lines in 

Figure 15b,c (data not shown). In this way, we obtained the 13C-ASRK minus 13C-ASR difference 

FTIR spectra without any subtraction of spectral contribution from AT-ASR.  

Figure 15. Difference FTIR spectra in the 1,240–1,130 cm
-1

 region measured at 77 K  

(in H2O), where the spectra before illumination were subtracted from those after 

illumination. Light-adapted ASR that contains 13C-ASR (78%) and AT-ASR (22%) was 

first illuminated with 501 nm light for 1 min (a). Then, illumination at >560 nm for 1 min 

converted a part of the photoproducts in (a) to the original state (dotted line in b). 

Subsequent illumination with 501 nm light yields the difference spectrum (solid line in b), 

which is a mirror image of the dotted spectrum. Repeated illuminations at >560 nm and  

at 501 nm yield the identical spectra. (c) The AT-ASRK minus AT-ASR spectra are 

reproduced from Furutani et al. [20]. This figure is reprinted with permission from 

Kawanabe et al. [59]. Copyright 2006 American Chemical Society. 

 

 

It is likely that the photoequilibrium between AT-ASR and AT-ASRK is not changed between 

illuminations at 501 nm and at >560 nm, so that further illumination with 501 nm and >560 nm yielded 

the difference spectra between 13C-ASR and 13C-ASRK.  In this way, we obtained the 13C-ASRK 

minus 13C-ASR difference FTIR spectra without any subtraction of spectral contribution from AT-ASR. 

 

3.1. Comparison of the Difference Infrared Spectra of the Photoreactions of 13C-ASR and AT-ASR at 

77 K in the 1,770–870 cm
-1

 Region 

 

Figure 16 shows the 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR spectra (b), 

which were measured at 77 K upon hydration with H2O (solid lines) and D2O (dotted lines).  

In Figure 16a, the negative band at 1,539 cm
-1

 corresponds to the ethylenic stretching vibration of  

the 13-cis chromophore in ASR, which exhibits the absorption maximum at 537 nm [16]. The frequency 
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is in good agreement with the well-known linear correlation between the ethylenic stretching 

frequencies and absorption maxima for various retinal proteins [29]. Illumination results in the spectral 

downshift to 1,527 cm
-1

, indicating formation of the red-shifted K intermediate (13C-ASRK).  

C-C stretching vibrations of the retinal in the 1,300–1,150 cm
-1

 region are sensitive to the local 

structure of the chromophore. In the 13C-ASRK minus 13C-ASR spectrum in H2O, peaks are observed 

at 1,277(+), 1,258(–), 1,204(+), 1,184(–), 1,178(+), and 1,161(–) cm
-1

 (Figure 16a, solid line). 

In the case of the 13-cis form of BR, appearance of a peak pair at 1,185(–) and 1,177(+) cm
-1

 was 

regarded as a marker of the formation of the all-trans photoproduct [33]. Similar bands at 1,184(–)  

and 1,178(+) cm
-1

 for 13C-ASR strongly suggest that 13C-ASRK possesses the all-trans  

chromophore produced by photoisomerization of the C13=C14 bond. As in the case of BR,  

the 1,184(–)/1,178(+) cm
-1

 bands are insensitive to the H-D exchange (Figure 16a, dotted line), being 

thus assignable to C10-C11 stretching vibration [33]. Strong positive peaks at 1,277 and 1,204 cm
-1

 in 

H2O and at 1,231 cm
-1

 in D2O were also observed for the 13-cis form of BR, where positive peaks  

at 1,205 cm
-1

 in H2O and at 1,234 cm
-1

 in D2O were assigned to be C14-C15 stretching vibrations [33]. 

Therefore, corresponding peaks at 1,204 cm
-1

 in H2O and at 1,231 cm
-1

 in D2O are assignable to the 

C14-C15 stretching vibration of 13C-ASRK. Spectral coincidence between BR and ASR implies similar 

chromophore structures of their 13-cis forms and respective K states. Hydrogen-out-of-plane (HOOP), 

N-D in-plane bending, and methyl rocking vibrations are observed in the 1,110-890 cm
-1

 region, and the 

presence of strong HOOP modes represents distortions of the retinal molecule [60]. The AT-ASRK 

minus AT-ASR spectra exhibit two strong peaks at 968 and 957 cm
-1

 (Figure 16b).  

Figure 16. The 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR (b) 

spectra (pH 7) in the 1,800–800 cm
-1

 region measured at 77 K upon hydration with H2O 

(solid line) and D2O (dotted line), respectively. The spectra in panel b are reproduced from 

Furutani et al. [20]. One division of the y-axis corresponds to 0.007 absorbance units. This 

figure is reprinted with permission from Kawanabe et al. [59]. Copyright 2006 American 

Chemical Society. 
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In contrast, many positive bands were observed in the 13C-ASRK minus 13C-ASR spectra, whose 

frequencies are at 1,002, 991, 981, 971, 965, and 957 cm
-1

 (Figure 16a). This observation suggests that 

the chromophore of 13C-ASRK is more distorted along the polyene chain than that of AT-ASRK.  

Figure 17 shows the 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR spectra (b) in 

the 1,750–1,550 cm
-1

 region. Amide I vibrations appear in this frequency region together with the C=N 

stretching vibration of the protonated retinal Schiff base. In general, the former is insensitive to the H-D 

exchange, whereas the latter exhibits downshift in D2O. In the case of AT-ASR, a prominent peak pair 

at 1,642(–) and 1,621(+) cm
-1

 is assignable to the C=N stretchings of AT-ASR and AT-ASRK, 

respectively, because of the spectral shifts to 1,624(–) and 1,610(+) cm
-1

 in D2O (Figure 17b). In fact, 

we observed the downshift of the bands at 1,642(–) and 1,621(+) cm
-1

 by 10 cm
-1

 for [-
15

N]  

lysine-labeled ASR, indicating that they originate from the C=N stretching vibrations (data not shown). 

It should be noted that the spectral changes of amide I vibrations at 1,660–1,630 cm
-1

 are small in  

AT-ASRK minus AT-ASR, which is clearly seen in D2O (Figure 17b, dotted line), suggesting that no 

structural changes of the peptide backbone occur in AT-ASR upon retinal isomerization. The spectral 

features are quite different for 13C-ASR. Figure 17a shows the presence of the H-D exchange 

independent bands in the 1,660–1,630 cm
-1

 region, located at 1,669(+), 1,662(–), 1,655(–), 1,649(–), 

1,644(+), 1,634(–) and 1,628(+) cm
-1

. This suggests perturbation of the peptide backbone upon retinal 

photoisomerization of 13C-ASR. In particular, the peaks at 1,662, 1,655, and 1,649 cm
-1

 are ascribable 

to the amide I vibrations of the -helix. Helical perturbation may be correlated with many peaks of the 

HOOP vibrations in 13C-ASRK.  

Figure 17. The 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR (b) 

spectra (pH 7) in the 1,750–1,550 cm
-1

 region, mostly representing vibrations of the protein 

moiety. The sample was hydrated with H2O (solid lines) or D2O (dotted lines). One division 

of the y-axis corresponds to 0.0025 absorbance units. This figure is reprinted with 

permission from Kawanabe et al. [59]. Copyright 2006 American Chemical Society. 
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Unlike in AT-ASR (Figure 17b), the 13C-ASRK minus 13C-ASR spectra (Figure 17a) do not show 

H-D exchange dependent bands clearly. This indicates that the C=N stretching vibrations are not clearly 

observed in the spectra. Reproducible differences between H2O and D2O samples in Figure 17a suggest 

that the C=N stretching vibrations are present in this frequency region. In fact, bands  

at 1,640–1,620 cm
-1

 were sensitive to [-
15

N]lysine labeling (not shown). However, the absence of clear 

peaks of the C=N stretch requests spectral analysis using double difference spectra. The C=N stretching 

vibrations have been regarded as an important marker, because the difference in frequency between H2O 

and D2O samples probes hydrogen-bonding strength of the Schiff base [39,40]. In the present study, 

however, we discuss the hydrogen-bonding strength of the Schiff base by use of the N-D stretching in 

D2O (see below), which is the more direct probe [41].  

In the carboxylic C=O stretching frequency region (>1,700 cm
-1

), there are no bands for 13C- and 

AT-ASRK (Figures 16 and 17). This implies that Asp and Glu residues are located far from the retinal 

even if they are protonated. In the BRK minus BR difference spectra, the bands at 1,742(-) and 1,733(+) 

cm
-1

 were assigned to the C=O stretching vibrations of the protonated Asp115 [42]. ASR has a 

glutamine residue (Gln109) at the corresponding position, whose vibrational bands are probably 

observed at 1,698(-) and 1,693(+) cm
-1

 for AT-ASR (Figure 17b). Similar bands were also observed  

at 1,704(–) and 1,700(+) cm
-1

 in the difference spectra of ppR, which has an asparagine residue at the 

corresponding position [43]. Therefore, it can be suggested that the structural changes occurring around 

Asp115 in BR are common for ASR, BR, and ppR. Figure 17a shows the bands at 1,694(+)  

and 1,692(–) cm
-1

 for 13C-ASR, which can be assigned to the C=O stretch of Gln109. It is likely that 

the C=O stretching vibrations of Asp115 in BR are dependent on the isomeric form as well.  

Figure 18. The 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR (b) 

spectra (pH 7) in the 2,580–2,500 cm
-1

 region, which correspond to S-H stretching 

vibrations of cysteine residues. The sample was hydrated with H2O. One division of the  

y-axis corresponds to 0.0003 absorbance units. This figure is reprinted with permission from  

Kawanabe et al. [59]. Copyright 2006 American Chemical Society. 
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3.2. S-H Stretching Vibrations of Cysteine Residues 

 

Figure 18 shows the 13C-ASRK minus 13C-ASR (upper panel) and AT-ASRK minus AT-ASR 

(lower panel) spectra in the 2,580–2,500 cm
-1

 region, which corresponds to S-H stretching vibration of 

cysteine. As we already reported, there is a negative band at 2,547 cm
-1

 and a positive band  

at 2,538 cm
-1

 for AT-ASR (Figure 18b). In contrast, no spectral changes were observed for 13C-ASR, 

indicating that the 13-cis to all-trans isomerization in ASR does not alter the local structure of cysteines 

(Figure 18a). We suggested that the observed vibrational bands may be assignable to the S-H stretching 

of Cys203 in previous section [20].  

 

3.3. Assignment of the N-D Stretching Vibrations in 13C-ASR and AT-ASR 

 

X-D stretching vibrations of protein and water molecules appear in the 2,750–2,000 cm
-1

 region for 

the films hydrated with D2O (Figure 19). The solid line of Figure 19c shows the AT-ASRK minus  

AT-ASR spectrum reported earlier [20]. On the other hand, the 13C-ASRK minus 13C-ASR spectrum 

(solid line of Figure 19a) is also obtained previously [59].  

Figure 19. The 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR (c) 

spectra (pH 7) in the 2,750–2,000 cm
-1

 region for [-
15

N]lysine-labeled (dotted line) and 

unlabeled (solid line) ASR. Double difference spectra in (a) and (c) (solid line minus dotted 

line) are shown in (b) and (d), respectively. The samples were hydrated with D2O, and 

spectra were measured at 77 K. One division of the y-axis corresponds to 0.0007 

absorbance units. These figures are reprinted with permission from Kawanabe et al. [59]. 

Copyright 2006 American Chemical Society. 
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Since the N-D stretching vibrations of the Schiff base should be present in this frequency region, we 

then attempted to assign them by use of the [-
15

N]lysine-labeled ASR sample. Figure 19a compares  

the 13C-ASRK minus 13C-ASR spectra between [-
15

N]lysine-labeled (dotted line) and unlabeled  

(solid line) ASR. Clear isotope-induced spectral downshift was observed for intense positive and 

negative bands at 2,376 and 2,165 cm
-1

, respectively. Other bands are identical between [-
15

N]lysine-

labeled and unlabeled 13C-ASR. Thus, we are able to conclude that the N-D stretching vibrations of the 

Schiff base are present in this frequency region. It should however be noted that the strong positive 

peak at 2,376 cm
-1

 probably contains other vibrations because the isotope effect was observed in the 

broad range of 2,370–2,320 cm
-1

 (Figure 19a).  

