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Abstract: Spiking neural networks are able to control with high precision the rotation and force of
single-joint robotic arms when shape memory alloy wires are used for actuation. Bio-inspired robotic
arms such as anthropomorphic fingers include more junctions that are actuated simultaneously.
Starting from the hypothesis that the motor cortex groups the control of multiple muscles into neural
synergies, this work presents for the first time an SNN structure that is able to control a series of
finger motions by activation of groups of neurons that drive the corresponding actuators in sequence.
The initial motion starts when a command signal is received, while the subsequent ones are initiated
based on the sensors’ output. In order to increase the biological plausibility of the control system, the
finger is flexed and extended by four SMA wires connected to the phalanges as the main tendons. The
results show that the artificial finger that is controlled by the SNN is able to smoothly perform several
motions of the human index finger while the command signal is active. To evaluate the advantages of
using SNN, we compared the finger behaviours when the SMA actuators are driven by SNN, and by
a microcontroller, respectively. In addition, we designed an electronic circuit that models the sensor’s
output in concordance with the SNN output.

Keywords: anthropomorphic finger; multiple SMA actuators; spiking neural networks; biomimetic
motions

1. Introduction

The third generation of neural networks, which are implemented with spiking neurons,
rigorously model the behaviour of the neural tissue. By introducing timing in information
processing and adaptability these spiking neural networks (SNNs) are sensitive to time-
varying functions and random occurrence of events [1,2]. Being based on the simultaneous
operation of a significant number of neurons, the SNNs are most suited for hardware
implementation which provides energy efficiency and real time response that does not
depend on the number of neurons [3,4]. These properties of analogue hardware constitute
critical advantages to modelling the brain functions using SNNs [5].

The main characteristics of the spiking neurons relate to spike processing which in-
cludes spatial and temporal integration of the incoming stimulation, detection of activation
threshold, synaptic delay, refractory period, and generation of excitatory or inhibitory
pulses [6].

Being the most rigorous model of biological neural networks, there has been a growing
interest in the use of SNNs in a wide range of bio-inspired applications. Recently, superior
abilities of the brain such as symmetry perception [7], visual pattern recognition [8], and
speech recognition [9,10] were modelled using neuromorphic hardware based on spiking
neurons. In robotics, different types of neural systems were designed for the control
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of vehicles speed [11] or trajectory [12], as well as for modelling the motion abilities
of the human body including the control of robotic arms [13–15] or anthropomorphic
fingers [16,17].

Due to its impressive complexity and dexterity, the human hand is used as an iconic
model for the development of different robotic hands that can adapt to a wide variety of
gasping and manipulation scenarios. Modelling and actuating anthropomorphic fingers has
been a field of study for a long time with lots of effort invested, having as the main charac-
teristics the implementation level of the biological features and the actuation method [18,19].
Some of the previous work is focused on proposals with a very high degree of similarity
compared with the biological model [20,21], while others proposed new methods to reduce
the number of artificial tendons using mechanical workarounds such as pulleys [18] or
differentials [22]. DC motors are the most common devices used for actuation [23,24] which
are connected to the phalanges with wires [25] or rods [26]. Currently, there is an increasing
trend to use flexible actuators such as pneumatic tubes [20,27] and actuators made of shape
memory alloy (SMA) [28] to implement soft actuation methods [29]. In addition, most of
the systems are coupled or under-actuated for using a lower number of control inputs than
the degrees of freedom [29]. One such example is an advanced prosthetic hand actuated by
DC motors that are controlled by EMG signals to perform semi-autonomous grasping [30].

1.1. Biological Background

A fundamental question of scientific and clinical importance is how the brain and
spinal cord control the muscles. A widely used experimental technique that can provide
an answer is to infer the neural control methods by analyzing samples of muscle activity
and limb mechanics collected while animals and people are in motion. The human hand
has a very large number of degrees of freedom and adaptability that are difficult to control.
Studies of the physiology of cortical and spinal neurons as well as electromyographic
(EMG) activity of muscles have led to a popular, but not yet proven, hypothesis that the
motor cortex and spinal cord simplify the control of the numerous muscles by grouping
them into few functional units called neural synergies [31,32]. In typical activities, the
human hand uses two or more fingers with more joints to achieve desired actions including
net flexion or extension force generation. The use of multiple fingers implies that individual
joints involved in the activity work together for the successful completion of the tasks
making the hand an excellent example of kinetic redundancy. This implies that the number
of elements (finger joints) is larger than the number of constraints creating a use-case for
neural synergies [33,34].

In addition, the high complexity motions of the human hand involve lateralized
activation of the motor cortex which implies motor planning for the active hand and inter-
hemispheric inhibition. Note that the loss of this lateralization determines involuntary
symmetrical movements of one side of the body that mirror voluntary movements of the
other side [35].

