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*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Anthony Mathelier

Received on June 3, 2021; revised on November 5, 2021; editorial decision on November 30, 2021; accepted on December 14, 2021

Abstract

Motivation: Signaling pathways control cellular behavior. Dysregulated pathways, for example, due to mutations
that cause genes and proteins to be expressed abnormally, can lead to diseases, such as cancer.

Results: We introduce a novel computational approach, called Differential Causal Effects (dce), which compares nor-
mal to cancerous cells using the statistical framework of causality. The method allows to detect individual edges in a
signaling pathway that are dysregulated in cancer cells, while accounting for confounding. Hence, technical artifacts
have less influence on the results and dce is more likely to detect the true biological signals. We extend the approach
to handle unobserved dense confounding, where each latent variable, such as, for example, batch effects or cell
cycle states, affects many covariates. We show that dce outperforms competing methods on synthetic datasets and
on CRISPR knockout screens. We validate its latent confounding adjustment properties on a GTEx (Genotype–Tissue
Expression) dataset. Finally, in an exploratory analysis on breast cancer data from TCGA (The Cancer Genome
Atlas), we recover known and discover new genes involved in breast cancer progression.

Availability and implementation: The method dce is freely available as an R package on Bioconductor (https://bio
conductor.org/packages/release/bioc/html/dce.html) as well as on https://github.com/cbg-ethz/dce. The GitHub
repository also contains the Snakemake workflows needed to reproduce all results presented here.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The complexity of cancer makes finding reliable diagnosis and treat-
ment options a difficult task. Decades of research have improved
our understanding of this intractable disease. However, many chal-
lenges remain due to its high variability and context specificity, e.g.
regarding tissue and cell type (Nature Cancer, 2020). Patients with
common cancer types in early stages show promising survival rates,
even though rare subtypes still show low survival rates due to differ-
ent traits like a more aggressive disease progression (Hawkes, 2019;
Miller et al., 2019; Troester and Swift-Scanlan, 2009).

It has been hypothesized that cancer diversity can at least in part
be explained by heterogeneous mutational patterns. These patterns
influence the activity of biological pathways at the cellular level
(Khakabimamaghani et al., 2019; Hanahan and Weinberg, 2011).
For example, signaling pathways consist of several genes, which
regulate certain cell programs, such as growth or apoptosis. The
programs are driven by the causal interaction between the genes,

e.g. the up-regulation of one causes the up-regulation of another
gene. The causal effect (CE) determines the strength of this causal
interaction, e.g. by increasing the expression of gene X twofold, the
expression of its child Y increases fourfold. Thus, X has a causal ef-
fect on Y of 2 (Pearl, 2000). Understanding how these causal net-
works are perturbed in tumors is necessary for prioritizing drug
targets, understanding inter-patient heterogeneity and detecting
driver mutations (Vogelstein et al., 2013).

Traditionally, perturbed pathways are detected by assessing
whether differentially expressed genes are members of the respective
pathway more often than expected by chance. More sophisticated
methods measure whether genes belonging to a pathway are local-
ized at certain positions of a rank-ordered set of differentially
expressed genes (Subramanian et al., 2005). In such cases, a path-
way is interpreted as a simple set of genes and all topological infor-
mation concerning the functional interconnectivity of genes is
ignored. It has been recognized that interactions among genes can
have a significant effect on the computation of pathway
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enrichments. Some tools consider, for example, gene expression cor-
relations to account for confounding effects and control the type I
error rate while retaining good statistical power (Wu and Smyth,
2012). The underlying structure of gene interactions can thus be ei-
ther estimated from the data used for the enrichment analysis
(Spirtes et al., 2000; Sedgewick et al., 2016), or obtained from exist-
ing databases. Canonical pathway databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999)
can then be incorporated as prior knowledge to guide the enrich-
ment analysis using topological information of gene connectivity
(Liu et al., 2019; Dutta et al., 2012; Tarca et al., 2009; Saez-
Rodriguez et al., 2009).

While such enrichment methods go beyond treating pathways as
plain gene sets and incorporate topological information of molecu-
lar interactions, they often only report a global pathway dysregula-
tion score (Tarca et al., 2009). An exception is PARADIGM, which
records an inferred activity for each entity in the pathway under
consideration for a given patient sample (Vaske et al., 2010). It
does, however, not model causal effects, but only quantifies whether
there is some general association among the genes like correlation.
Differential causal effects (DCEs) on biological pathways have al-
ready been investigated in a formal setting (Wang et al., 2018; He
et al., 2019; Tian et al., 2016), where a DCE is modeled as the dif-
ference between CEs for the same edge under two conditions. These
methods infer the gene network from observational data, which is a
difficult task due to the combination of typically low sample size
and noise of real data. An incorrect network can result in biased esti-
mation of CEs and DCEs. Additionally, none of these methods
make use of the estimated DCEs to compute a pathway enrichment
score.

Here, we separate the problem of estimating the causal network
and the CEs by replacing the former with the addition of prior
knowledge in the form of biological pathways readily available in
public databases (Ogata et al., 1999; Nishimura, 2001; Whirl-
Carrillo et al., 2012; Mi et al., 2021; Schaefer et al., 2009). We
make use of the general concept of causal effects in order to define
differential CEs. Specifically, we estimate the CE of gene X on gene
Y in normal samples and cancer samples and define the DCE as their
difference. In particular, we compare the causal effects between two
conditions, such as a malignant tissue from a tumor and a healthy
tissue, to detect differences in the gene interactions. We propose
Differential Causal Effects (dce), a new method which computes the
DCE for every edge (i.e. molecular interaction) of a pathway for two
given conditions based on gene expression data (Fig. 1).

This allows us to identify pathway perturbations at the individ-
ual edge level while controlling for confounding factors using the
statistical framework of causality. By including the additional cova-
riates constructed from the principal components of the design ma-
trix, we also provide a methodological extension of our method to
handle potential unobserved confounding that is dense, i.e. where
the confounding variable affects many (though not necessarily all)
covariates. For example, batch effects from different experimental
laboratories or cell cycle stages are not necessarily known, but are
accounted for automatically. Our approach allows for computing
pathway enrichments in order to rank all networks in large pathway
databases to identify cancer specific dysregulated pathways. In this
manner, we can detect pathways which play a prominent role in
tumorigenesis and pinpoint specific interactions in the pathway that
make a large contribution to its dysregulation and the disease
phenotype.