In fact, the AT-ASRK minus AT-ASR spectra contain such peak at 2,383 cm
-1

 as well (Figure 19c), 

which may originate from amide A vibrations. By use of double difference spectra from the data shown 

in Figure 19a, we determined that the N-D stretching vibration of the Schiff base in 13C-ASRK is 

located at 2,351 cm
-1

 (Figure 19b).  

Figure 19c compares the AT-ASRK minus AT-ASR spectra between [-
15

N]lysine-labeled (dotted 

line) and unlabeled (solid line) ASR. Clear isotope-induced spectral downshift was observed for the two 

negative bands at 2,163 and 2,125 cm
-1

, indicating that the bands originate from N-D stretching 

vibrations of the Schiff base in AT-ASR. Additionally, the positive spectral feature at 2,470 cm
-1

 

exhibits isotope shift from [-
15

N]lysine labeling as well. By use of double difference spectra from the 

data shown in Figure 19c, we determined that the N-D stretching vibration of the Schiff base in AT-

ASRK is located at 2,483 cm
-1

 (Figure 19d). The positive peak at 2,470 cm
-1

 probably contains other 

vibrations such as the O-D stretching vibrations of Thr79. In BR, the O-D frequencies of Thr89, the 

homologue of Thr79 in ASR, are 2,507 and 2,466 cm
-1

 for BR and BRK, respectively [49]. A similar 

positive band was also observed at 2,476 cm
-1

 for 13C-ASR (Figure 19a).  

Thus, by use of [-
15

N]lysine-labeled ASR, we identified the N-D stretching vibrations of the Schiff 

base at 2,163 and 2,125 cm
-1

 for AT-ASR and at 2,165 cm
-1

 for 13C-ASR. This indicates that the 

hydrogen-bonding strength is very similar for the two isomeric forms, being slightly stronger in  

AT-ASR. The X-ray crystallographic structure reported the presence of a water molecule in contact 

with the Schiff base, making it a good candidate for the hydrogen-bonding acceptor [60]. Similarity of 

the hydrogen bonding in AT-ASR and 13C-ASR is consistent with the X-ray structure.  

We also identified the N-D stretching vibration of the Schiff base at 2,483 cm
-1

 for AT-ASRK and  

at 2,351 cm
-1

 for 13C-ASRK. Upshifted N-D frequencies indicate that retinal isomerization weakens the 

hydrogen bond of the Schiff base for both AT-ASR and 13C-ASR. Nevertheless, unlike in the 

unphotolyzed states, the difference in frequencies for the K states implies the different isomerization 

outcomes for AT-ASR and 13C-ASR. In case of AT-ASR, the upshift of the frequency is >300 cm
-1

, 

indicating that the hydrogen bond is significantly weakened (or broken) in AT-ASRK, presumably 

because of the rotational motion of the Schiff base. In contrast, the upshift of the frequency is  

about 200 cm
-1

 for 13C-ASR. This fact suggests that the rotational motion of the Schiff base that 

accompanies retinal isomerization is smaller in 13C-ASR than in AT-ASR.  
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3.4. O-D Stretching Vibrations of Water in 13C-ASR and AT-ASR  

 

A spectral comparison between the samples hydrated with D2O and D2
18

O identifies O-D stretching 

vibrations of water molecules which change their frequencies upon retinal photoisomerization. We 

showed the absence of the water O-D stretch at <2,500 cm
-1

 for AT-ASR in previous section [20]. This 

observation was entirely different from the case of BR, being consistent with the correlation between 

strongly hydrogen-bonded water molecules and proton pumping activity [27].  

In this study, we also looked for the water bands in the 13C-ASRK minus 13C-ASR spectrum, but no 

water bands were found at <2,500 cm
-1

 similar to AT-ASR (data not shown). This fact indicates that the 

bridged water molecule between the protonated Schiff base and Asp75 forms a weak hydrogen bond for 

both the all-trans and 13-cis form. Figure 20 shows difference FTIR spectra in the 2,750–2,520 cm
-1

 

region, where weakly hydrogen-bonded water molecules are observed. Green-tagged bands in Figure 20 

are assignable to the O-D stretching vibrations of water because of the isotope shift. Figure 20b shows 

that three negative peaks at 2,690, 2,640, and 2,608 cm
-1

 were assignable to the O-D stretching 

vibrations of water in AT-ASR, while the bands at 2,701, 2,653, and 2,573 cm
-1

 were assigned as water 

stretching vibrations of AT-ASRK. The bands at 2,547(–)/2,537(+) cm
-1

 are attributed to the H-D 

unexchangeable S-H stretching vibration of a cysteine residue as shown in Figure 18b. Figure 20a 

shows that the bands at 2,660(–) and 2,645 (+) cm
-1

 exhibit isotope shift of water. In addition, clear 

isotope shift was seen for the positive band at 2,589 cm
-1

. The negative band at 2,553 cm
-1

 also contains 

water O-D stretch, though the small downshift suggests the presence of vibrations other than that of 

water. Therefore, two positive and two negative peaks can be assigned as O-D stretches of water  

in 13C-ASR.  

Figure 20. The 13C-ASRK minus 13C-ASR (a) and the AT-ASRK minus AT-ASR (b) 

spectra (pH 7) in the 2,750–2,520 cm
-1

 region measured at 77 K. Sample was hydrated with 

D2O (red line) or D2
18

O (blue line). Green-labeled frequencies correspond to those identified 

as water stretching vibrations. One division of the y-axis corresponds to 0.0004 absorbance 

units. This figure is reprinted with permission from Kawanabe et al. [59]. Copyright 2006 

American Chemical Society. 
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3.5. Unique Structure of the 13-cis Form of ASR 

 

In this section, we compared the 13C-ASRK minus 13C-ASR and AT-ASRK minus AT-ASR spectra 

obtained by means of low-temperature FTIR spectroscopy. The HPLC analysis revealed that the  

dark-adapted ASR is predominantly in the AT-ASR form (97%). Then, the optimal conditions of light 

adaptation to accumulate 13C-ASR were established, resulting in accumulation of 78% of the 13-cis 

form. This unique property of ASR raises several questions on how ASR relays the signal to its ASRT 

and the nature of the signaling state of ASR. If there is a structural difference between 13C-ASR and 

AT-ASR in the ground state, it might result in different binding affinity of the ASRT for 13C-ASR and 

AT-ASR. But we cannot exclude a general mechanism in which the M state would be the signaling state 

as in other sensory rhodopsins. Although the light-adapted ASR contains AT-ASR, the appropriate 

illumination regime allowed us to obtain the 13C-ASRK minus 13C-ASR spectra without any 

subtraction of the contribution of the all-trans form (Figure 15). The spectral comparison of 13C-ASR 

and AT-ASR upon the retinal isomerization at 77 K led to detection of the structural changes specific 

for each isomer. In addition, we revealed the hydrogen-bonding strengths of the Schiff base in each state 

using [-
15

N]lysine-labeled ASR.  

 

3.6. Unphotolyzed State of 13C-ASR 

 

We identified the N-D stretching vibration of the Schiff base at 2,165 cm
-1

 for 13C-ASR  

(Figure 19a). We also identified the N-D stretching vibration of the Schiff base at 2,163 and 2,125 cm
-1

 

for AT-ASR. The similar frequencies in 13C-ASR and AT-ASR indicate that the hydrogen-bonding 

strength of the Schiff base is nearly identical, being slightly stronger in AT-ASR. In the case of BR, the 

N-D stretching vibrations of the Schiff base were determined to be at 2,171 and 2,124 cm
-1

 [41]. X-ray 

crystallographic structures of ASR and BR reported the presence of a water molecule in contact with 

the Schiff base [7,16]. Therefore, similar hydrogen-bonding strength for 13C-ASR, AT-ASR, and BR 

suggests that the water molecule is a good hydrogen-bonding acceptor for the protonated Schiff base.  

Interestingly, two peaks were observed for the N-D stretch of the Schiff base of AT-ASR  

(Figure 19c) and BR [20], while only one peak was observed for that of 13C-ASR (Figure 19a). Origins 

of the two peaks in BR, ppR, and AT-ASR have not been well understood. Multiple vibrational modes 

or structural heterogeneity is a possible source of the two N-D stretches. A single peak of the 13-cis 

form in ASR may be useful for understanding of the nature of this mode.  

We previously found that water vibrations are entirely different between AT-ASR and BR, though 

both possess a water molecule between the Schiff base and its counterion (Asp75 for ASR or Asp85 for 

BR) [7,16]. Namely, the N-Owater–Ocounterion (the Schiff base nitrogen, water oxygen, and oxygen of the 

counterion) angle is 83° and 106° in ASR and BR, respectively. As the consequence, if the water 

oxygen fully accepts a hydrogen bond of the Schiff base, the O-H group of water points toward the 

oxygen of Asp85 in BR, but not toward that of Asp75 in ASR. Such a small difference in the angle can 

possibly determine the hydrogen-bonding strength of water molecules. We did not observe strongly 

hydrogen-bonded water molecules for 13C-ASR in this study (Figure 20a). This is consistent with the 

above argument, because the X-ray crystal structure of ASR provides a similar position of the Schiff 

base, the water, and Asp75 for both isomers at 2.0 Å resolution [16].  
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We observed water O-D stretches of 13C-ASR at 2,660 and 2,553 cm
-1

 (Figure 20a), which 

correspond to O-H stretches at 3,592 and 3,481 cm
-1

, respectively, from the spectral analysis of the  

O-H stretching vibrations in H2O (not shown). The O-H stretches of AT-ASR corresponding to the  

O-D stretches at 2,690, 2,640, and 2,608 cm
-1

 in Figure 20b are found at 3,636, 3,558, and 3,530 cm
-1

, 

respectively. Since only the water bridging the Schiff base and Asp75 is located close to the 

chromophore, it is a reasonable postulation that two water bands of ASR originate from O-D (O-H) 

stretches of this water molecule. In general, a water molecule has two O-H groups, and their 

frequencies are distributed in the wide 3,700-2,700 cm
-1

 region depending on their coupling and 

hydrogen-bonding strength [61]. Gaseous water exhibits asymmetric and symmetric stretching modes  

at 3,755 and 3,657 cm
-1

, respectively, and the stretching frequency is lowered as its hydrogen bonding 

becomes stronger [22]. It must be noted that the hydrogen bonding strengths of the two O-H groups 

are probably not equivalent in the restricted protein environment, which breaks the C2v-type symmetry. 

In such CS-type symmetry, one O-H is hydrogen bonded and the other O-H is unbonded, and their 

frequencies are widely split. That is the case for the bridged water of BR, where such decoupling of the 

two stretching modes occurs [54]. Consequently, one O-D stretch of water is at 2,171 cm
-1

, while 

another O-D stretch of water is at 2,636 cm
-1

. We suggested that the former points toward Asp85, 

while the latter points toward Asp212 [54]. Nonsymmetrical bonding of the water molecule in BR is 

presumably important for the function [23,26].  

Figure 21. (Left) The X-ray structure around retinal Schiff base. Yellow retinal is all-trans 

form and blue retinal is 13-cis form. (Right) The diagram of the ASRK minus ASR infrared 

spectra in X-D vibration region. It shows only N-D stretch of the Schiff base. This figure is 

reprinted with permission from TOC of Kawanabe et al [59]. Copyright 2006 American 

Chemical Society. 

 

 

In the case of 13C-ASR, the frequency difference between the O-D stretches is about 100 cm
-1

. 

Corresponding O-H stretches are also about 100 cm
-1

 different, being comparable to the gaseous water. 

Therefore, stretching vibrations of the water molecule are presumably coupled in 13C-ASR, where  

anti-symmetric and symmetric O-D stretches are located at 2,660 and 2,553 cm
-1

, respectively. The 

situation is probably similar for AT-ASR, where two out of the three bands at 2,690, 2,640,  
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and 2,608 cm
-1

 originate from the O-D stretches of the bridging water. The presence of the additional 

water band indicates involvement of more distant water upon formation of AT-ASRK (Figure 21).  