Note that lateralization represents a basic element in the brain organization from
the small brains of insects to variously sized brains of vertebrates, including humans.
This characteristic implies that the left and right sides process information differently
and control different patterns of behaviour. Lateralized brains can carry out different
functions in parallel on the left and right sides avoiding duplication and increasing cognitive
capacity [36]. Recent research highlights the important role of lateralization played in the
development of biorobotic artefacts of high biological plausibility [37].

1.2. Biomimetic Control Methods for Robotic Hands

Among the control techniques, SNNs are used for fingers that are actuated by motors in
several grasping activities that depend on the object type. In this case, the simulated SNNs
use several hundred neurons for the control of each finger of anthropomorphic hands [17].
In contrast, our previous work demonstrates that less than 50 neurons implemented in
analogue hardware are able to control the rotation of a single joint robotic finger actuated
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by a shape memory alloy (SMA) actuator [16]. Based on this control principle that was
demonstrated for the single actuator, in the current research we evaluate the SNN’s ability
to control in sequence the multiple SMA wires that actuate all junctions of the index finger.
In order to obtain biomimetic motions, the finger is flexed and extended by two pairs of
SMA actuators that play the role of the main tendons of the index finger. The actuation
sequence is obtained by driving the actuators involved in the subsequent motions when the
output of the flex sensors reaches predefined thresholds that are set empirically. Taking into
account that a simple method to drive the SMA actuators is by using continuous signals
that typically are generated by microcontrollers (µC) [38,39], we comparatively evaluated
the control methods based on SNN µC and on an SNN, respectively.

The contributions of our work are as follows:

- the design of an SNN architecture that is able to control the sequence of actuators of
an anthropomorphic finger;

- experimental validation of SNN superiority in comparison with a microcontroller
based control approach.

The remainder of the paper is organized as follows: in the next section, the system
structure and the experimental setup are presented followed by the results and discussions
in Section 3. Finally, the conclusions and future work are presented in the last section.

2. Materials and Methods

The proposed method based on an SNN for the control, in sequence, of the actuators
that drive an anthropomorphic finger, was evaluated starting from simulations of the
neural network activity. Following this preliminary phase, the physical implementation
of the finger was controlled by hardware implementation of the neural network and by a
microcontroller for comparison purposes.

2.1. System Structure

The bio-inspired system that controls the anthropomorphic finger includes the ana-
logue SNN that is interfaced with the sensors and the SMA drivers.

2.1.1. Mechanical Implementation of the Anthropomorphic Finger

According to the anatomy of the human hand, the index finger is driven by several ten-
dons that are connected to the muscles. Thus, the finger is flexed by tendons FDP and FDS,
which actuate the DIP and PIP junctions moving the distal and middle phalanges [40]. At
the base of the finger base, the proximal phalanx is actuated by the tendon RI, determining
the rotation of MP. Taking into account that for low forces which occur in unloaded finger’s
motion, the FDS is not active [40], we implement only the actuators that model FDP and RI
as presented in Figure 1a. This approximation is also in concordance with a more recent
approach to implementing a robotic finger that used two tendons for flexing [18].
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(a) (b)

Figure 1. Mechanical structure of the artificial finger that is driven by the SMA wires: (a) FDP and RI
for flexion and (b) TE and EC for extension.

Similarly, for modelling the activity of EC and TE we implemented two artificial
tendons for finger extension that actuate MP and, respectively DIP and PIP junctions, see
Figure 1b. Thus, DIP and PIP are actuated simultaneously for both flexion and extension
while MP is actuated independently, mimicking the behaviour of the index finger [27].

The rotation of the active junctions PIP and MP is converted into voltage by two
resistive flexion sensors and the corresponding amplifiers. These sensors provide feedback
about the finger motions which is critical for the sequential actuation of the SMA wires.
Among the possible motions of the fingers [40] we considered for this work only the flexion
and extension because their importance in object manipulation is significantly higher than
the motions towards the sides such as abduction and adduction.

2.1.2. Spiking Neural Network

The SNN is based on a neuron model that was previously presented in [16]. Here we
focus only on the critical elements that are used to drive the SMA actuators according to
the input signals. As shown in Figure 2, these neurons include one SOMA and at least
one synapse (SYS) which can be excitatory or inhibitory. The synapses generate positive
or negative spikes taking as reference the equilibrium potential VEQU of the SOMA. The
spikes are integrated by the circuit INT which determines the activation frequency of the
SOMA and, consequently, of the neuron. During each activation of the SOMA, all synapses
connected to the hardwired axon generate a spike at their output NOUT . The spike energy
depends on its amplitude and duration which varies according to the synaptic weights
stored by the synapses using capacitors [16]. In this work all synapses are excitatory and
the weights are set to their maximum values to ensure the fastest response of the SMA
actuators.
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Figure 2. The structure of the electronic neuron that includes one SOMA and more synapses
SYN1, . . . , SYNn with n ≥ 1.