We show that dce can recover significant DCEs and outperforms
competitors in simulations. In a validation on real data, we apply
dce to a public CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) dataset to recover differential effects in the
network. We validate the methodological extension for latent con-
founding adjustment on simulated data and also on real data from
the Genotype–Tissue Expression (GTEx) project (Lonsdale et al.,
2013). In an exploratory study, we apply dce to breast cancer
samples and compare the DCEs among different cancer stages. We
identify dysregulated edges common across stages as well as
stage-specific edges.

2 Materials and methods

In this section, we describe the Differential Causal Effects (dce)
method. We briefly review the causality framework and then intro-
duce the model and computation of DCEs, including under potential
latent ‘dense’ confounding. We provide implementation details for
obtaining both the estimates and their significance levels. Then, we
describe the generating mechanism for synthetic data used through-
out the article. We explain the setup of our Perturb-seq validation,
as well as the validation of the latent confounding adjustment on the
GTEx dataset. Finally, we describe the results of the exploratory
The Cancer Genome Atlas (TCGA) analysis.

Causality of biological pathways. First, we give a quick review
of causality in the context of biological pathways. A gene pathway
can be represented as a structural equation model (SEM) consisting
of a directed acyclic graph (DAG) G with nodes X ¼ ðXiÞpi¼1 describ-
ing the expression of genes, a set of directed edges E ¼ ðEiÞmi¼1 repre-
senting the causal structure and the structural equations ðfiÞni¼1

describing how each variable Xi is generated from its parents XpaðiÞ
in G; Xi  fiðXpaðiÞ; �iÞ, where ð�iÞpi¼1 are jointly independent noise
variables. The causal interpretation of an edge between any two
nodes is as follows: changing the expression of a parent Xj affects
the expression of the child node Xi, which is propagated further to
all descendants. The parental sets are given by the edge set E. Of
particular interest are the interventional distributions for the SEM,
in particular their expectations E½Xi j doðXj ¼ xÞ�, which describe
how the expected value of the variable Xi changes when we inter-
vene and set the variable Xj to some fixed value x. We define the
causal effect (CE) of a variable Xj on its descendant Xi as

CE½Xi j doðXj ¼ xÞ� ¼ d

dx
E½Xi j doðXj ¼ xÞ�: (1)

This derivative equals bx if, by changing the value of Xj from x
to xþ Dx, for some small value Dx, the value of Xi changes on aver-
age by bx � Dx. In the literature, the CE is often also referred to as
the total causal effect, because it quantifies the overall effect of an
intervention at variable Xj on all of its descendants. We are inter-
ested in differential causal effects (DCE) defined as the differences
between the causal effects of two conditions of interest, such as, e.g.
two different cancer stages or healthy and cancerous samples.

Linearity of the conditional mean. We model the relationship be-
tween the mean of any gene expression Xi and its parents XpaðiÞ by a
linear function:

Xi  cðiÞ0 þ
X

j2paðiÞ
cðiÞj Xj þ �iðXpaðiÞÞ: (2)

Conditionally on XpaðiÞ, the error term �iðXpaðiÞÞ has mean zero
and variance depending on XpaðiÞ. A prime example is any general-
ized linear model (GLM) with identity link function. The coeffi-
cients cðiÞj correspond to the direct causal effects, whereas the total
causal effects (1) measure the aggregate effect over all directed paths
from a certain variable Xj to Xi in G.

Let us consider two arbitrary genes Xi and Xj in the pathway.
Under the linearity assumption (2), the causal effect CE½Xi j doðXj ¼
xÞ� does not depend on x. Furthermore, this causal effect corresponds
to the coefficient b in the linear regression of Xi on Xj and an adjust-
ment set Z ¼ ðZkÞjZjk¼1,

Xi ¼ b0 þ bXj þ
XjZj
k¼1

bkZk þ g: (3)

Here, b0 denotes the intercept and g is random noise with mean
zero (Goldszmidt and Pearl, 1992; Pearl, 1995). The adjustment set
Z is a set of nodes in the pathway G which fulfills the Back-door cri-
terion (Pearl, 2000). Hence, it holds that no element of Z is a des-
cendant of Xj, and Z blocks every path between Xi and Xj that
contains an edge with Xj as the child. For example, the parent set
XpaðjÞ always fulfills the Back-door criterion and we always use it as
the adjustment set.
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If the causal effects of the gene expression Xj on the gene expres-
sion Xi are, respectively, denoted as bA and bB under different condi-
tions A and B, then the differential causal effect (DCE) d is obtained
as the difference

d ¼ bB � bA: (4)

Given a graph G describing a biological pathway and observa-
tions of the variables, we can compute all differential causal effects
and identify interactions between any such two variables Xj and Xi

that are different between the two conditions (Fig. 1).
Testing for significance. We can compute the DCE d for the edge

Xj ! Xi by fitting a joint model for both conditions, which also
allows us to easily compute the significance of the estimates. Let I be
an indicator random variable, which is equal to 1, if the observation
comes from condition A, and 0, if it comes from condition B. The
DCE d can be computed from all samples jointly by fitting the fol-
lowing linear model

Xi ¼ ðbA
0 þ ðbB

0 � bA
0 ÞIÞ þ ðbA þ ðbB � bAÞIÞXj

þ
XjZj
k¼1

�
bA

k þ ðbB
k � bA

k ÞI
�

Zk þ g
(5)

with interaction terms I �Xj and I � Zi. The differential causal effect
d ¼ bB � bA can be estimated by using the coefficient estimate corre-
sponding to the interaction term IXj in (5).