 

3.7. Photoisomerization Process of 13C-ASR in Comparison with that of AT-ASR 

 

Upon light absorption in 13C-ASR, photoisomerization probably takes place at the C13=C14 

(double) bond, leading from the 13-cis, 15-syn to the all-trans, 15-syn form. It is generally accepted that 

the primary K intermediate is a high-energy state for retinal proteins. Chromophore distortion is one of 

the characteristic features of such high energy state, and HOOP vibrations monitor the chromophore 

distortion. The appearance of numerous HOOP modes in 13C-ASRK vs. just two in AT-ASRK  

(Figure 16) implies that the chromophore distortion in 13C-ASRK is distributed more widely along the 

polyene chain. In other words, chromophore distortion is more localized in the Schiff base region for 

AT-ASRK. Such difference in HOOP modes is presumably correlated with the other observations 

including amide I, cysteine S-H stretch, the Schiff base N-D stretch, and water O-D stretch modes, as 

discussed below.  

Amide I vibrations of the -helix were clearly observed for the transition from 13C-ASR  

to 13C-ASRK as shown by the negative bands at 1,662, 1,655, and 1,649 cm
-1

 in Figure 17a. This is 

reasonable because the retinal chromophore is surrounded by -helices. In addition, the bands  

at 1,634(–)/1,628(+) cm
-1

 are also ascribable to amide I vibration. In contrast, fewer structural changes 

reported by amide I vibrations were observed for the transition from AT-ASR to AT-ASRK as we 

showed previously [20]. Instead, it was suggested that imide I vibration, possibly due to Pro206, was 

greatly altered [20]. Several amide I changes observed only for 13C-ASR are consistent with the picture 

obtained from the HOOP analysis, suggesting that extensive structural changes take place in 13C-ASRK.  

No structural perturbation was observed for S-H groups of cysteines in 13C-ASR, whereas there is a 

negative band at 2,547 cm
-1

 and a positive band at 2,538 cm
-1

 for AT-ASR (Figure 18). This indicates 

that only the all-trans to 13-cis isomerization leads to the alteration of the local structure of a cysteine 

in ASR. We previously suggested that among the three cysteines of ASR, Cys203 in helix G is the most 

likely candidate for this band. Cys203 is near Pro206 and close to the Schiff base region. Replacement 

of Cys203 by Ala results in a red-shifted max (553 nm) relative to the wildtype ASR (unpublished data). 

This suggests that the Schiff base region is more perturbed in AT-ASRK than in 13C-ASRK. The N-D 

stretching frequency of the Schiff base in 13C-ASRK (2,351 cm
-1

) is lower than that in AT-ASRK  

(2,483 cm
-1

), though they are similar between 13C-ASR and AT-ASR. We thus assume that the 

hydrogen bond of the Schiff base is broken in AT-ASRK but not in 13C-ASRK. Consequently, the 

hydrogen-bonding network is destabilized in AT-ASRK, and protein structural changes proceed through 

the network, where the L, M (deprotonation of the Schiff base), and O states can be produced from 

AT-ASR. In contrast, structural perturbation of the Schiff base region is smaller in 13C-ASRK, where 

the structural changes are distributed more widely.  

The number of observed water bands was two for 13C-ASR and three for AT-ASR (Figure 20). As 

discussed above, the two water bands in 13C-ASR are assignable to the water molecule in the Schiff 

base region. The presence of an additional water band indicates involvement of more distant water upon 

formation of AT-ASRK. The second nearest water molecule in the X-ray structure is located 8.3 Å from 

the Schiff base nitrogen in the structure of AT-ASR and 8.0 Å in the structure of 13C-ASR [16]. That 
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water is located between Trp176 and Phe213 in the cytoplasmic region. The third nearest water 

molecule in the X-ray structure is located 9.2 Å from the Schiff base nitrogen in the structure of  

AT-ASR and 9.7 Å in the structure of 13C-ASR [16]. That water is located near Arg72 in the 

extracellular region. No water molecules are present near the polyene chain. Thus, water signals may 

also be consistent with the above view that the chromophore of 13C-ASRK is distorted more widely 

along the polyene chain than that of AT-ASRK, which has larger changes in the Schiff base region.  

In conclusion, ASR accommodates both all-trans and 13-cis, 15-syn retinal in the ground state 

according to the X-ray crystal structure [16]. On the other hand, the present FTIR study revealed that 

protein structural changes upon retinal photoisomerization were significantly different  

between 13C-ASR and AT-ASR. They must trigger global protein structural changes in each 

photoreaction cycle, resulting in the photochromic behavior. The photochromic signaling mechanism of 

ASR has not been found, but we should be able to reveal such mechanism if the AT-ASR and 13C-ASR 

states differ in the binding affinity of the ASRT. The other possibility is that the M state from the 

photocycle of AT-ASR, which is conformationally changed, would be the signaling state similar to other 

sensory rhodopsins. 

 

4. Photochromism of Anabaena Sensory Rhodopsin 

 

Rhodopsins convert light into signal or energy, and retinal is their chromophore molecule [62-64]. 

The retinal forms a protonated Schiff base linkage (C=NH
+
) with a lysine at the seventh helix in  

original state.  

It is well-known that the protein environment of rhodopsins accommodates the retinal chromophore 

optimally to its functions. For example, the specific chromophore-protein interaction leads wide color 

tuning in human visual pigments with a common chromophore (11-cis retinal) [65], and protein controls 

the highly efficient photoisomerization from 11-cis to the all-trans form in visual rhodopsins [66].  

Specific control of retinal photochemistry by protein can be also seen in rhodopsins from halophilic 

archaebacteria such as the light-driven proton pump bacteriorhodopsin (BR) [5,6,66]. Unlike visual 

rhodopsins, BR accommodates the retinal chromophore as the all-trans,15-anti (AT; BRAT)  

and 13-cis,15-syn (13C; BR13C) forms (Figure 22a) [67]. BRAT and BR13C are in equilibrium in the dark, 

while only BRAT possesses proton-pump activity (Figure 22b). Absorption of light by BRAT yields 

isomerization to the 13-cis, 15-anti form, which triggers a cyclic reaction that comprises the series of 

intermediates, intermediates, K, L, M, N, and O [5,6]. During the photocycle, one proton is 

translocated from the cytoplasmic to extracellualr side.  

Photoexcitation of BR13C partially converts it to BRAT, which is called “light-adaptation”, but BRAT is 

not converted into BR13C photochemically. Photocycle of BRAT with 100% yield is advantageous for 

repeating the proton-pumping cycle. This is also the case for other proton pumps found in eubacteria 

(proteorhodopsin) [14] and eucaryotes (Leptosphaeria rhodopsin) [68]. In addition, haloarchaeal 

sensory rhodopsins possess only the AT chromophore in the dark, indicating that its photocycle is 

important also for light-signal conversion [69,70]. Thus, the photocycle of the AT form with 100% 

yield has been the common mechanism for the functional processes of microbial rhodopsins.  
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Figure 22. (a). The structure of the retinal chromophore of microbial rhodopsins in the dark. 

(b). Photo and thermal reaction scheme in a light-driven proton pump bacteriorhodopsin 

(BR). Only BRAT possesses proton-pump activity, and the reaction of BRAT is 100 % cyclic 

without any branching reaction into BR13C. Dotted arrows represent thermal reaction in the 

dark. (c). Photo and thermal reaction scheme in Anabaena sensory rhodopsin (ASR). While 

ASRAT is a predominant species in the dark (dotted arrow), photoexcitation of ASRAT and 

ASR13C yields the reaction of each species, either cyclic or branching, leading to the 

photocycle or photochromism, respectively. x and y are the branching ratio from ASRAT and 

ASR13C, respectively. These figures are reprinted with permission from Kawanabe et al [71]. 

Copyright 2007 American Chemical Society. 

 

 

Recently, a microbial rhodopsin has been discovered in Anabaena (Nostoc) PCC7120, which is 

believed to function as a photoreceptor for chromatic adaptation [15]. In fact, the expected 

photochromism was found between the AT and 13C forms for Anabaena sensory rhodopsin (ASR) [57]. 
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These findings imply strongly branching reactions, from ASRAT to ASR13C and from ASR13C to ASRAT 

(Figure 22c), in striking contrast to what is known for microbial rhodopsins. Ideally, the conversion 

ratios should be unity for photochromic reactions (x = y = 1 in Figure 22c), but this is exactly the 

opposite of the properties of pump rhodopsins, such as BR. X-ray crystal structures reported similar 

chromophore structures and protein environments for ASRAT [16] and BRAT [7]. Do photochromic 

reactions indeed take place for ASRAT and ASR13C? In this chapter, we determined the branching ratios 

(x and y values) for ASRAT and ASR13C by means of low-temperature UV-visible spectroscopy. 

Surprisingly, the obtained x and y values were unity, indicating that the photoreactions of ASRAT and 

ASR13C are completely photochromic. The complete photochromic reactions are highly advantageous 

for the chromatic sensor function of ASR.  

 

4.1. Photoconversion of ASRAT (1) Photoreaction at 170 K 

 

We first examined the branching ratio of ASRAT (x value in Figure 22c) because previous HPLC 

analysis revealed that the dark-adapted ASR in PC liposomes contains predominantly (97%)  

ASRAT [59]. Dark-adapted ASR was illuminated at 170 K, and then warmed to 277 K. The 

photoconversion yield of ASRAT to its intermediates was calculated using the spectra at 170 K, which 

was compared with the conversion of ASRAT to ASR13C at 277 K.  

The black line in Figure 23a shows the absorption spectrum of the dark-adapted ASR at 170 K  

(max = 554 nm). Illumination at >580 nm (red line) or 501 nm (blue line) resulted in reduction of the 

peak absorbance and increase of the shorter or longer wavelength tail, indicating the formation of the L 

and K photointermediates, respectively. Figure 23b shows the corresponding difference spectra, and 

positive peaks at 474 and 605 nm are characteristic absorption of the L and K intermediates, 

respectively. On the other hand, no positive band at about 400 nm indicates that the M intermediate is 

not formed at 170 K. 

Since the red and blue spectra in Figure 23b contain contribution of the L and K intermediates, we 

next obtained the K minus ASRAT and L minus ASRAT spectra. The L minus ASRAT spectrum was 

obtained by subtracting the blue spectrum from the red one in Figure 23b, so that the spectral shape at 

about 600 nm coincides with that of the absolute spectrum of the dark-adapted ASR (black line in 

Figure 23a). The red spectrum in Figure 23c represents the L minus ASRAT spectrum thus obtained. 

Then, the L minus ASRAT spectrum was subtracted from the blue spectrum in Figure 23b so as to 

resemble that at 130 K (black dotted line in Figure 23c), where the only photoproduct is the K 

intermediate. The blue spectrum in Figure 23c represents the resulting K minus ASRAT spectrum. 

Isosbestic points are at 520 nm between ASRAT and L, and at 575 nm between ASRAT and K.  

We then determined the absorption spectra of the K and L intermediates of ASRAT at 170 K. 

Absorption spectrum of the K intermediate can be obtained from the K minus ASRAT difference 

spectrum (blue line in Figure 23c) and photoconversion ratio from ASRAT to the K intermediate. 

Absorption spectrum of the L intermediate can be obtained from the L minus ASRAT difference 

spectrum (red line in Figure 23c) and photoconversion ratio from ASRAT to the L intermediate. Five 

colored lines in Figures 24a or b correspond to the calculated spectra of the K intermediate of ASRAT or 

the L intermediate of ASRAT at various percentages of conversion (100-17% from orange to  

blue; 32% for the red line, respectively).  
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Figure 23. (Left). (a). Absorption spectra of the dark-adapted ASR (black line), illuminated 

with >580 nm (red line) and 501 nm (blue line) light at 170 K. It should be noted that the 

dark-adapted ASR corresponds to ASRAT, because it contains negligible amount of ASR13C 

(2.9%) in the present sample conditions [59]. (b). Light-minus-dark difference absorption 

spectra of ASR with >580 nm (red line) and 501 nm (blue line) light at 170 K. (c). L minus 

ASRAT (red line) and K minus ASRAT (blue line) difference absorption spectra at 170 K. 