The input neurons of the SNN are activated by a constant voltage VF that determines
the variation of the potential VS at the SOMA’s input. When VF is above VEQU the neuron
activates with the frequency fN determined by VF and RF. The postsynaptic neurons (posts)
that receive pulses from other presynaptic neurons (pres) are activated when the potential
integrated by the circuit INT is above VEQU . Note that the input neurons include RF
without INT, the integrator being used only with posts when the switch SWF disconnects
RF. The signal VSPK is used for monitoring the neuron activity [16] because the variation of
VSPK during neuron activation mimics the postsynaptic membrane potential of the natural
neurons.

2.1.3. The Synaptic Configuration

The neural network uses a basic SNN (BSNN) for driving each actuator. The BSNN
includes an excitatory neuron E that activates the motor neuron M through the integrator
INT as in Figure 3a. The inputs of the BSNNs are activated by the control unit (CU) using
push buttons (PB) or sensors. The CU includes adjustable resistors RADJ or Zenner diodes
to adapt the potential to the input of the neurons. Therefore, the CU generates voltage
levels VF = VFDP, VRI , VTE, VEC (see Figure 3b) which are converted into spiking frequency
by the neurons E of the corresponding BSNN. Note that the spiking frequency of the
neurons determines the contraction force FS of the SMA actuators implying that FS is
directly determined by VF. In addition, the motions which involve more SMA actuators
are obtained when the control unit generates sequences of the potentials in the set VF. The
dependency between the junctions’ rotation is implemented in the CU by the connection of
the basic SNN for initial and subsequent motions to the PB and to the sensor that detects
the initial motion. In this setup, the proximal phalange is always actuated before the middle
and distal phalanges to avoid exerting force on the proximal phalange when it is passive.
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(a)

(b)

Figure 3. The structure of the SMA driver (SD) for a single SMA actuator control unit (CU) (a); the
structure of the system that includes a SMA driver for each of the actuators FDP, RI, TE, and EC (b).

The schematics of the sensor amplifier AMP and the p-MOS circuit that drives the
SMA actuators are given in our previous work [16].

2.2. Finger Motions

In order to evaluate the ability of the SNN to control the biomimetic motion of the
robotic finger, we evaluated the junctions rotation during contraction of different combina-
tions of SMA actuators type Flexinol LT of 150 µm width. The experiments are based on
the biological evidence related to the possible motions of the human fingers focusing on
the tendons involved in each motion [20]. Taking into account the physiology of the human
finger [40], the rotation of PIP and DIP is initiated at the same time. For this work, the distal
and middle phalanges are actuated by the same tendon. The bio-inspired motions denoted
by #A, #B, #C, and #D and named according to [20] are presented in the Table 1 together
with the involved tendons.

Table 1. The bio-inspired motions of the robotic finger.

Code Motion Name [20] Tendons

#A Isometric MP extension EC, TE
#B Isometric interosseous RI, FDP
#C Isometric MP flexion EC, FDP
#D Isometric extensor RI, TE

The drawings of the finger in the final positions are shown in Figure 4. During motion
#A the actuators EC and TE are actively extending all phalanges of the finger while, in
the opposite direction, the motion #B involves both flexor tendons RI and FDP for the full
flexion of the finger. The extension of the proximal phalange by the actuator EC while the
other phalanges flex due to the actuation of FDP corresponds to the motion #C. Another
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motion (#D) is performed by actuation of RI and TE when the proximal phalange extends
while the middle and distal phalanges flex.

#A

#C

#B

#D

Figure 4. The final positions of the robotic finger for the considered motions #A–#D, according to the
description in Table 1.

3. Results

The behaviour of the controlled finger is evaluated both in simulation and real experi-
ments. A comparison is done between two control architectures first based on hardware
SNN and the second based on a microcontroller.

3.1. Simulation of the Finger Motions Driven by SNN

A direct evaluation of the performance of the SNN in controlling the motion of the
robotic finger can be obtained by modelling the influence of the SMA actuators on the
joints rotation using the circuit from Figure 5. This circuit that is denoted by SMC receives
input from the motor neurons and generates a function that mimics the output of the flex
sensors. The capacitors accumulate the spikes delivered by the motor neurons that drive
the flexors (RI and FDP) and extensors (EC and TE). The current sources are controlled
by the voltage, which increases or decreases the potential in the capacitor Cp, simulating
the sensor output when the corresponding SMA actuator contracts. The SMC parameters
are adjusted empirically based on the sensor’s output when the finger is driven using
continuous signals generated by the microcontroller. According to Figure 6a, the rotation
of the robotic joint is accelerated in the first phase of the SMA contraction followed by a
phase where the speed decreases until the rotation stops. The potential generated by SMC
mimics the variation limits of the sensor’s output, as well as the exponential increase after
the motion onset.
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Figure 5. The circuit for modelling the joint rotation when the junction is actuated by SMA wire.
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Figure 6. The similarity between (a) the output of the flex sensors when the finger is actuated by
microcontroller and (b) the output of the circuit SMC that models the rotation of the robotic joint
when actuated by the SMA.