Testing the significance of the estimated DCEs now corresponds to
the well-known task of testing the significance of coefficient estimates
in a linear model. However, some care is needed if the variances of the
error terms �iðXpaðiÞÞ in our structural Equations (2) indeed depend on
the values of the predictors XpaðiÞ, i.e. if there is a certain mean-
variance relationship for the gene expression levels, as has been
described for RNA-seq data (Robinson and Smyth, 2007). In this case,
the linear model (5) is heteroscedastic and the usual formulae for stand-
ard errors of the coefficient estimates, that result in t-tests for the sig-
nificance, do not apply. We, therefore, use heteroscedasticity-consistent
standard errors that yield asymptotically valid confidence intervals and
P-values regardless of the dependence of the noise level on predictor
values (Eicker, 1967; Huber et al., 1967; White, 1980).

Besides assessing significance of DCEs for single edges, we can
also calculate a global P-value measuring the overall dysregulation
of a given pathway G: we combine the P-values corresponding to

different differential causal effects d ¼ ðdiÞmi¼1 by taking their har-
monic mean (Good, 1958).

Adjusting for latent confounding. A fundamental assumption for
most of causal inference methods is that there is no unobserved con-
founding, i.e. that there are no unmeasured factors affecting both
the cause and the effect (Leek et al., 2012; Gagnon-Bartsch et al.,
2013). Such unobserved confounders could be, for example, batch
effects, cell cycle stages, varying laboratory conditions, different pa-
tient demographics, etc. Although some methods exist for account-
ing for measured confounding (Zhang et al., 2020), unobserved
confounding is much more challenging. Presence of latent confound-
ing can result in spurious correlations and false causal conclusions.
Therefore, adjusting for potential latent confounding is crucial for
making the method robust in applications to biological data (�Cevid
et al., 2020).

Some information about latent factors can often be obtained from
the principal components of the data (Novembre and Stephens, 2008).
This can be made rigorous under the linearity assumption (2) for our
structural equation model G, as follows. We assume that there are q la-
tent variables H1; . . . ;Hq affecting our data. We extend the model (2)
to include the latent confounding as follows:

Xi  cðiÞ0 þ
X

j2paðiÞ
cðiÞj Xj þ

Xq

j¼1

dðiÞj Hj þ �iðXpaðiÞ;HÞ; (6)

that is, the latent confounders H1; . . . ;Hq are additional source nodes
in the DAG G and affect genes in the pathway linearly, analogously to

(2). Not every gene needs to be affected (dðiÞj could be zero), but the

methodology works better when many genes are affected, see

discussion below. By writing the structural Equations (6) in matrix
form, where we define the matrices C0

ji ¼ cðiÞ0 ; Cji ¼ cðiÞj ; Dji ¼ dðiÞj and
EðX;HÞji ¼ �iðXpaðiÞ;HÞj, we obtain

Xn�p  C0
n�p þXn�pCp�p þHn�qDq�p þ EðX;HÞn�p; (7)

which gives

X ¼ C0|{z}
intercepts

þ H DðI � CÞ�1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
loadings 2 R

q�p

þ EðX;HÞðI � CÞ�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
random noise with mean ¼ 0

; (8)

which is the standard linear factor model with heteroscedastic

(a)

(c) (d)

(e)

(f)

(b)

Fig. 1. A causal network of genetic interactions in a biological pathway (a) is responsible for the observed wild-type expression levels in a cell (b: wild-type). A disease can lead to

perturbations of these pathways and in turn generate altered expression levels (B: mutant). Pathway databases such as KEGG (Ogata et al., 1999), PharmGKB (Whirl-Carrillo et al.,

2012) and Panther (Mi et al., 2021) curate genetic interaction data (c) and thus provide networks of putative causal interactions (d). Given the observed wild-type and disease

expression levels as well as the causal structure, dce fits a generalized linear model (GLM) for each edge to estimate differential causal effects (e). In the given example, the differential

causal effect from X on Y (solid edge) is estimated using the valid adjustment set fZg (as determined from the dashed edges). These differential causal effects correspond to causal

perturbations, i.e. differences in causal effects between two conditions. For example, an increase of causal effect strength from wild-type to mutant is marked in blue, whereas the

negative differential causal effects are marked in red (the transparency of an edge corresponds to the magnitude of the associated effect). These features are important for diagnosis

and treatment design (f)
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errors. From this representation, one can see that H can be deter-
mined from the principal components of X (Fig. 2). The scree plot
for a toy example visualizes the effect of latent variables having a
global effect on the data. The first principal components are clearly
separated from the rest, if latent factors are present (Fig. 2, left).
Therefore, we obtain the confounding proxies Ĥ as the scores of the
first q̂ principal components of the design matrix combining the
data from both conditions.

The confounding proxies Ĥ are then simply added to the adjust-
ment set Z, see Equations (3) and (5). In this way, the Back-door ad-
justment not only adjusts for the confounding variables observed in
the DAG G as before, but also helps reducing the bias induced by la-
tent confounding.

The deconfounding methodology relies on the assumption that
every confounding variable affects many variables in the dataset, i.e.
the confounding is dense (Guo et al., 2020). This condition is to
some extent necessary, because in the case when the latent con-
founders affect only a few covariates, it is not identifiable whether
the resulting association between them could be causal or is due to
confounding. We emphasize that not every covariate needs to be
affected by each confounder. However, the more covariates each la-
tent factor Hi affects, the more information we have about it in the
data and thus the confounding proxies Ĥ capture the effect of the
confounders H better. Furthermore, the dense confounding assump-
tion ensures that the scree plot, showing the singular values of the
design matrix, has a spiked structure, as several latent factors can
explain a relatively large proportion of the variance (Fig. 2). This
helps estimating the number q̂ of the confounding proxies used. As a
default choice, we use a permutation method that can be shown to
work well under certain assumptions (Dobriban, 2017) and which
compares the observed value of the variance explained by the princi-
pal components with its expected value over many random permuta-
tions of the values in each column of gene expression matrix X.

Algorithm and implementation in R. The presented methods are
implemented in the R package dce which is freely available on
Bioconductor. The function dce::dce takes as input the structure of a
biological pathway, i.e. the adjacency matrix of a DAG, and two
n�p matrices, with n samples and p genes, storing gene expression
data for each of the two conditions, respectively. As output, the
function returns the estimated DCEs, as well as standard errors and
two-sided P-values for the DCE at each edge in the pathway to-
gether with the P-value measuring the overall pathway enrichment.
The results can be easily transformed into a dataframe and plotted
for further downstream analyses.