Black broken line corresponds to the K minus ASRAT spectrum at 130 K, where only the K 

intermediate is formed. See text for detail. One division of the y-axis corresponds to 0.1(a) 

and 0.05(b,c) absorbance units. These figures are reprinted with permission from Kawanabe 

et al. [71]. Copyright 2007 American Chemical Society. 
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Figure 24. Determination of the absorption spectra of the K and L intermediates of ASRAT 

at 170 K. (a,b) Black solid line represents absorption spectrum of ASRAT at 170 K. (c) 

Second derivatives of absorption spectra in Figure 24b, where the corresponding spectra are 

shown by the same color. (d). Absorption spectra of ASRAT (black line), the K intermediate 

(blue line) and the L intermediate (red line) at 170 K. The spectra of the K and L 

intermediates are reproduced from the red spectra in Figure 24a and b, respectively. One 

division of the y-axis corresponds to 0.1 (a,b,d) and 0.0002 (c) absorbance units. These 

figures are reprinted with permission from Kawanabe et al. [71]. Copyright 2007 American 

Chemical Society. 
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The broken black line in Figure 24a represents the absorption spectrum of the K intermediate of 

ASRAT at 130 K, which was determined by illuminating ASRAT at two wavelengths as described in 

Figure 25. Since the red spectrum in Figure 24a coincided well with the black broken line, we regard the 

red one as the absorption spectrum of the K intermediate of ASRAT at 170 K. On the other hand, the 

absorption spectrum of the L intermediate was determined from the spectral analysis of the second 

derivatives of the absorption spectra in Figure 24b. The second derivatives in Figure 24c show that the 

red spectrum coincides with the zero line at >588 nm. We assume that the L intermediate does not 

contain spectral component in the second derivative at >588 nm. Consequently, we regarded the red 

one in Figure 24b as the absorption spectrum of the L intermediate of ASRAT at 170 K. Blue and red 

spectra in Figure 24d correspond to the absolute spectra of the K and L intermediates, respectively.  

Figure 25 shows the determination of the absorption spectra of the K intermediates of ASRAT and 

ASR13C at 130 K. These spectra were calculated for each illumination wavelengths from the spectra in 

Figure 25c and d by taking account of the isomeric compositions of the dark-adapted (97% ASRAT  

and 3% ASR13C) and light-adapted (22% ASRAT and 78% ASR13C) ASR. The almost identical spectra in 

Figure 25c and e indicate that the dark-adapted state can be regarded as ASRAT. In Figure 25g to 

determine absorption spectrum of an intermediate, the photoconversion ratio from the unphotolyzed 

state to the intermediate must be obtained. Such a ratio can be obtained by illuminations at two 

wavelengths if the quantum yields are independent of wavelength [71]. For instance, ASRAT is 

illuminated at 480 nm or 577 nm under photoequilibrium conditions:  

(1 – x1) Abs(ASRAT, 480 nm) = x1  Abs(ASRAT(K), 480 nm) 

(1 – x2) Abs(ASRAT, 577 nm) = x2  Abs(ASRAT(K), 577 nm) 

where x1 and x2 are relative amount of ASRAT(K) in the photosteady state mixture,  is the relative 

quantum yield of ASRAT(K) to ASRAT. Abs(ASRAT, 480 nm) and Abs(ASRAT(K), 480 nm) are the 

absorbance of ASRAT and the K intermediate at 480 nm, respectively. On the other hand, the following 

equations are derived from the difference spectra before and after illumination: 

Abs(480 nm) = x1 (Abs(ASRAT(K), 480 nm) – Abs(ASRAT, 480 nm)) 

Abs(577 nm) = x2 (Abs(ASRAT(K), 577 nm) – Abs(ASRAT, 577 nm)) 

where Abs(480 nm) and Abs(577 nm) are the difference absorbances at 480 and 577 nm, respectively. 

From the blue (480 nm) and red (577 nm) spectra in Figure 25e, absorption spectrum of the K 

intermediate of ASRAT can be determined by obtaining x1 and x2 values (red solid line in Figure 25g). 

Red dotted line corresponds to the spectrum of the K intermediate of ASRAT obtained from the green 

(548 nm) and red (577 nm) spectra in Figure 25e. Red solid and dotted spectra in Figure 25g are almost 

identical, implying that quantum yields are wavelength independent.    
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Figure 25. Determination of the absorption spectra of the K intermediates of ASRAT and 

ASR13C at 130 K. Black solid line represents the absorption spectra of the dark-adapted (a) 

and light-adapted (b) ASR at 130 K. Blue, green, and red spectra are those by illumination 

with a 480, 548, and 577 nm light through interference filters (sharp colored peaks in the 

figure), respectively. (c) and (d). Light-minus-dark difference absorption spectra of the 

dark-adapted (c) and light-adapted (d) ASR by illumination with 480 (blue), 548 (green), 

and 577 (red) nm lights at 130 K. (e) and (f). K-minus-ASRAT (e) and K-minus-ASR13C (f) 

difference absorption spectra by illumination with 480 (blue), 548 (green), and 577 (red) nm 

lights at 130 K. Blue solid, dotted, and broken lines represent the spectra of the K 

intermediate of ASR13C obtained from the blue and red, green and red, and blue and green 

spectra in f. We regarded the red and blue solid lines as the spectra of the K intermediates  

of ASRAT and ASR13C, respectively. One division of the y-axis corresponds to 0.2 (a,b), 

0.04 (c,d,e,f) and 0.1 (g) absorbance units. These figures are reprinted with permission from  

Kawanabe et al. [71]. Copyright 2007 American Chemical Society. 
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4.2. Photoconversion of ASRAT (2) Thermal Relaxation by warming the Sample from 170 K to 277 K  

 

We reconstituted the experimentally obtained spectra (dotted black lines in Figures 26a and c) by 

use of the spectra in Figure 24d. For the illumination at >580 nm, the dotted black spectrum in  

Figure 26a coincides well with the sum of 78% ASR, 5% K, and 17% L (green line in Figure 26a), 

indicating the 22 (±2)% conversion to intermediates at 170 K. On the other hand, for the illumination  

at 501 nm, the dotted black spectrum in Figure 26c is well coincident with the sum of 68% ASR,  

18% K, and 14% L (green line in Figure 26c), indicating the 32 (±5)% conversion at 170 K. We then 

warmed these states from 170 to 277 K so as to complete the thermal reactions of the K and L states to 

their end products, and calculated the conversion yield from the spectra. Dotted black lines in Figures 

26b and d represent the spectra at 277 K after illumination at >580 and 501 nm, respectively, at 170 K.  

Figure 26. (a) and (c). Absorption spectra of the dark-adapted ASR before (black solid 

lines) and after (black dotted lines) illuminations with >580 nm (a) or 501 nm (c) light  

at 170 K. Green lines represent the spectra reconstituted using those in Figure 24d. Under 

the present illumination conditions, 22 (± 2) and 32 (± 5)% portion were converted into the 

intermediates in a and c, respectively. (b) and (d). Black solid lines represent absorption 

spectra of the dark-adapted ASR at 277 K. Red and blue lines correspond to the calculated 

absorption spectra of ASRAT and ASR13C at 277 K, respectively, which were obtained from 

those of dark- and light-adapted ASR and the HPLC analysis [59]. Black dotted lines 

represent absorption spectra at 277 K after illuminations with >580 nm (b) or 501 nm (d) 

light at 170 K. Under the present illumination conditions, 23 (± 2) and 34 (± 4)% portion 

were converted from ASRAT to ASR13C at 277 K in b and d, respectively. From a-d, the 

branching ratio (x in Figure 22c) is obtained to be 1.02 ± 0.13 and 1.10 ± 0.09 for 

illuminations at >580 nm and 501 nm, respectively, indicating complete branching reactions 

from ASRAT for both illumination conditions. One division of the y-axis corresponds to 0.1 

absorbance units. These figures are reprinted with permission from Kawanabe et al. [71]. 

Copyright 2007 American Chemical Society. 
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Using the absorption spectra of ASRAT and ASR13C, the percentages of conversion were calculated to 

be 23 (±2)% and 34 (±4)% in Figures 26b and d, respectively. The branching ratios (x in Figure 22) 

were thus determined to be 1.02 ± 0.13 and 1.10 ± 0.09 for illuminations at >580 and 501 nm, 

respectively. These values demonstrate that the K and L intermediates formed from ASRAT are 

completely converted into ASR13C without regaining the initial state in a photocyclic reaction.  

By means of low-temperature FTIR spectroscopy, we had previously suggested that the primary 

photoproduct of ASRAT is the 13-cis, 15-anti form as in BR (Figure 27) [20]. In BR, thermal 

isomerization takes place at the C13 = C14 bond with virtually 100% yield, recovering the original AT 

state. In contrast, in ASR thermal isomerization is likely to occur at the C15 = N bond following 

photoisomerization of ASRAT, which converts to the 13C state with 100% yield (Figure 27). 

Figure 27. Structural changes of the all-trans, 15-anti chromophore during photoreactions. 

The all-trans, 15-anti form, either in BRAT or ASRAT, is first photoconverted to the 13-cis, 

15-anti form, followed by thermal isomerization at C13 = C14 or C15 = N position in BR 

or ASR, respectively. Such thermal relaxations lead to 100% photocyclic and photochromic 

reactions for BRAT and ASRAT, respectively. This figure is reprinted with permission from  

Kawanabe et al. [71]. Copyright 2007 American Chemical Society. 

 

 

4.3. Photoconversion of ASR13C (1) Relative Photoconversion Yields of ASRAT and ASR13C at 277 K 

 

What is the branching ratio (y value in Figure 22c) from ASR13C? Unlike ASRAT that is present as 

nearly the only state in dark-adapted ASR, ASR13C is present in a mixture with ASRAT. Therefore, we 

attempted to determine the branching ratio on the basis of relative photoconversion yields. A previous 

study showed that the dark-adapted or light-adapted ASRs in PC liposomes possess 97.1% ASRAT  

and 2.9% ASR13C or 22.1% ASRAT and 77.9% ASR13C, respectively [59]. Since ASRAT has greater 

extinction than ASR13C at 500–600 nm (Figures 26b and d), illumination of the dark-adapted ASR yields 

an absorption decrease in this wavelength region. In contrast, illumination of light-adapted ASR results 

in the increase of absorption at 500–600 nm, as reported previously [16]. The isosbestic point of ASRAT 

and ASR13C is located at 496 nm (Figures 26b and d).  
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In Figure 28, we illuminated the dark-adapted and light-adapted ASR with a 496 nm light at 277 K, 

and the changes in absorbance at 569 nm (difference absorption maximum between ASRAT and ASR13C 

at 277 K) were plotted as the function of illumination time.  

Figure 28. Absorption changes at 569 nm of the dark-adapted (open circles) and light-

adapted (open squares) ASR after illumination at the isosbestic point of ASRAT and  

ASR13C (496 nm) at 277 K. Absorption changes were fitted by single exponentials (solid and 

broken lines), and the ratio of the initial slope (light-adapted ASR/dark-adapted ASR)  

was 0.40:1. By taking into accounts of the contents of ASRAT and ASR13C in each state, the 

ratio between ASR13C-to-ASRAT and ASRAT-to-ASR13C was determined to be 0.77 (± 0.04). 

This figure is reprinted with permission from Kawanabe et al. [71]. Copyright 2007 

American Chemical Society. 