Using SMC, the rotation of each junction that is controlled by SNN was evaluated
by computer simulations in LT Spice. The simulated output of the flex sensors that is
determined by the motions #A, #B, #C, and #D is presented in the first column of Figure 7.
These signals represent the ideal case of the finger motion that is compared in sequence
with the real finger behaviour.
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SNN simulation SNN Microcontroller
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Figure 7. The output of the flex sensors for the considered motions #A–#D, according to the descrip-
tion in Table 1. The columns represent the experimental method used, while each line represents a
particular finger movement.

3.2. Motion Control Using the Hardware SNN

The performance of the SNN hardware implementation to control the motion of the
anthropomorphic finger was analyzed via experimental results. The input potentials for
the SNN that are generated by sensors or by pressing the PBs are presented in the Table 2.
These potentials that actuate the corresponding SMA wires were determined empirically
based on observations of the finger motion. As presented in the middle column of Figure 7,
the variation of the sensor’s output matches qualitatively the simulated potentials in the
first column.
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Table 2. Potential that we used in the experiments.

Parameter VRI VEC VFDP VTE VFLEX VEXT

Voltage (V) 2.5 2.5 2.8 2.8 2.8 2.0

The operation of the motor neurons MEC and MFDP, included in the basic SNNs that
drive the actuators EC and FDP, is exemplified in Figure 8. The magenta and green signals
represent the VSPK potentials generated by the SOMA (see Figure 2) that vary when the
neurons activate. The blue and red signals represent the AMP output VAO (see Figure 3a)
showing the finger motion. The variation of AMP output highlights the delayed rotation
of the junction MP after PIP. This delay is determined by the fact that the neuron MFDP
activates after MEC when the sensor output (red signal) reaches the preset threshold VEXT
(see Table 2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

V
o

lt
a

g
e

(V
)

MP

PIP

M
EC

M
FDP

0.5

Figure 8. The activity of the motor neurons that drives the actuators EC and FDP together with the
output of the sensors.

3.3. Motion Control Using the Microcontroller

A typical method to control SMA actuators is based on continuous signals that are
generated by microcontrollers (uC). Starting from this aspect we evaluate the behaviour of
the finger when a uC drives in sequence the two SMA actuators involved in each motion.
The SMA wire that drives the PIP joint is actuated when the output of the sensors for MP
reaches predefined thresholds that are detected by uC using ADC. The results for this
experimental phase are highlighted in the last column of Figure 7.

Note that the sensor’s output oscillates, implying that the finger speed varies during
motions for both SNN and uC. Excepting the motion #B, these oscillations are similar for
the two control methods implying that the speed variation during motions is determined
mainly by the actuators and finger implementation. This aspect is sustained by the smooth
variation of the simulated signals for the sensor’s output which are presented in the first
column.

In addition, we used an electronic scale to measure the force of the finger during flexion
when both SMA actuators are active and their supply current is limited to 400 mA. The
obtained values are 178 g and 184 g, respectively, when the SNN and the microcontroller
are used, implying that using continuous signals instead of spikes slightly increases the
force of the finger.

4. Conclusions

Taking into account that the motor cortex uses neural synergies to control multiple
motions of the human hand, we implemented a spiking neural network that activates
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groups of neurons to control sequences of motions of an anthropomorphic finger. The
flexion and extension of this finger are determined by four SMA actuators that play the role
of the main tendons of the index finger. The force of each SMA actuator is controlled by an
SNN with a few excitatory neurons for which the firing rate is determined by the input
voltage levels. For stimulation of the SMA actuators involved in the finger motions, the
SNN inputs can be activated by PB for initial motions of the phalanges and by sensors for
the subsequent motions. To evaluate the importance of using electronic neurons, the finger
motions are evaluated comparatively when the actuators are driven using an electronic
SNN or a microcontroller.

The results show that a simple SNN is able to smoothly drive an anthropomorphic
finger in several biomimetic motions that can involve the activity of two actuators that
contract in sequence. In addition, the finger motion is slightly smoother for some finger
motions when the SNN is used. These results are encouraging to use of analogue imple-
mentation of spiking neurons and SMA actuators in motion control of robotic hands. For
future work, we intend to make the SNN able to learn to actuate SMA wires in parallel
or in sequences that are specific to more complex biomimetic motions. In the long term,
the system can be significantly improved to use non-invasive EEG sensors that control the
motion of an anthropomorphic hand in concordance with brain activity.
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