Generating synthetic data and benchmarking methods. We as-
sess the behavior of dce and its competitors in a controlled setting
by generating synthetic data with known DCEs (ground truth). We
start by generating a random DAG G. Without loss of generality, we
assume the nodes of the DAG to be topologically ordered, i.e. node
Xi can only be parent of node Xj, if i< j. This ensures that the net-
work G is a DAG. In practice, we sample edges from a binomial dis-
tribution with probability p̂ for the upper triangle of G. We further

sample the coefficients cðiÞj for every edge as in (2) from a uniform
distribution Uð�cmax; cmaxÞ. We generate the data for network G in
the following way. For a node Xi, we set the mean expression count

li ¼ v� 1
! � ðmin

i
vi � iÞ; (9)

and then generate Xi � PoisðliÞ as a vector of counts, corresponding
to gene expression values from experiments like RNA-seq. The
mean depends on its parents in a linear fashion,

v ¼
X

j2paðiÞ
cðiÞj Xj (10)

where cðiÞj represents the direct effect of Xj on Xi, i > 0 is a small
shift, and 1

!
is a vector of ones. Subtracting the minimum ensures

positive values of the mean for each data point. Then, a realization
of Xi is drawn from the Poisson distribution PoisðliÞ. We introduce
negative binomial noise by drawing a realization of each source
node in G from the negative binomial distribution NBðl; hÞ with a
general mean l and dispersion h. We use this setup to control the
variance across all nodes, which can blow up for descendants with
larger means.

After sampling the data DA for the nodes of network G under
condition A, we resample a certain fraction of edge weights in order
to generate new data DB under condition B. For a fixed edge weight
bA we sample the new edge weight uniformly such that

bB � bA � Uð½�dmax;�dmin� [ ½dmin; dmax�Þ: (11)

This ensures that the absolute difference between the two edge
weights lies in ½dmin; dmax�.

We also simulate latent variables. They are neither included in
the data nor the network G, but have (unknown) outgoing edges to
all genes in the dataset with non-zero effects. Hence, these latent
variables have global effects on the data, e.g. emulating batch
effects.

We compare dce to correlation (cor), partial correlation (pcor),
the method Fast Gaussian Graphical Models (fggm) tailored to
DCEs (Wang et al., 2016; He et al., 2019), a differential gene ex-
pression approach (dge) and random guessing. cor is provided by
the R package stats (R Core Team, 2020). For pcor, we use the
general matrix inversion from the R package MASS (Venables and
Ripley, 2002) to compute the precision matrix. fggm is based on
partial correlation, but additionally tries to learn the network struc-
ture to adjust for confounding effects. We use the R code provided
by the authors (He et al., 2019) to run fggm. For fggm, we transform
each gene expression count g to log ðgþ 1Þ. We use the differential
expression result from edgeR (Robinson and Smyth, 2007) as input
for dge. We compute the DCE for the edge between two genes x and
y as the difference of the log foldchanges of both genes. We compute
the corresponding P-value for the same edge as the minimum of the
P-values for both genes x and y. We provide pcor with the same ad-
justment set of confounding variables as dce.

Fig. 2. The scree plot (of synthetic data generated as described in the Materials and Methods section) shows that in presence of latent confounding as in (6), the first q principal

components explain much more variability of the data, which we exploit for confounding adjustment
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We run all methods on simulated data for various modeling
parameters. The default parameters are a network G of 100 genes,
200 samples for both sample conditions, an absolute magnitude in
effect differences between the two conditions of 1, mean of 100
negative binomial distributed counts with a dispersion of 1 for the
source genes in the network G (no parents), a true positive rate of
50% (edges which have different effects between the two condi-
tions), and library size factors for each sample in the interval ½1;10�.
The library size factor accounts for different sequencing depth
among the samples, i.e. for one sample including more reads because
more RNA was available even though the gene expression was the
same as in samples with less RNA. We account for different library
sizes over all samples by computing Transcripts Per Kilobase
Million (TPM).

Overall, we simulate a full dataset of 10, 000 genes including the
genes in the network G to allow for the realistic estimation of the li-
brary size. As a performance measure, we use the area under the re-
ceiver operating characteristic (ROC-AUC). We count the number
of true/false positive and false negative DCEs based on the edges in
the ground truth network and the significant P-values for different
significance levels. Based on these true/false positives, we can com-
pute the ROC curve and its AUC. For both correlation methods, we
use a permutation test to compute empirical P-values.

Validation using Perturb-seq. Perturb-seq, a CRISPR-Cas9-based
gene knockout method, can be used to inhibit the expression of mul-
tiple target genes on a single-cell level (Qi et al., 2013; Adamson et al.,
2016). The dataset we analyze is a CRISPR knockout screen with glo-
bal gene expression profiles as the read-out. We can use the known
knockout information of these experiments as ground truth informa-
tion for a performance evaluation of our method. In Adamson et al.
(2016), this approach was used to systematically analyze the response
of an integrated endoplasmic reticulum (ER) stress response pathway
to the combinatorial knockout of the three transmembrane sensor
proteins ATF6, EIF2AK3 and ERN1. Each considered combinatorial
knockout (ATF6, ATF6þEIF2AK3, ATF6þEIF2AK3þERN1, ATF6þ
ERN1, EIF2AK3, EIF2AK3þERN1, ERN1) was treated either with a
DMSO control, tunicamycin or thapsigargin.

We download the raw gene expression count data from NCBI
GEO (accession: GSE90546). The repository provides us with a
mapping of guide and cell barcodes, and gene expression counts for
all cells. We use this information to identify gene knockouts for each
cell and to create a gene expression count matrix of the individual
cells labeled by their corresponding knockouts.

We download all pathway networks from KEGG and retain
those which contain at least one of the three transmembrane sensor
proteins. This results in the pathways hsa04137, hsa04140,
hsa04141, hsa04210, hsa04932, hsa05010, hsa05016, hsa05017,
hsa05160, hsa05162 and hsa05168.