 

Thermal conversion from ASR13C to ASRAT is negligible, because it takes 90 min (1/2) for ASR in 

PC liposomes at 277 K (data not shown). Absorbance at 569 nm decreases and increases for the  

dark-adapted and light-adapted ASR, respectively, and both curves eventually coincide after long 

illumination (Figure 28). The time courses are well fitted by single exponentials, and each 

photoconversion yield can be obtained from the initial slope (t = 0). By taking into account the contents 

of ASRAT and ASR13C in the dark-adapted and light-adapted forms, we determined the photoconversion 

yields ratio between ASR13C-to-ASRAT and ASRAT-to-ASR13C to be 0.77 (±0.04):1. [Sineshchekov et al. 

estimated a similar photoconversion yield to be 0.3:1 from the HPLC analysis of the photosteady state 

mixture with white or >520-nm light illumination [57]. While the accurate photoconversion yield is 

determined by the present method (from the initial slope after illumination at their isosbestic point), such 

a big difference (0.77 vs. 0.3) should be explained. We confirmed that the spectral analysis of  

the photosteady state, not initial slope, in Figure 28 yields the ratio to be similar (0.75:1). On the other 

hand, the photoconversion yields ratio between ASR13C-to-ASRAT and ASRAT-to-ASR13C was 

significantly reduced by illumination at longer wavelengths, which is close to the value reported by 

Sineshchekov et al. [57]. Thus, the photoconversion yields ratio depends on the illumination  

wavelength; 0.77 by the 496 nm illumination and about 0.3 by the illumination at >520 nm. We infer 

that under the photostationary conditions at >520 nm, the intermediate state of ASR13C is photoexcited, 
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presumably forming the original ASR13C, while that of ASRAT (the M state) is not. Consequently, 

ASR13C is accumulated, and the photoconversion yields ratio between ASR13C-to-ASRAT and  

ASRAT-to-ASR13C is apparently lowered.] Since the sample is illuminated at the isosbestic point, the 

ratio is directly correlated with the relative photoconversion yields. Although this value apparently 

shows a lower branching ratio for ASR13C than for ASRAT (x = 1), it should be noted that the 

photoisomerization quantum yields are not taken into account in this estimate. A lower 

photoisomerization quantum yield of ASR13C may provide a lower value for ASR13C, and it was indeed 

the case as shown below.  

 

4.4. Photoconversion of ASR13C (2) Relative Photoisomerization Quantum Yields of ASRAT and ASR13C  

at 130 K 

 

We next compared the relative quantum yields for the photoisomerization of ASRAT and ASR13C by 

comparing the formation of their K intermediates at 130 K. Since the molar extinction coefficients of 

their K intermediates are required for the calculation, we determined the absorption spectra of the  

K-intermediates of ASRAT and ASR13C according to the procedure in Figure 25.  

Figure 29. (a). Red and blue broken lines correspond to the absorption spectra of ASRAT 

and ASR13C at 130 K, respectively, which were obtained from those of the dark- and light-

adapted ASR and the HPLC analysis [59]. Isosbestic point is located at 480 nm. Red and 

blue solid lines represent absorption spectra of the K intermediates of ASRAT and ASR13C at 

130 K, which were obtained according to the procedure in Figure 25. (b). Time-dependent 

absorbance changes of the dark-adapted (open circles) and light-adapted (open squares) 

ASR. Each sample was illuminated at the isosbestic point at 130 K (480 nm; a), and 

absorbance changes were monitored at 596 and 590 nm for the dark-adapted and  

light-adapted ASR, respectively. These figures are reprinted with permission from 

Kawanabe et al. [71]. Copyright 2007 American Chemical Society. 

 

 

Solid red and blue lines in Figure 29a represent absorption spectra of the K intermediates of ASRAT 

and ASR13C, respectively. Interestingly, the absorption of the K state is decreased for ASRAT but 

increased for ASR13C increased. Together with the absorption of ASRAT greater than that of ASR13C 
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(broken lines in Figure 29a), this suggests that the 13C trans form has a large absorption in the protein 

pocket of ASR.  

We then illuminated the dark-adapted and light-adapted ASR at 480 nm, the isosbestic point of 

ASRAT and ASR13C, at 130 K (Figure 29a). Figure 29b shows time-dependent absorbance changes at 

each difference absorption maximum (596 and 590 nm) of the dark-adapted and light-adapted ASR. 

The increase of absorbance is greater for the light-adapted ASR, which contains more ASR13C, and 

originates also from the larger absorbance of the K intermediate of ASR13C. By considering the molar 

extinction coefficients of the K intermediates, the relative quantum yield for the photoisomerization of 

ASR13C and ASRAT was determined to be 0.73 (±0.07):1. From the data in Figure 26a and c, the 

branching ratio of ASR13C (y in Figure 22) was therefore determined to be 1.06 ± 0.11. This value 

demonstrates that the K intermediate formed from ASR13C is completely converted into ASRAT without 

regaining the initial state in a photocyclic reaction (Figure 30).  

Figure 30. The photoreaction of ASR. Both isomers (ASRAT and ASR13C) convert 100% 

yield to another isomer, respectively. This figure is reprinted with permission from 

Kawanabe et al. [71]. Copyright 2007 American Chemical Society. 

 

 

4.5. Functional Optimization of Photoconversions in Rhodopsins 

 

The present results reveal that the branching reactions take place with 100% efficiency, both from 

ASRAT and ASR13C. Although the present results were obtained for ASR in liposomes, not in native 

membranes, this characteristic is highly advantageous for a photochromic sensor. On the other hand, the 

AT form of BR has 100% photocyclic efficiency (Figure 27), which is important for the proton pump. 

Thus, it is concluded that ASR and BR have been optimized for their functions, presumably during 

evolution. It is intriguing that the structures of the chromophore and its binding pocket are similar 

between ASR [16] and BR [7], although their amino acid sequences are not highly homologous (60%). 

Our FTIR study revealed that hydrogen bond of the Schiff base is similarly strong in ASR and BR, and 

they are similarly cleaved after retinal photoisomerization [20]. Replacement of aspartate (Asp212 of 

BR) by proline in ASR (Pro206) is one of the structural differences. Another difference is the hydrogen 

bonding strength of the water molecule near the Schiff base. BR possesses a strongly hydrogen-bonded 

water molecule between the Schiff base and its counterion (Asp85), which appears to be a prerequisite 
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for proton-pump function [27]. ASR possesses such a water molecule between the Schiff base and its 

counterion (Asp75) [16], but its hydrogen bond is much weaker [20]. These small differences may be 

determinants for distinguishing photocyclic or photochromic reactions. Recently, Sudo and Spudich 

converted BR into a sensory receptor by mutation of three hydrogen-bonding residues [72]. This finding 

also suggests that distinct functions are determined by small differences. In addition, the M intermediate 

is formed during the photoreaction of ASRAT, like BR, but Asp75 is not protonated [73], presumably 

because the proton is conducted toward the cytoplasmic domain [74]. Further structural analysis of 

photoreaction intermediates will provide a better understanding of the mechanism for thermal relaxation 

of the photoisomerized chromophore. 

 

5. FTIR Study of the L Intermediate of Anabaena Sensory Rhodopsin: Structural Changes in the 

Cytoplasmic Region 

 

The M intermediate with the deprotonated Schiff base is an important state in proton transport and 

signal transduction. It has been known that the Schiff base proton is transferred to the counterion 

(Asp85 in BR) if it is deprotonated. In this case, the proton transfer is toward extracellular side. On the 

other hand, the previous time-resolved FTIR study of ASR by Shi et al. reported the proton transfer to 

Asp217 in the cytoplasmic side [74], though Asp75 works as the counterion of the Schiff base in ASR. 

No proton transfer to Asp75 was also reported by Bergo et al. [73]. This may be reasonable, because 

another aspartate (Asp212 in BR) is replaced by proline in ASR, and Asp212 plays an important role in 

the proton transfer in BR [23,75]. On the other hand, Sineshchekov et al. reported that the direction of 

proton transfer was dependent on the sample conditions, where the direction is toward cytoplasmic and 

extracellular side for C-terminal truncated and full-length ASR, respectively [76]. According to these 

results, native full-length ASR in E. coli cells exhibits proton transfer direction the same as in BR. 

Thus, the molecular mechanism of ASR activation remains yet unclear. In this study, we applied  

low-temperature FTIR spectroscopy at 170 K to the dark-adapted ASR that has predominantly all-trans 

retinal (97%) [59]. The obtained ASRL minus ASR spectra were similar between the full-length and  

C-terminally truncated ASR, implying similar protein structural changes for the L state. The ASRL 

minus ASR spectra were essentially similar to those of BR, but a unique spectral feature was observed 

in the carboxylic C=O stretching region. The bands at 1,722(+) and 1,703(–) cm
-1

 were observed at  

pH 5, which was reduced at pH 7 and disappeared at pH 9. The mutation study successfully assigned 

the bands to the C=O stretch of Glu36. Interestingly, Glu36 is located at the cytoplasmic side, and the 

distance from the retinal Schiff base is about 20 Å (Figure 31). We also observed pH-dependent 

frequency change of a water stretching vibration, which is located near Glu36. Unique  

hydrogen-bonding network in the cytoplasmic domain of ASR will be discussed.  
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Figure 31. X-ray crystallographic structure of the cytoplasmic region of ASR (PDB entry 

1XIO [16]). Top and bottom regions correspond to the cytoplasmic surface and retinal 

binding pocket, respectively. Green spheres represent water molecules in the cytoplasmic 

region. Hydrogen-bonds (yellow dashed lines) are inferred from the structure. This figure is 

reprinted with permission from Kawanabe et al. [77]. Copyright 2008 American  

Chemical Society. 

 

 

 

5.1. Comparison of the Difference Infrared Spectra of the L Intermediate of Full-length ASR and 

Truncated ASR in the 1,800–800 cm
-1

 Region 

 

The previous photoelectric measurements showed that the direction of charge movement of full-

length ASR was different from that of C-terminally truncated ASR (truncated ASR) for the L and M 

intermediates, whereas both charge movements were similar for the K intermediate [76]. This suggests 

that full-length and truncated ASR have different structural changes in the L and M intermediates. 

Therefore, we prepared both full-length and truncated ASR, and measured the difference FTIR spectra 

for the L intermediate. Figure 32 compares the full-length ASRL minus ASR (solid line) and the 

truncated ASRL minus ASR (dotted line) spectra at 170 K upon hydration with H2O. As is clearly seen, 

the spectrum of the full-length ASR is very similar to that of the C-terminally truncated ASR. Thus, the 

present FTIR spectra for the L intermediate showed no effects of the C-terminal truncation. All data 

below are shown for the full-length ASR including the mutant proteins. It should be noted that we 

confirmed similarity of the spectra at 170 K between full-length and truncated ASR at acidic and 

alkaline pH as well, though they could be different at room temperature.  
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Figure 32. The full-length (solid line) and truncated (dotted line) ASRL minus ASR spectra 

(pH 7) in the 1,800–900 cm
-1

 region. The spectra are measured at 170 K upon hydration 

with H2O. One division of the y-axis corresponds to 0.004 absorbance units. This figure is 

reprinted with permission from Kawanabe et al [77]. Copyright 2008 American  

Chemical Society. 

 

 

5.2. Comparison of the Difference Infrared Spectra of the L Intermediate of ASR and BR in  

the 1,800–800 cm
-1

 Region 

 

Figure 33 compares the ASRL minus ASR (a) and the BRL minus BR spectra (b) at 170 K. The 

samples were hydrated with H2O (solid lines) and D2O (dotted lines). In Figure 33a, the negative band 

at 1,537 cm
-1

 corresponds to the ethylenic vibration of all-trans retinal in ASR, which exhibits the 

absorption maximum at 549 nm [59]. The ASRK minus ASR spectrum also showed the negative band at 

identical frequency [20]. In the case of BR, the ethylenic vibration of the L intermediate is observed at 

higher frequency (1,550 cm
-1

) than that of the original state (1,528 cm
-1

), which corresponds to the 

blue-shifted absorption maximum of BRL [29]. Similarly, illumination of ASR results in the spectral 

upshift to 1,558 cm
-1

. Blue-shifted visible absorption of ASRL is consistent with our low-temperature 

UV-visible analysis [71].  

C-C stretching vibrations of retinal in the 1,300–1,150 cm
-1

 region are sensitive to the local structure 

of the chromophore. Negative bands at 1,255, 1,216, 1,202, and 1,169 cm
-1

 in Figure 33b were assigned 

to the C12-C13, C8-C9, C14-C15, and C10-C11 stretching vibrations of BR, respectively [31]. These 

bands are typical to all-trans retinal protonated Schiff base but located at higher frequencies 

corresponding to charge delocalization in the retinal molecule in BR. BRL has a 13-cis retinal, resulting 

in the appearance of a strong positive band at 1,192 cm
-1

, which is assigned to C10-C11 and C14-C15 

stretching vibrations [78]. Essentially similar observation was obtained for ASR. From the similarity in 

frequency, negative bands at 1,248, 1,215, 1,196, and 1,174 (and/or 1,167) cm
-1

 can be assigned to 

C12-C13, C8-C9, C14-C15, and C10-C11 stretching vibrations of ASR (Figure 33a).  
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Figure 33. The ASRL minus ASR (a) and the BRL minus BR (b) spectra in  

the 1,800–900 cm
-1

 region, which are measured at pH 7 and 170 K upon hydration with 

H2O (solid line) and D2O (dotted line), respectively. One division of the y-axis corresponds 

to 0.012 absorbance units. This figure is reprinted with permission from Kawanabe  

et al [77]. Copyright 2008 American Chemical Society. 

 

 

The difference spectra in the 1,110–890 cm
-1

 region are expanded in Figure 34, where hydrogen-out-

of-plane (HOOP), N-D in-plane bending and methyl rocking vibrations appear. The presence of strong 

HOOP modes represents the distortion of the retinal molecule [60]. The ASRL minus ASR spectra 

exhibit two positive peaks at 968 and 955 cm
-1

, which possibly correspond to the bands at 968  

and 951 cm
-1

 of BRL, respectively (Figure 34). The bands at 986(+) and 976(–) cm
-1

 were assigned to 

the N-D in-plane bending vibrations of BRL and BR, respectively [35]. On the other hand, the ASRL 

minus ASR spectrum does not show clearer H-D exchange dependent bands in this region than the BRL 

minus BR spectrum. The 1,009 cm
-1

 band in Figure 34b is insensitive to the H-D exchange and was 

assigned to the methyl rocking vibration of the retinal in BR. The band at 1,005 cm
-1

 in Figure 34a is 

also assignable to the methyl rocking vibration in ASR. Thus, similar L spectra were observed for ASR 

and BR.  

Amide-I vibrations appear in the 1,700–1,550 cm
-1

 region together with the C=N stretching vibration 

of the protonated retinal Schiff base (Figure 33). In general, the former is little sensitive to the H-D 

exchange, whereas the latter exhibits a downshift in D2O. The bands at 1,641(–) and 1,625(+) cm
-1

 were 

assigned to the C=N stretching vibrations of BR and BRL, respectively [35]. In the case of ASR, a 

prominent negative peak at 1,644 cm
-1

 is assignable to the C=N stretch of ASR, because the  

D2O-sensitive 1,644 cm
-1

 band in the ASRK minus ASR spectra was identified by use of 
15

N-lysine 

labeled ASR [59]. On the other hand, the C=N stretch of ASRL is not obvious. The positive peak  

at 1,625 cm
-1

 is a candidate, whereas the downshifted band was not clearly observed in D2O (dotted line 

in Figure 33a). The H-D independent band at 1,663 cm
-1

 presumably originates from amide-I vibration. 
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The frequency suggests structural changes of a distorted -helix. Since the negative band at 1,663 cm
-1

 

is absent for the ASRK minus ASR spectra [20], the structural changes of -helix newly appear in ASRL. 

Figure 34. The ASRL minus ASR (a) and the BRL minus BR (b) spectra in  

the 1,030–900 cm
-1

 region, which correspond to hydrogen-out-of-plane (HOOP) vibrations 

of the retinal chromophore. The sample was hydrated with H2O (solid lines) or D2O (dotted 

lines). One division of the y-axis corresponds to 0.0016 absorbance units. This figure is 

reprinted with permission from Kawanabe et al [77]. Copyright 2008 American  

Chemical Society. 

 

 

5.3. Comparison of the Difference Infrared Spectra of the L Intermediate in Protonated Carboxylic  

Acid (1,800–1,700 cm
-1

) Region 

 

The infrared difference spectra in this frequency region mainly monitor the structural changes of 

protonated carboxylic acids. In the BRL minus BR difference spectra, the bands at 1,748(+)  

and 1,729(+) cm
-1

 were assigned to the C=O stretching vibrations of the protonated Asp96 and Asp115, 

respectively, while large negative band at 1,740 cm
-1

 contains the corresponding bands of Asp96 and 

Asp115 in the unphotolyzed state (Figure 33b) [42]. The corresponding amino acids in ASR are Ser86 

and Asn105, so that we did not expect any peaks in this frequency region. Nevertheless, Figure 33a 

shows a broad positive peak at 1,722 cm
-1

 as well as a negative feature at 1,703 cm
-1

, suggesting 

structural perturbation of carboxylic acids upon formation of ASRL. It should be noted that the bands 

do not originate from the contribution of ASRM, because UV-visible spectroscopy confirmed no 

formation of ASRM at 170 K [71]. The absence of a clear negative band at around 1,400 cm
-1

, 

characteristic of COO
-
 stretching frequency of negatively charged carboxylates, suggests that 

appearance of the carboxylic C=O stretch at 1,722 cm
-1

 in ASRL is not due to the newly protonated 

species, but rather due to the frequency shift from 1,703 cm
-1

 in ASR (Figure 33a).  
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To further examine the spectral feature in this region, we measured ASRL minus ASR spectra at 

acidic (pH 5) and alkaline (pH 9) pH in addition to pH 7 (Figure 33a). We also measured the ASRL 

minus ASR spectra of D217N and E36Q mutant proteins to identify the responsible carboxylic acid. 

Figure 35 clearly shows that ASRL is formed at different pH values (5, 7, and 9 in a, b, and c, 

respectively), as well as for the D217N (d) and E36Q (e) mutants. Figure 36 highlights the carboxylic 

C=O stretching region, where all spectra were normalized by use of the negative 1,196 cm
-1

 band 

(Figure 35). Although the positive peak at 1,722 cm
-1

 was broad at pH 7 (Figure 36b), it was enhanced 

at pH 5 (Figure 36a). In contrast, the 1,722 cm
-1

 band completely disappeared at pH 9 (Figure 36c). 

Spectral downshift to 1,717 cm
-1

 in D2O (Figure 36a) is typical for carboxylic C=O stretching vibrations. 

Thus, we identify the positive band at 1,722 cm
-1

 in the ASRL minus ASR spectra as a carboxylic C=O 

stretch, whose pKa was estimated between 6 and 7.  

Figure 35. The ASRL minus ASR infrared spectra of the wild type at pH 5 (a), pH 7 (b), 

and pH 9 (c), D217N at pH 5 (d) and E36Q at pH 5 (e) in the 1,800–900 cm
-1

 region. The 

spectra are measured at 170 K upon hydration with H2O. One division of the y-axis 

corresponds to 0.009 absorbance units. This figure is reprinted with permission from 

Kawanabe et al [77]. Copyright 2008 American Chemical Society. 

 

 

The negative band at 1,703 cm
-1

 exhibits similar pH dependence to that of the 1,722 cm
-1

 band, being 

enhanced at pH 5, but disappearing at pH 9 (Figure 36a-c). In addition, the 1,703 cm
-1

 band is 

downshifted in D2O (Figure 36a), though the shifted negative band was not clearly observable because 



Sensors 2009, 9              

 

 

9788 

of the strong peaks at 1,695(+)/1,687(–) cm
-1

 (Figure 33a). Similar pH dependence strongly suggests 

that the bands at 1,722(+)/1,703(–) cm
-1

 originate from the same carboxylic group. The absence of pH 

dependent bands at around 1,400 cm
-1

 (Figure 35) also supports this interpretation.  

Finally, the remaining question is the location of the carboxylic group responsible for this spectral 

feature. The previous time-resolved FTIR study observed a positive carboxylic C=O stretch  

at 1,716 cm
-1

 in the ASRM minus ASR spectra, and assigned the band to Asp217 located at the 

cytoplasmic region, because the band disappeared for D217N, but not for E36Q [74]. Interestingly,  

the 1,716 cm
-1

 band in ASRM was also pH-dependent, whose pKa was between 6 and 7, but the pH 

dependence was opposite to the present case. Namely, the positive band at 1,716 cm
-1

 was observed at 

alkaline pH, but not at acidic pH, and the authors interpreted that Asp217 is protonated at acidic pH in 

the unphotolyzed state [74].  

They did not observe frequency change of Asp217 at acidic pH, suggesting no structural changes of 

Asp217 at acidic conditions. Thus, there has been no information about the C=O stretching frequency of 

Asp217 at acidic pH, and Asp217 is a possible candidate for the bands at 1,722 (+)/1,703(–) cm
-1

 in the 

ASRL minus ASR spectra. Here we also measured the spectra of the E36Q mutant, as Glu36 is located 

near Asp217 (Figure 31). Figures 36d and 36e show the carboxylic C=O stretching region in the ASRL 

minus ASR spectra of D217N and E36Q, respectively. Similar difference spectra in other frequency 

regions ensure the normal formation of ASRL for these mutants (Figure 35).  

 

Figure 36. The ASRL minus ASR infrared spectra of the wild type at pH 5 (a), pH 7 (b), 

and pH 9 (c), D217N at pH 5 (d) and E36Q at pH 5 (e) in the 1,740–1,700 cm
-1

 region. The 

sample was hydrated with H2O (solid lines) or D2O (dotted lines). One division of the y-axis 

corresponds to 0.0008 absorbance units. This figure is reprinted with permission from  

Kawanabe et al [77]. Copyright 2008 American Chemical Society. 
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The bands at 1,722(+)/1,703(–) cm
-1

 were reproduced in Figure 36d, indicating that they do not 

originate from Asp217. On the other hand, the bands at 1,722(+)/1,703(–) cm
-1

 completely disappeared 

for E36Q (Figure 36e). Thus, we assigned the bands to Glu36. It is generally accepted that the C=O 

stretching vibrations appear at lower frequency for Glu than for Asp, but the frequency of Glu36  

at 1,703 cm
-1

 in ASR is particularly unusual. The frequency is very low, indicating that Glu36 forms a 

strong hydrogen bond in the unphotolyzed state, which is weakened by structural changes upon 

formation of ASRL as shown by the upshift to 1,722 cm
-1

. 

 

5.4. Comparison of the Difference Infrared Spectra of the L Intermediate in Water O-D Stretching 

Frequency (2,750–2,500 cm
-1

) Region 

 

The ASRL minus ASR spectra clearly show hydrogen-bonding alteration of Glu36. Since there is a 

water cluster in the cytoplasmic region near Glu36 (Figure 31), detecting water signals in the ASRL 

minus ASR spectrum is important. It was not easy, because ASRL decays to the 13-cis form, not to the 

original all-trans form, and the sample was dark-adapted again before the next measurement. 

Nevertheless, we successfully measured the spectra in the frequency region of water O-D stretching 

vibrations in D2O. Figures 37a, 37b, and 37c show the ASRL minus ASR spectra of the wild type at  

pH 5, 7, and 9, respectively.  

 

Figure 37. The ASRL minus ASR infrared spectra of the wild type at pH 5 (a), pH 7 (b), 

and pH 9 (c), E36Q at pH 5 (d) and pH 9 (e) in the 2,750–2,500 cm
-1

 region on red spectra. 

The spectra are measured at 170 K upon hydration with D2O. Blue spectrum is hydrated 

with D2
18

O at pH7 and red dotted lines are corresponding to WT spectra at each pH. One 

division of the y-axis corresponds to 0.0009 absorbance units. This figure is reprinted with 

permission from Kawanabe et al. [77]. Copyright 2008 American Chemical Society. 
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The spectra show a negative peak at 2,693 cm
-1

 and a positive peak at 2,582 cm
-1

 at all pH. Since 

the peaks are downshifted upon hydration with D2
18

O, they originate from O-D stretching vibrations of 

water. The negative peaks at 2,642 and 2,628 cm
-1

 in Figure 37b similarly show the isotope shift of 

water, indicating that they originate from water O-D stretches. Interestingly, a single peak only exists  

at 2,642 and 2,628 cm
-1

 for the spectra at pH 5 (Figure 37a) and pH 9 (Figure 37c), respectively. This 

observation implies that the frequency of the water O-D stretch is pH-dependent, being downshifted at 

higher pH. The pKa is located at about 7, which is coincident with that of Glu36 (Figure 36). Similar 

pKa of the water O-D stretch at 2,650–2,620 cm
-1

 to that of Glu36 suggests that the water molecule is 

located near Glu36. This is indeed the case, because the pH dependence of the water O-D stretch is 

abolished in E36Q. Figure 37d shows identical spectra between the wild type (dotted line) and E36Q 

(solid line) at pH 5. However, the frequency shift of the negative band from 2,642 cm
-1

 to 2,628 cm
-1

 in 

the wild type at pH 9 was absent in E36Q (solid line in Figure 37e). This observation suggests that 

deprotonation of Glu36 at pH > 7 is correlated with the frequency shift of the water O-D stretch  

from 2,642 cm
-1

 to 2,628 cm
-1

. The straightforward interpretation is that the water directly interacts 

with Glu36. It should be noted that the water O-D stretch at 2,650-2,620 cm
-1

 represents a weak 

hydrogen bond, and we presumably monitor the free O-D stretch of a water molecule interacting  

with Glu36.  