For each combination of the three treatments, seven (combina-
torial) knockouts and 11 pathways, we compute DCEs if the re-
spective knocked-out gene is contained in the respective pathway. In
total, this yields 128 conditions for each of which we run our
method.

We compare the performance of dce to both cor (correlation)
and pcor (partial correlation). For the two correlation methods, we
estimate the significance of whether a difference in correlation is dif-
ferent from zero using a permutation test. The performance of each
method is evaluated using the area-under-curve (AUC) metric for
the receiver-operating-characteristic (ROC) curve. The false- and
true-positive rates for the ROC curve are computed from the P-value
per edge as in the synthetic benchmark.

Deconfounding validation on GTEx data. From the GTEx pro-
ject (Lonsdale et al., 2013), we obtain gene expression data for the
samples belonging to many different human tissue types. For any
pathway, one can use dce for comparing the expression data be-
tween two different tissue types. This approach will detect the edges
for which the causal effects differ between the tissues. While this
biological scenario is much different to comparing perturbed and
unperturbed, or normal and tumor samples, the concept of DCEs
remains the same.

In line with the rest of the article, we choose the breast cancer
pathway (hsa05224) from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Ogata et al., 1999) and compare mammary
gland tissue with each of 29 other tissue types that contain at least
200 samples.

An interesting feature of the available dataset is that one is given
23 confounding proxies including genotyping principal components,
gender of donors and PEER (probabilistic estimation of expression
residuals) factors (Stegle et al., 2010). For the original breast cancer
pathway (hsa05224), we run dce twice: once with and once without
the confounding adjustment, yielding two sets of DCEs. Afterwards,
we extend the pathway by adding the confounding proxies as the
source nodes that have no incoming edges and have outgoing edges
to all other nodes in the pathway. dce with and without confounding
adjustment is then run on the extended pathway. This again yields
two sets of DCEs. Finally, for both variants of dce (with and without
confounding adjustment), we compute Pearson correlation between
the obtained P-values for the original and the extended pathway in
order to measure how well our confounding adjustment (which does
not use any information about the confounding) is able to capture
the effect of the known confounders.

Exploratory analysis with TCGA data. We retrieve gene expres-
sion matrices from TCGA (einstein et al., 2013). The rows of these
matrices are indexed by genes and the columns by samples. The
entries are from the data category Transcriptome Profiling, data
type Gene Expression Quantification, experimental strategy RNA-
Seq and workflow type HTSeq-Counts. Pathway structures in the
form of adjacency matrices are obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999).

Unlike the Perturb-seq dataset, data obtained from TCGA is ob-
servational instead of interventional. We do thus not have any
ground truth information and perform an exploratory analysis. For
a given cancer type, the associated samples are first grouped into
normal and tumor samples. The tumor samples are subsequently
stratified according to their stage. The clinical data needed to strat-
ify the samples is readily available on TCGA as metadata for each
gene expression matrix. In particular, we download all normal and
tumor gene expression samples from TCGA for breast cancer
(TCGA-BRCA) and selected all stages with a sufficient number of
samples (stage I: 202 samples, stage II: 697 samples, stage III: 276
samples; normal: 113 samples). We use the breast cancer pathway
(hsa05224) from KEGG which contains 147 nodes and 509 edges.
We then compute DCEs between the normal condition and each of
the three stages of the tumor condition, respectively.

3 Results

In this section, we first show the performance of dce and its competi-
tors on simulated data and a CRISPR dataset. Next, we evaluate the
deconfounding performance using the GTEx dataset. Finally, we use
dce for an exploratory analysis of breast cancer data from TCGA
and show the progression of pathway dysregulation over different
cancer stages.

3.1 Simulation study
Pathway databases contain networks of different sizes. We first in-
vestigate the influence of network size on the ability of each method
to recover ground truth differential causal effects. dce achieves the
highest ROC-AUC for all four network sizes considered (10, 50,
100 and 150 genes). Methods which do not account for known con-
founding variables perform similar to random guessing for large net-
works (Fig. 3a). However, dce also outperforms pcor with an AUC
of 0.61 versus 0.55. Variability is very high for competitors and size
ten. The methods either successfully recover all of the very few
effects or none at all. As an alternative performance assessment, we
also computed precision and recall for a P-value cutoff of 0.05
(Supplementary Figs S7 and S8). While the true positive rate
decreases for large networks, precision is relatively robust and dce
avoids a high rate of false positives.
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Second, we assess how the magnitude of differential causal
effects affects the identification of significant differences. We sample
the magnitudes from the set f0:1;1; 2g. For example, for a magni-
tude of 1 the edge weights between the network of the wild-type
samples and the disease samples differ by at most 1. dce has diffi-
culty estimating large differences as well as very small differences.
However, it still significantly outperforms all other methods, which
again show similar performance to random guessing for large effects
(Fig. 3b).

In additional simulations, dce shows increasing ROC-AUC for
decreasing dispersion and increasing number of samples
(Supplementary Figs S1 and S2) as is expected due to decreasing
noise. We found constant ROC-AUC of dce over varying ranges of
library size (Supplementary Fig. S3). Different prevalence of positive
edges has little effect on the ROC-AUC of dce (Supplementary Fig.
S4). dce with latent variable adjustment performs similarly to dce
without latent variable integration if we do not simulate any latent
variables. But dce significantly outperforms dce without latent vari-
able integration for five and ten latent variables influencing the data-
set (Supplementary Fig. S5). This is because without latent
confounding adjustment one has a large number of false positives
due to the confounding bias (Supplementary Fig. S6). Sampling the
effects of latent variables from an exponential distribution with de-
fault rate 1 instead of a uniform distribution does not result in much
difference in ROC-AUC (Supplementary Fig. S9). This shows that
even if only some and not all genes in the graph are strongly affected
by the latent confounders, we can still successfully account for it.

dce relies heavily on the given network G. Hence, we investigate
how well dce performs if G contains false edges or is missing true
edges. We find that dce is robust to additional false edges in the net-
work, but starts breaking down if true edges are missing in larger
fractions (Supplementary Fig. S10).