 

5.5. The Structure of ASRL 

 

In this study, we report the ASRL minus ASR spectra measured by low-temperature FTIR 

spectroscopy. Although photoinduced current measurements of ASRL and ASRM reported the different 

direction of charge signal between C-terminally truncated and full-length ASR [76], the present FTIR 

study showed almost identical ASRL and ASR spectra for them (Figure 32). While the spectral features 

were essentially similar to those for BR, a unique feature was obtained for the carboxylic  

C=O stretching frequency region for ASR. The pH-dependent bands were observed  

at 1,722(+)/1,703(–) cm
-1

 in the ASRL minus ASR spectra, which were assigned to Glu36.  

pH-dependent water O-D stretching vibrations in D2O were also observed at 2,642 and 2,628 cm
-1

 for 

the unphotolyzed state of ASR at pH 5 and pH 9, respectively. These bands of pKa were estimated to 

be between 6 and 7. According to the X-ray structure of ASR, Glu36 is located near the cytoplasmic 

surface (Figure 31), and the distances from the Schiff base nitrogen of the retinal chromophore to the 

side-chain oxygens of Glu36 are 19.3 and 20.2 Å [16]. The present study clearly shows that formation 

of ASRL accompanies hydrogen-bonding alteration of Glu36. Since ASRL is formed at 170 K, this fact 

demonstrates structural alteration propagating over 20 Å at such low temperatures.  

Spectral feature of the water signal in the ASRL minus ASR spectrum resembles that in the BRL 

minus BR spectrum at 2,700–2,500 cm
-1

 [26]. In particular, an intense positive broadband  

at 2,630–2,550 cm
-1

 (O-H stretch at 3,550–3,450 cm
-1

) has been regarded as a characteristic for the L 

state of BR [26]. However, our recent time-resolved FTIR spectroscopy clearly showed the absence of 

the band for BRL at room temperature, and we concluded that such water signal is a low-temperature 

artifact, or a feature peculiar at low temperature (170 K) where L is stable [79]. This may be also true 

for ASR. However, it should be noted that the cryotrapped L state is considerably relaxed to the 

original state in BR [80,81], but decays to the subsequent intermediates in ASR by warming [71]. This 
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suggests different protein dynamics between ASR and BR, but room-temperature FTIR study of ASR is 

required for further understanding.  

 

5.6. Hydrogen-Bonding Structures in the Cytoplasmic Domain of ASR and ASRL 

 

The present study showed that the pKa of Glu36 is between 6 and 7 in ASR, and its hydrogen 

bonding is significantly altered upon formation of ASRL. Previous FTIR study reported the pKa of 

Asp217 being also between 6 and 7 in ASR [74]. According to these observations, Glu36 and Asp217 

are both protonated at low pH, while being both deprotonated at high pH. However, the latter may be 

unlikely, because Glu36 and Asp217 are located close to each other (Figure 31). Here we propose a 

possible model for activation of ASR based on these observations and X-ray structure [16], shown in 

Figure 38. It should be noted that the three water molecules constitute a cluster structure in the region 

of Glu36 and Asp217 (Figure 31), which has to be taken into the account. 

Figure 38. Possible models of hydrogen-bonding alterations in the cytoplasmic region of 

ASR (see text for details). 
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At low pH, Glu36 and Asp217 are both protonated in the unphotolyzed state. Hydrogen bond of 

Glu36 is remarkably strong (C=O stretch at 1,703 cm
-1

), where internal water molecules must play 

important roles (Figure 38, left panel). Upon ASRL formation, the hydrogen bond of Glu36 is weakened 

(C=O stretch at 1,722 cm
-1

). The absence of the bands for Asp217 in the ASRL minus ASR spectra 

(Figure 36) implies that no hydrogen-bonding alteration of this residue occurs. Therefore, we propose 

that the interaction between Glu36 and the water cluster is weakened, while that between Asp217 and 

the water cluster is unchanged (Figure 38, left panel). Then, the L-M transition accompanies proton 

release to the cytoplasmic aqueous phase through the Glu36-Asp217 region. 

At high pH, we first postulate that Asp217 is deprotonated according to the previous results [74]. 

Then, there are two possibilities on the protonation state of Glu36, either deprotonated (Figure 38, 

middle panel) or protonated (Figure 38, right panel). Figure 38, middle panel shows both Glu36 and 

Asp217 deprotonated, and the positively charged water cluster (H3O
+
 or H7O3

+
) stabilizes the two 

negative charges. The structure may resemble the proton release group of BR, where water cluster 

stabilizes Glu194 and Glu204. Experimental evidence of protonated water cluster was first reported by 

the group of Dr. Gerwert as a continuum band at 2,200-1,800 cm
-1 

in the room-temperature BRM minus 

BR spectra [82,83], and we recently identified that the continuum band contains water signal [80]. 

ASRL formation does not change the hydrogen-bonding network at the cytoplasmic side, because there 

is no pH-dependent signal at around 1,400 cm
-1

 (Figure 35), but hydrogen-bonding interaction may be 

altered between Glu36 and the water molecules. According to this model, the L-M transition 

accompanies proton transfer from the Schiff base to Asp217. 

Another model at high pH is based on Glu36 being protonated (Figure 38, right panel). In this case, 

the pH-dependence can be interpreted not by the direct titration of Glu36, but of other parts of the 

protein. In addition, hydrogen bond of protonated Glu36 is not changed between ASR and ASRL, so 

that there are no bands in the 1,740–1,700 cm
-1

 region (Figure 36c). ASRL formation does not change 

the hydrogen bond of Asp217, because there is no pH-dependent signal at around 1,400 cm
-1

  

(Figure 35). The L-M transition accompanies proton transfer from the Schiff base to Asp217. At this 

moment, we cannot exclude either of the two models at high pH. The latter (Figure 38, right panel) may 

be less plausible, because it predicts no hydrogen-bonding alterations in the cytoplasmic region between 

ASR and ASRL. On the other hand, the two model structures may be in equilibrium. In this regard, 

detecting water signals in the ASRL minus ASR and ASRM minus ASR spectra is very important, 

though it is not easy because of the photochromic nature of ASR [71]. The spectral analysis of water is 

our future focus.  

 

5.7. Characteristic Features of Photoreaction in ASR 

 

By use of low-temperature UV-visible spectroscopy, we recently revealed that the stable 

photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100% all-trans [71]. 

This was entirely unique for archaeal-type rhodopsins, because functionally important states known so 

far were only derived from the all-trans form, and the photocycle of the all-trans form without 

branching into the 13-cis stable states has been the common mechanism. The complete photocycling for 

the proton pump in BR and the complete photochromism for the chromatic sensor of ASR are highly 

advantageous for their functions. Although the protein structures are similar between ASR and BR [16], 
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the present study suggests that the migration of protons to the cytoplasmic side is correlated with the 

unique photoreactions of ASR.  

ASR has Asp75 as a counterion of the retinal chromophore, which corresponds to Asp85 in BR. 

Nevertheless, the Schiff base proton is transferred not to Asp75 [73,74], but to Asp217 in the 

cytoplasmic region. What is the mechanism of proton transfer in the opposite direction? The present 

FTIR spectroscopy of the L intermediate revealed similar structural changes for the chromophores of 

ASR and BR, suggesting the importance of the surrounding protein moiety. It should be noted that 

Asp212 in BR is replaced by proline (Pro206) in ASR. Previous studies reported the important role of 

Asp212 during the M formation, and we proposed a hydration switch mechanism as the primary cause 

of proton transfer reaction in BR. In this mechanism, the bridged water molecule between the Schiff 

base and Asp85 forms a strong hydrogen bond transiently, which leads to the proton transfer to  

Asp85 [20]. Lack of aspartate at position 206 would be significant for ASR. In this regard, we found 

the absence of strongly hydrogen-bonded water molecules in ASR [20]. Since there is a positive 

correlation between the strongly hydrogen-bonded water molecules and the proton pumping activity, 

weakly hydrogen-bonded water molecules in the Schiff base region may be the key element. 

Interestingly, the replacement of Pro206 to Asp was not sufficient for ASR to function as a BR-like 

proton pump [84]. Since the Schiff base proton is transferred to the cytoplasmic side, ASR is a very 

good model system to study the general mechanism of proton pumps in archaeal-type rhodopsins. 

Figure 39. The structural changes of ASR in L-intermediate. (Left) The ASRL minus ASR 

infrared spectra in protonated carboxylic acid region. (Right) The structure of ASR in 

cytoplasmic surface. Yellow broken lines indicates hydrogen bond, green spheres are water 

molecules. This figure is reprinted with permission from TOC of Kawanabe et al [77]. 

Copyright 2008 American Chemical Society. 

 

 

6. Experimental Section  

 

ASR Sample Preparation. In the present study, we prepared C-terminally truncated and full-length 

ASR according to the method described previously [15,71,84]. The E36Q and D217N mutants were 
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designed based on the full-length ASR, which were produced by a two-step megaprimer PCR  

method [85], with two oligonucleotides (COSMO, Seoul, Korea): E36Q F-50-CAG TAC CAA TAC 

CTT GTG GCG ATG- 30 and D217N R-50-GTA AAT TCA GAA AAA CTA AAT C-30. The final 

PCR products were cloned into plasmid pKJ606 [86], derived from pMS107, by replacing the original 

insert with XbaI/NotI digestion. After ligation the plasmids were transformed in E. coli strain DH5. All 

of the mutations were confirmed by DNA sequencing (COSMO, Seoul, Korea). E. coli strain BL21 

(Stratagene) was transformed by introducing pMS107-derivative plasmid [15], which encodes the wild-

type, E36Q and D217N opsin, and was grown in 2xYT medium in the presence of ampicillin (50 µg/ml) 

at 38 °C. Three hours after IPTG induction with addition of 10 µM all-trans retinal, pink-colored cells 

were harvested, sonicated, solubilized by 1% DM, and purified by a Ni
2+

-NTA column. The purified 

ASR was then reconstituted into PC liposomes by removing the detergent with Bio-Beads, where the 

molar ratio of the added PC to ASR was 30:1. The liposomes were washed three times with a buffer [2 

mM sodium phosphate (pH 7.0)]. A 40 µL aliquot was deposited on a BaF2 window of 18 mm diameter 

and dried in a glass vessel that was evacuated by an aspirator. [-
15

N]Lysine labeled ASR was prepared 

as was done for [-
15

N]lysine labeled pharaonis phoborhodopsin [87]. 

 

6.1. FTIR Spectroscopy 

 

FTIR spectroscopy was performed as described previously [36]. Since the all-trans form is most 

abundant for the dark-adapted ASR [15], ASR films were kept in the dark for 3 days. Completely  

dark-adapted ASR was hydrated with H2O, D2O, or D2
18

O before measurements. Then, the sample was 

placed in a cryostat (DN-1,704, Oxford) mounted with the cell for the FTIR spectrometer (FTS-40, 

Bio-Rad). The cryostat was equipped with a temperature controller (ITC-4, Oxford), and the 

temperature was regulated with 0.1 K precision. All the experimental procedures were performed in the 

dark or under dim red light (>670 nm) before the spectroscopic measurement.  

 

6.2. Accumulation of AT-ASRK.  

 

Photoreactions of the all-trans and 13-cis forms strongly depend on the illumination wavelength in 

ASR. It is required that we reduce the extent of the photoreaction of the 13-cis form as much as 

possible. By using a marker band in the fingerprint (1,200–1,100 cm
-1

) region, we established the 

following illumination conditions at 77 K, where difference spectra depicted the photoreaction of  

the 13-cis form at <20%. Illumination with 543 nm light at 77 K for 1 min converted ASR to ASRK. 