3.2 Validation experiments using CRISPR knockout data
To benchmark our method using real-life data generated by Perturb-
seq (Adamson et al., 2016), we ask whether we can recover the
CRISPR knockout from single-cell RNA-seq data using pathways
from KEGG which contain the knocked-out genes. Hence, we as-
sume that these pathways capture the causal gene interactions gov-
erning the response of the cell to the experimental intervention. As
seen in the synthetic benchmark, slight deviations of the observed
network from the true underlying network have no major impact on
the performance of our method (Supplementary Fig. S10). By inter-
preting a CRISPR knockout as an intervention of the causal path-
way, we define the positive class to consist of all edges adjacent to a
knocked-out gene, and the negative class as all other genes.
Consequently, a true positive occurs when an edge adjacent to a
CRISPR knocked-out gene is (significantly) associated to a non-zero
DCE.

Figure 4a shows an example of this procedure for one of the
conditions described above. The CRISPR knockout gene is high-

lighted in red and a positive DCE of �1:3 can be observed on the
edge connecting ATF6 and DDIT3. This can be seen in more detail
in Figure 4b. As this edge is adjacent to the knocked-out gene

ATF6, it is classified as a true positive for an effect size threshold of
j0:5j. Following an analogous argument, the edge from EIF2AK3 to

EIF2S1 is classified as a false positive.
We find that dce is significantly better [Wilcoxon signed-rank

test (Wilcoxon, 1992) P-value � 10�5] at recovering the knockout
effects with a median ROC-AUC of 0.63 compared with 0.51 for
cor and 0.53 for pcor (Fig. 4c). To better understand the variability

of the performance measure, we also investigate how performance
varies when stratified by treatment and knockout gene
(Supplementary Fig. S12). For example, for the knockout gene

ATF6 the ROC-AUC of dce decreases from 0.89 for treatment 1 to
0.67 for treatment 2. This can be explained by the higher variability

of the gene expression counts under treatment 2 (standard deviation
of gene expression counts for treatment 1 is 0.88, and 0.99 for treat-
ment 2), as the P-value estimation becomes less stable. This pattern

can also be observed for other performance shifts between treat-
ments. We note that cor outperforms dce for the knockout of ATF6

in treatment 2, as the permutation test is able to better account for
the variance of the expression data in this case. This is due to the
fact that the permutation test relies on fewer assumptions than the

significance test in our joint model. In all other cases, dce is either
better or roughly as good as the competing methods. We conclude

that overall dce is able to better recover the dysregulations of single
as well as combinatorial knockouts when compared to methods
based on correlations.

3.3 Deconfounding validation on GTEx data
To validate the extension of our methodology for latent confound-

ing adjustment, we investigate the robustness of our estimates when
the confounding variables are latent, compared to when they are
added to the pathway as the source nodes. When the confounding

adjustment, as described in the Materials and Methods section, is
used, we observe that the estimated DCEs between two different tis-

sue types differ much less between the original and extended path-
ways (Supplementary Fig. S11).

Similarly, the resulting P-values are also much more stable, as
measured by the Pearson correlation between the negative loga-
rithmic P-values computed for the original and extended pathway

(Fig. 4d). The correlation is consistently larger when using the
confounding adjustment, which is important since the latent con-

founding in general causes many false positives in the analysis.

Fig. 3. Performance benchmark. dce is compared with several competitors for varying network size (a) and effect magnitude (b) over 100 synthetic datasets each. dce achieves

the highest ROC-AUC, which decreases for large networks G and very large or small differential effects. The whiskers of the boxplot correspond to the minimum and max-

imum of the data, the box denotes the first and third quartiles and the horizontal line within the box describes the median
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3.4 Exploratory analysis of TCGA data
To demonstrate the ability of our method to recover known cancer-
related pathway dysregulations as well as to discover new genes of
potential biological and clinical relevance, we compute DCEs using
breast cancer gene expression data from TCGA on the breast cancer
pathway obtained from KEGG. The results for each stage are then
visualized on the pathway structure (Fig. 5a–c). The raw DCE val-
ues were transformed to a symmetric logarithm for greater visibility
with the following formula

symlogðxÞ ¼
log 10ðxÞ þ 1 if x > 1
� log 10ð�xÞ � 1 if x < �1
x otherwise

8<
: (12)

Roughly 40% of all investigated interactions (614 out of 1527)
show no difference in causal effects (jDCEj < 1 and P-value >
0.05) between normal and stage condition for all stages. In the fol-
lowing, we will discuss cases with large effect sizes and significant
P-values (Fig. 5d).

Throughout all stages, interactions between the WNT (Wingless/
Int1) and FZD (Frizzled) protein complexes exhibit significant, non-
zero DCEs indicating a strong dysregulation of the breast cancer
pathway. Most notably, we observe a highly significant dysregula-
tion of WNT11!FZD1, WNT11!FZD3 and WNT11!FZD7 in
stage II (P-value < 10�20), as well as of WNT11!FZD7 in stages I
and II. Additionally, the interaction between WNT8A and FZD4
features a strongly positive DCE of �2000 in all three stages. These
observations are expected, because the interactions between the
WNT and FZD protein complexes have been implicated in disease

formation in general (Dijksterhuis et al., 2015; Chien et al., 2009;
Schulte, 2010) and in breast cancer in particular (Yin et al., 2020;
Koval and Katanaev, 2018).

Interactions between the FGF (Fibroblast Growth Factor) and
FGFR (Fibroblast Growth Factor Receptor) protein complexes show
strong negative effect sizes in all three stages (DCE < �100 for
most members of these complexes). In particular, the FGF6
!FGFR1 link features negative DCEs of �1279;�665;�1961,
while the FGF8 !FGFR1 link features negative DCEs of
�402;�336;�285, in the stages I, II, III respectively. This pair has
already been recognized as a promising therapeutic target for breast
cancer treatment (Santolla and Maggiolini, 2020).

We also find the interaction between EGFR (Epidermal Growth
Factor Receptor) and PIK3CA (Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit Alpha) to be significantly
(P-values < 10�14) dysregulated with a small negative DCE of ap-
proximately –0.2 in stages I and II but not III. EGFR !PIK3CB
shows similar behavior for stage II with a DCE of –0.12 and a
P-value < 10�15. While the small effect size suggests that there is
only a small dysregulation of these interactions, the dysregulation of
EGFR together with PIK3CA mutations have been recognized as in-
dependent prognostic factors in triple negative breast cancers (Jacot
et al., 2015).

The interaction between DLL3 (Delta Like Canonical Notch
Ligand 3) and NOTCH4 (Notch Receptor 4) features a significant
DCE of �140 with P-values < 10�6 in all three stages. The Notch
signaling pathway has been shown to play an important role in
Pancreatic ductal adenocarcinoma tumor cells, but has not been

Fig. 4. Overview of the CRISPR (a–c) and GTEx (d) benchmark results
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implicated in breast cancer (Song and Zhang, 2018). Our finding
suggests that stromal cells located in the breast may play an import-
ant role for disease progression throughout all stages.

For the interaction between TCF7L2 (Transcription Factor 7
Like 2) and CCND1 (Cyclin D1), we observe a significant negative
DCE of –11.9 with a P-value of < 10�6 in stage III. The role of
TCF7L2, which participates in the Wnt/b-catenin signaling pathway
and is important for cell development and growth regulation, has al-
ready been discussed in the context of breast cancer (Connor et al.,
2012). However, its interaction with CCND1 has, to the best of our
knowledge, not been investigated in the literature. Due to the down-
regulation in the diseased condition for stage III, we suggest that an
improved understanding of the underlying biological reasons might
provide insights into the late-stage behavior of breast cancer.

Overall, we are able to recover both interactions which are
known to be dysregulated in breast cancer as well as novel ones. The
former indicates that the prioritization of interactions given by dce
is in accordance with current literature. The latter suggests that dce
is also able to find dysregulated interactions which up to now have
only been recognized for other diseases but may play an important
role for breast cancer.

4 Discussion

We have presented a new method, dce, to compute differential
causal effects between two conditions using a regression approach.
dce enables the edge-specific identification of signaling pathway dys-
regulations. This piece of information can help to further our under-
standing of subtle differences on the molecular level in seemingly
similar cancer types.

dce assumes a linear relationship among pathway genes. The lin-
ear model is solved using network information to account for

additional genes confounding the linear relationship between gene
pairs. The network information is included via prior knowledge
from literature. dce also accounts for latent confounders in the
model, which are unknown and not included in the gene network.
They are assumed to linearly affect a large number of measured
covariates. We have successfully applied dce to normalized gene ex-
pression counts (TPM) in all analyses. However, dce is a general
framework, which makes no strong assumption on the data and can
be applied to other data types.

We have shown in our simulations that dce is able to detect
changes in causal effects even in the presence of noise and for certain
ranges of effect sizes. For a wide array of parameter choices, dce out-
performs methods using (partial) correlation, fggm and an approach
based on differential expression. Especially in the case of latent con-
founders, we showed that dce with the integration of latent variables
outperforms dce without, except if no latent confounders were used
to simulate the data. In this case, both methods are equally accurate.
Hence, we recommend the integration of latent variables in the
model as the default configuration.

In addition to the synthetic benchmark, we have also validated
our method on real data derived from Perturb-seq experiments. We
have shown that dce is able to recover the experimental knockouts
with better performance than correlations and partial correlations.

For breast cancer, we have shown that not all parts of the signal-
ing pathway are perturbed and characteristic hotspots exist. Some
causal effects between two genes are invariant to stage information,
while other causal effects can vary in either magnitude or even sign
of their effect size. This indicates that certain areas of such pathways
are more relevant than others. This phenomenon has also been
observed in other studies (Song et al., 2014; Feng et al., 2018). Some
parts of a pathway seem to be either more conserved or just not rele-
vant to tumorigenesis. This provides interesting opportunities to
identify drugs which target certain parts of a pathway and might

Fig. 5. DCEs for TCGA-BRCA normal samples versus stage I, stage II and stage III computed with the hsa05224 pathway. In (a)–(c), edge thickness and opacity scale with ab-

solute DCE size. More negative DCEs appear red, more positive DCEs appear blue. The color follows a symmetric logarithmic scale for values jxj � 1 and is linear otherwise.

(d) shows a volcano plot for the symmetric logarithm of DCE against its associated � log 10ðP� valueÞ. DCE thresholds of 1 and –1 as well as a P-value threshold of 0.05 are

denoted with gray dashed lines
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explain their efficacy. However, we want to stress that not all dysre-
gulated edges will be relevant for causing cancer, just like not all
mutations are cancer-causing mutations. Additionally, the robust-
ness of our method depends on the availability of enough samples.
In many cases, few are available and make our approach infeasible.
While dce performs still better than random for even 10 samples, it
is significantly worse than for higher sample sizes.

In summary, we have proposed a novel application of the con-
cept of differential causal effects which describe the differences in
causal effects between two conditions and developed a regression
approach to compute those differences. We demonstrate their ro-
bustness in a simulation study, and point out interesting results in
application to real data, e.g. we show that some dysregulated edges
are consistent among breast cancer tumor stages I-III, but that other
dysregulations are unique to each stage.

Our simulations show the need for sufficiently large datasets
when dealing with large pathways. Additionally, dce relies on cor-
rect network information. While very robust to incorrect edges in
the network, dce’s performance breaks down significantly when
edges are missing from the network. We have also simulated data
from DAGs only and this assumption is made throughout all analy-
ses. In reality, biological pathways include cycles, which could affect
the result of dce. Similarly, we rely on the assumption that all causal
effects are propagated linearly. Other types of causal effects could
affect dce as well. That is, the expression of a gene could depend on
the expression of its parents in a non-linear fashion. The linearity of
our model might also hinder dce from reaching better performance
in case of very large or very small effect sizes.