ASRK was reconverted to ASR upon illumination with >590 nm light for 1 min, as evidenced by a 

mirror image of the difference spectra. Each difference spectrum was calculated from two spectra 

constructed from 128 interferograms taken before and after the illumination. Twenty-four (H2O and 

D2O) or forty-eight (D2
18

O) difference spectra were obtained and averaged to produce the ASRK minus 

ASR spectrum. ASR molecules are randomly oriented in the liposome film, which is confirmed by linear 

dichroism experiments, so we did not apply dichroic measurements using an IR polarizer. The obtained 

difference spectra were compared with those for BR with the window tilting angle of 53.5° in the 

polarized measurement, where all vibrational bands are observed in the highly oriented BR molecule. 
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6.3. Accumulation of 13C-ASRK 

 

We established the following conditions for the light adaptation. Hydrated films were illuminated 

with >560 nm light (O-58 cutoff filter; Toshiba) from a 1 kW halogen-tungsten lamp for 1 min at 4 °C. 

HPLC analysis showed that the light-adapted ASR possesses 78% 13-cis and 22% all-trans forms. The 

sample was cooled for 3 min after the light adaptation to allow for the complete decay of photoproducts.  

Light-adapted ASR contains both all-trans and 13-cis forms, thus, its photoreactions strongly depend 

on the illumination wavelength. We established the following illumination conditions to obtain the K 

intermediate of 13C-ASR (13C-ASRK) minus 13C-ASR spectra at 77 K. Illumination with 501 nm light 

for 1 min first converted 13C-ASR to 13C-ASRK together with the conversion of AT-ASR to the K 

intermediate of AT-ASR (AT-ASRK). Nevertheless, subsequent illumination at >560 nm (O-58 cutoff 

filter; Toshiba) reverted only 13C-ASRK to 13C-ASR, whereas no photoreversion was found for  

AT-ASRK. In Section 2 for AT-ASR, we illuminated AT-ASRK at >590 nm for the photoreversion to 

AT-ASR. The present result indicates that illumination at >560 nm does not change the 

photoequilibrium between AT-ASR and AT-ASRK. Subsequent illuminations by 501 nm light  

and >560 nm light do not induce the spectral features of AT-ASRK minus AT-ASR. Each difference 

spectrum was calculated from the two spectra constructed from 128 interferograms taken before and 

after the illumination.  

 

6.4. Accumulation of ASRL 

 

Illumination with >580 nm light at 170 K for 16 min converted the all-trans ASR to ASRL. Each 

difference spectrum was calculated from two spectra constructed from 128 interferograms taken before 

and after the illumination. Three difference spectra obtained in this way were averaged to produce the 

ASRL minus ASR spectrum. The BRL minus BR spectra were taken from Kandori et al. [36].  

 

6.5. UV-Visible Spectroscopy  

 

The UV-visible spectra were measured by a UV-visible spectrometer (V-550, JASCO) equipped 

with a cryostat (OptistatDN, Oxford). The cryostat was equipped with a temperature controller (ITC-4, 

Oxford), and the temperature was regulated with 0.1 K precision. A previous HPLC study showed that 

the completely dark-adapted ASR in PC liposomes is in the all-trans form predominantly  

(97.1 ± 0.1%) [59]. On the other hand, illumination of ASR with >560 nm light (O-58 cutoff filter, 

Toshiba) from a 1-kW halogen-tungsten lamp for 1 min at 277 K yields formation of 77.9(±1.7)%  

13-cis form [59]. Three to five independent measurements were averaged.  

 

6.6. HPLC Analysis 

 

HPLC analysis was performed as described previously [88]. A high-performance liquid 

chromatograph was equipped with a silica column (6.0 × 150 mm; YMC-Pack SIL). The solvent was 

composed of 12% (v/v) ethyl acetate and 0.12% (v/v) ethanol in hexane, and the flow rate  

was 1.0 mL/min. Extraction of retinal oxime from the sample was carried out by hexane after 
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denaturation by methanol and 500 mM hydroxylamine at 4 °C [69]. The molar composition of retinal 

isomers was calculated from the areas of the peaks in the HPLC patterns. Assignment of the peaks was 

performed by comparing them with the HPLC pattern from retinal oximes of authentic all-trans  

and 13-cis retinals. Three independent measurements were averaged. 

 

7. Conclusions and Perspectives 

 

We studied the detail of photoreaction behavior of Anabaena sensory rhodopsin (ASR) by means of 

spectroscopic techniques. The results in each chapter are summarized as follows. 

In Section 2, we applied low-temperature FTIR spectroscopy to the all-trans form of ASR, and 

compared the difference spectra at 77 K with those of BR. The K intermediate minus ASR difference 

spectra show that the retinal isomerizes from the all-trans to the distorted 13-cis form like BR. The N-D 

stretching of the Schiff base was observed at 2,163(–) and 2,125(–) cm
-1

, while the O-D stretchings of 

water molecules were observed in the >2,500 cm
-1

 region. These results indicate that the protonated 

Schiff base forms a strong hydrogen bond with a water molecule, which is connected to Asp75 with a 

weak hydrogen bond. This result with ASR supports the working hypothesis by the Kandori group 

about the strong correlation between the proton pump activity and the existence of strongly hydrogen 

bonded water molecules in archaeal rhodopsins. Also we discuss the structural reason why the bridged 

water molecule does not form a strong hydrogen bond in ASR. 

We extended the low-temperature spectroscopic study at 77 K to the 13-cis, 15-syn form of ASR 

(13C-ASR) (Section 3). HPLC analysis revealed that light-adapted ASR with light >560 nm at 4 °C 

possesses 78% 13C-ASR, while dark-adapted ASR has AT-ASR predominantly (97%). Then, we 

established the illumination conditions to measure the difference spectra between 13C-ASR and its K 

state without subtracting the difference between AT-ASR and its K state. Spectral comparison between 

13C-ASR and AT-ASR provided useful information on structure and structural changes upon retinal 

photoisomerization in ASR. In particular, previous X-ray crystallographic study of ASR reported the 

same protein structure for 13C-ASR and AT-ASR, whereas the present FTIR study revealed that 

protein structural changes upon retinal photoisomerization were significantly different between  

13C-ASR and AT-ASR. The differences were seen for HOOP modes of the retinal chromophore,  

amide I, cysteine S-H stretch, the Schiff base N-D stretch, and water O-D stretch modes. These must 

trigger different global protein structural changes in each photoreaction cycle leading to the observed 

photochromic behavior. 

ASR has been believed to function as a photoreceptor for chromatic adaptation. In this case, 

branching reactions, from ASRAT to ASR13C and from ASR13C to ASRAT (Figure 22c), are favorable for 

ASR, but they are in striking contrast to what is known for microbial rhodopsins. Ideally, the 

conversion ratios should be unity for photochromic reactions (x = y = 1 in Figure 22c), but this is 

exactly the opposite of the properties of pump rhodopsins, such as BR. X-ray crystal structures 

reported similar chromophore structures and protein environments for ASRAT [16] and BRAT [7].  

Do photochromic reactions indeed take place for ASRAT and ASR13C? In Section 4, we determined the 

branching ratios (x and y values) for ASRAT and ASR13C by means of low-temperature UV-visible 

spectroscopy. Surprisingly, the obtained x and y values were unity, indicating that the photoreactions of 
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ASRAT and ASR13C are completely photochromic. The complete photochromic reactions are highly 

advantageous for the chromatic sensor function of ASR. 

In Section 5, we applied low-temperature FTIR spectroscopy at 170 K to the dark-adapted ASR that 

has predominantly all-trans retinal (97%). The obtained ASRL minus ASR spectra were similar between 

the full-length and C-terminally truncated ASR, implying similar protein structural changes for the L 

state. The ASRL minus ASR spectra were essentially similar to those of BR, but a unique spectral 

feature was observed in the carboxylic C=O stretching region. The bands at 1,722(+) and 1,703(–) cm
-1

 

were observed at pH 5, which was reduced at pH 7 and disappeared at pH 9. The mutation study 

successfully assigned the bands to the C=O stretch of Glu36. Interestingly, Glu36 is located at the 

cytoplasmic side, and the distance from the retinal Schiff base is about 20 Å (Figure 31). We also 

observed pH-dependent frequency change of a water stretching vibration, which is located near Glu36.  

As shown in this review article, ASR exhibits unique photoreaction properties. They are very 

different from those of other archaeal-type rhodopsins, and optimized for the photochromism sensor. 

The X-ray crystal structure of ASR reported the similar protein architecture characteristic of archaeal-

type rhodopsins (Figure 4). Why is such functional optimization achieved in ASR? This is still a 

question that should be answered in future. Nevertheless, we suggest an important role of internal water 

molecules, particularly (i) at the Schiff base, and (ii) in the cytoplasmic side. 

Figure 40. X-ray crystallographic structures of the Schiff base region of ASR and BR (Left). 

Schematic drawing of hydrogen bonds of the water molecule locating between the 

protonated Schiff base and its counterion (Right). This figure is reprinted with permission 

from TOC of Furutani et al [20]. Copyright 2005 American Chemical Society. 

 

 

Like BR, ASR has a bridged water molecule between the Schiff base and Asp75 (Figure 4). 

However, Section 2 clearly showed the absence of strongly hydrogen-bonded water molecules in ASR. 

The reason for the lack of strongly hydrogen bonded water molecules in ASR was explained by the 

difference in the geometry of the hydrogen bond. Figure 40 shows that the N-Owater-OAsp75 (the 

Schiff base nitrogen, the water oxygen, and the oxygen of Asp75, respectively) angle in ASR is 83°. 

The corresponding N-Owater-OAsp85 angle in BR is 106° (Figure 40). As the consequence, if the 

water oxygen fully accepts the hydrogen bond of the Schiff base, the O-H group of water points toward 

the oxygen of Asp85 in BR, but not toward that of Asp75 in ASR (Figure 40). Such a small difference 

in angle possibly determines the hydrogen bonding strength of water molecules. On the basis of our 
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FTIR studies of BR mutants and other rhodopsins, we have found the strong correlation between 

strongly hydrogen bonded water molecules and proton pump activity. It is likely that the strong 

hydrogen bond of the bridged water molecule is essential for the proton-pumping function of 

rhodopsins, presumably because of light-energy storage through transient weakening by retinal 

photoisomerization. Photo-cyclic reaction is important for the efficient proton pumping in rhodopsins. 

Thus, weak hydrogen bond of the Schiff base water is one of the key characters in ASR. 

Figure 41. X-ray crystallographic structures of BR [7] (a) and ASR [16] (b). Top and 

bottom panels represent views from the membrane plane and the cytoplasmic side, 

respectively. In the top panel, top and bottom regions correspond to the cytoplasmic and 

extracellular sides, respectively. The retinal chromophore is colored yellow, and green 

spheres represent internal water molecules. 

 

It should be however noted that many other rhodopsins do not possess strongly hydrogen-bonded 

water molecules, but photochromic reaction can be only seen for ASR. In this sense, polar cytoplasmic 

domain of ASR may play important role. Figure 41 shows that the hydrophobicity is different between 

the cytoplasmic and extracellular domains of BR. The cytoplasmic domain is highly hydrophobic, 

whereas the extracellular domain is composed of charged and polar amino acids that form a  

hydrogen-bonding network. Figure 41a shows the presence of 7-8 water molecules in the extracellular 

domain, but only 2 water molecules in the cytoplasmic domain. Such an asymmetric hydrogen-bonded 

(a) (b) 
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network could be the reason of unidirectional proton transport in BR, where the proton transfer to the 

extracellular side occurs in 10
-5

 seconds, followed by reprotonation through a transiently formed proton 

pathway in the cytoplasmic domain on a slower timescale (10
-4

–10
-3

 seconds). The X-ray 

crystallographic structure of ASR has a similar -helical arrangement to that of BR, but a very different 

hydrogen-bonded network. Figure 41b shows that in ASR both extracellular and cytoplasmic domains 

contain 5 water molecules, and form hydrogen-bonded networks. Such water-containing  

hydrogen-bonding network in the cytoplasmic region may be important in the photochromic reaction of 

ASR. Further study will reveal the unique reaction mechanism of the novel and interesting rhodopsin. 
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