Future research should focus on modifying the regression to
adapt it to small datasets and make it more robust, for example, by
enforcing sparsity through the introduction of L1 or L2 norms on
the coefficients to avoid outliers produced by artifacts in the data.

Code availability

The method dce is freely available as an R package on Bioconductor
(https://bioconductor.org/packages/release/bioc/html/dce.html) as
well as on https://github.com/cbg-ethz/dce. The GitHub repository
also contains the Snakemake (Mölder et al., 2021) workflows
needed to reproduce all results presented here.

Funding

Part of this work was funded by SystemsX.ch, the Swiss Initiative in Systems

Biology [RTD 2013/152] (TargetInfectX—Multi-Pronged Perturbation of

Pathogen Infection in Human Cells), evaluated by the Swiss National Science

Foundation, and by ERC Synergy Grant [609883 to N.B.]. The research of

D.C. and P.B. received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation pro-

gramme [786461]. The logo of dce was created with https://github.com/dirme

ier/ggpixel.

Author contributions

K.P.J. and M.P. conceived the project. K.P.J. and M.P. developed
the statistical model of dce and implemented the software package.
D.C. contributed to the statistical methodology as well as software
implementation. N.B. and P.B. supervised the study. K.P.J. and M.P.
wrote the initial manuscript draft. All authors edited the
manuscript.

Conflict of Interest: none declared.

Data availability

The code used to construct the synthetic datasets is available as part
of the R software package dce. The experimental data used in the
Perturb-seq validation are available under the accession GSE90546
from NCBI GEO. GTEx data are publicly available through the

GTEx portal. The experimental data used in the exploratory breast
cancer analysis are available under the accession TCGA-BRCA from
The Cancer Genome Atlas. The pathway structures have been
obtained from the Kyoto Encyclopedia of Genes and Genome.

References

Adamson,B. et al. (2016) A multiplexed single-cell crispr screening platform

enables systematic dissection of the unfolded protein response. Cell, 167,

1867–1882.
�Cevid,D. et al. (2020) Spectral deconfounding via perturbed sparse linear

models. J. Mach. Learn. Res., 21, 232.

Chien,A.J. et al. (2009) A wnt survival guide: from flies to human disease. J.

Investig. Dermatol., 129, 1614–1627.

Connor,A.E. et al. (2012) Associations between tcf7l2 polymorphisms and

risk of breast cancer among hispanic and non-hispanic white women: the

breast cancer health disparities study. Breast Cancer Res. Treat., 136,

593–602.

Dijksterhuis,J.P. et al. (2015) Systematic mapping of wnt-fzd protein interac-

tions reveals functional selectivity by distinct wnt-fzd pairs. J. Biol. Chem.,

290, 6789–6798.

Dobriban, E. (2020). Permutation methods for factor analysis and PCA. The

Annals of Statistics, 48, 2824–2847.

Dutta,B. et al. (2012) Pathnet: a tool for pathway analysis using topological in-

formation. Source Code Biol. Med., 7, 10.

Eicker,F. (1967) Limit theorems for regressions with unequal and dependent

errors. In: Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Vol. 1. University of California Press, Berkeley,

CA, pp. 59–82.

Feng,Y. et al. (2018) Breast cancer development and progression: risk factors,

cancer stem cells, signaling pathways, genomics, and molecular pathogen-

esis. Genes Dis., 5, 77–106.

Gagnon-Bartsch,J.A. et al. (2013) Removing Unwanted Variation from High

Dimensional Data with Negative Controls. Tech Reports from Dep Stat

Univ California, Berkeley, pp. 1–112.

Goldszmidt,M., and Pearl,J. (1992) Rank-based systems: a simple approach to

belief revision, belief update, and reasoning about evidence and actions. In:

Proceeding of the 3rd Conference on Knowledge Representation,

pp. 661–672.

Good,I.J. (1958) Significance tests in parallel and in series. J. Am. Stat. Assoc.,

53, 799–813.

Guo,Z. et al. (2020) Doubly debiased lasso: High-dimensional inference under

hidden confounding and measurement errors. arXiv preprint arXiv:

2004.03758.

Hanahan,D., and Weinberg,R.A. (2011) Hallmarks of cancer: the next gener-

ation. Cell, 144, 646–674.

Hawkes,N. (2019) Cancer survival data emphasise importance of early diag-

nosis. BMJ, 364, l408.

He,H. et al. (2019) A statistical test for differential network analysis based on

inference of Gaussian graphical model. Sci. Rep., 9, 10863.

Huber,P.J. et al. (1967) The behavior of maximum likelihood estimates under

nonstandard conditions. In: Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Vol. 1. University of California

Press, pp. 221–233.

Jacot,W. et al. (2015) High EGFR protein expression and exon 9 pik3ca muta-

tions are independent prognostic factors in triple negative breast cancers.

BMC Cancer, 15, 1–10.

Khakabimamaghani,S. et al. (2019) Uncovering the subtype-specific temporal

order of cancer pathway dysregulation. PLoS Comput. Biol., 15, e1007451.

Koval,A., and Katanaev,V.L. (2018) Dramatic dysbalancing of the wnt path-

way in breast cancers. Sci. Rep., 8, 1–10.

Leek,J.T. et al. (2012) The SVA package for removing batch effects and other

unwanted variation in high-throughput experiments. Bioinformatics, 28,

882–883.

Liu,A. et al. (2019) From expression footprints to causal pathways: contextu-

alizing large signaling networks with carnival. NPJ Syst. Biol. Appl., 5, 40.

Lonsdale,J. et al. (2013) The genotype-tissue expression (GTEX) project.

Nature Genet., 45, 580–585.

Mi,H. et al. (2021) Panther version 16: a revised family classification,

tree-based classification tool, enhancer regions and extensive api. Nucleic

Acids Res., 49, D394–D403.

Miller,K.D. et al. (2019) Cancer treatment and survivorship statistics, 2019.

CA Cancer J. Clin., 69, 363–385.

1558 K.P.Jablonski et al.

https://bioconductor.org/packages/release/bioc/html/dce.html
https://github.com/cbg-ethz/dce
https://github.com/dirmeier/ggpixel
https://github.com/dirmeier/ggpixel
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