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Abstract: Celiac disease (CeD) is an autoimmune enteropathy triggered by immunogenic gluten
peptides released during the gastrointestinal digestion of wheat. Our aim was to identify T cell
epitope-containing peptides after ex vivo digestion of ancestral (einkorn, spelt and emmer) and
common (hexaploid) wheat (Fram, Bastian, Børsum and Mirakel) using human gastrointestinal juices.
Wheat porridge was digested using a static ex vivo model. Peptides released after 240 min of digestion
were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-ESI
MS/MS). Ex vivo digestion released fewer T cell epitope-containing peptides from the ancestral wheat
varieties (einkorn (n = 38), spelt (n = 45) and emmer (n = 68)) compared to the common wheat
varieties (Fram (n = 72), Børsum (n = 99), Bastian (n = 155) and Mirakel (n = 144)). Neither the
immunodominant 33mer and 25mer α-gliadin peptides, nor the 26mer γ-gliadin peptide, were found
in any of the digested wheat types. In conclusion, human digestive juice was able to digest the 33mer
and 25mer α-gliadin, and the 26mer γ-gliadin derived peptides, while their fragments still contained
naive T cell reactive epitopes. Although ancestral wheat released fewer immunogenic peptides after
human digestion ex vivo, they are still highly toxic to celiac patients. More general use of these
ancient wheat variants may, nevertheless, reduce CeD incidence.
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1. Introduction

Wheat proteins can trigger hypersensitivity reactions such as allergy or intolerance. Celiac disease
(CeD) is an autoimmune hypersensitivity reaction induced by wheat gliadins in genetically susceptible
individuals. Population screening has revealed that the prevalence of CeD is 1–2% in Europe and
the United States [1,2], although many patients remain undiagnosed [3]. In addition to wheat gluten
(gliadin and glutenin), CeD patients react to structurally related gluten proteins in rye (secalins),
barley (hordeins) and in extremely rare cases from oat (avenins) [4]. The gluten-induced intestinal
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inflammation leads to small intestinal crypt cell hyperplasia, villous atrophy, and as a consequence,
nutrient malabsorption [5]. The dominating genetic susceptibility to CeD is to carry the human
leukocyte antigen (HLA) DQ-2.5 or DQ8 alleles [6]. Globally, approximately 90% of CeD patients
express the HLA-DQ 2.5 heterodimer (composed of HLA-DQA*0501 and HLA-DQB*0201), whereas
the rest predominantly express HLA-DQ8, with only a few patients expressing one of the HLA-DQ-2.5
chains either in the HLA-DQ2.2 or -DQ7.5 alleles [7]. Although HLA is the most important and
necessary genetic risk factor, more than 39 other loci are associated with CeD development [8].

The CeD-associated HLA-DQ molecules bind gliadin peptides that have been deamidated by
the autoantigen tissue transglutaminase-2 (tTG2) with high affinity. However, the selection of gluten
reactive T cell epitopes depends on at least three factors: (1) resistance to proteolytic digestion,
(2) specificity for tTG2 deamidation and 3) HLA-DQ-2.5/8 binding properties.

The major protein groups in wheat are the storage proteins gliadin and glutenin, which make
up 80% of the total grain protein in common wheat [9]. These proteins are rich in glutamine and
proline, which makes gluten highly resistant to gastrointestinal proteolytic degradation, resulting in
long peptides ranging from 15 to 50 residues [10]. An example is the well-known 33mer α-gliadin
fragment (LQLQPFPQPQLPYPQPLPYPQPQLPYPQPQPF) that has been considered to be one of the
main culprits in CeD [10,11] as it contains six overlapping T cell epitopes. However, several other long
gluten peptides containing CeD-associated T cell epitopes have been identified [12–14].

Common bread wheat (Triticum aestivum) has evolved from hybridization between the tetraploid
species T. turgidum (AABB) and the diploid species Aegilops tauschii (DD) [15]. The common hexaploid
wheat (AABBDD) adapts well and grows more robustly, as well as having a favorable gluten
composition for industrial quality compared to its ancestors [16]. However, the difference in gluten
composition among diploid (AA), tetraploid (AABB) and hexaploid (AABBDD) wheat varieties may
affect digestion-induced cleavage [17]. Substituting einkorn (Triticum monococcum) for common wheat
may delay CeD onset in HLA-DQ2.5/-8 positive first-degree relatives because it contains fewer putative
T cell epitopes [14] (partly because diploid and tetraploid wheat lacks the D genome, where the
α-gliadin 33mer is located).

The aim of this study was to compare peptide profiles and identify gluten peptides produced
ex vivo from seven different wheat types using human gastrointestinal juices. The digestion was
performed with ancestral wheat (einkorn, spelt and emmer) and varieties of common wheat cultivated
in Norway during 1900–1930 (Børsum, Fram) and 1990–2020 (Bastian, Mirakel). As the activity and
specificity of digestive enzymes, including trypsin, differ among sources [18], the use of human
digestive enzymes will be a more correct representation of the in vivo situation compared to enzymes
of bovine or porcine origin, which have been applied in most in vitro studies published to date.

Digestion-released peptides were identified by high performance liquid
chromatography/high-resolution electrospray ionization/tandem mass spectrometry
(HPLC-ESI-MS/MS) analyses. The peptides were compared to the nine amino acid core
region recognized by CeD-associated CD4+ T cells [19]. The 33mer and 25mer α-gliadins, and the
26mer γ-gliadin immune dominant peptide, were further monitored, as they consist of several
overlapping T cell reactive epitopes.

2. Materials and Methods

2.1. Wheat Sample Collection

Wheat was collected in 2017 from an experimental field (Vollebekk Research Farm, Norwegian
University of Life Sciences, Ås, Norway). All wheat species and varieties were grown in the same trial
field in plots of 4.5 m2. At maturity, approximately 50 ears of each sample were harvested from each
plot. The wheat samples collected were all spring types, including the ancestral wheat species einkorn
(diploid, AA), emmer (tetraploid, AABB) and spelt (hexaploid, AABBDD), as well as four selected
varieties of common wheat (hexaploid, AABBDD). These seven different wheat varieties (Table 1) are
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hereafter referred to as “wheat types”. The harvested wheat was dried to below 15% moisture at 30 ◦C
for 3 days before threshing and cleaning (Perten Instruments AB, Hägersten, Sweden).

Table 1. Genomic asset and origin of the wheat types studied.

Wheat Type Species Genome Variety Breeding Company/Origin Marked Release

Einkorn T. monococcum AA Unknown
Emmer T. dicoccon AABB Gotland

Spelt T. aestivum var. spelta AABBDD Vit Gotland
Common wheat T. aestivum var. aestivum AABBDD Fram Norwegian landrace Before 1900

AABBDD Børsum Norwegian Agricultural
University (NLH) 1936

AABBDD Bastian Graminor, Norway 1989
AABBDD Mirakel Graminor, Norway 2012

2.2. Wheat Characterization

Einkorn, emmer and spelt were hulled manually after threshing. The samples were milled to
whole meal flour by Falling Number Laboratory 3100 with a 0.8 mm screen (Perten Instruments
AB, Hägersten, Sweden) before further analysis. Kernel size was recorded as weight per thousand
kernels (TKW). Grains were counted by an Elmor C1 seed counter (Elmor Ltd., Schwyz, Switzerland),
and presented as weight in grams per thousand grains. The moisture content of the grain was
determined by drying kernels for 24 h at 105 ◦C. Further, the nitrogen content of the wheat samples was
measured by the micro Kjeldahl method (Kjeltec™ 8400, Tecator, Foss, Hillerød, Denmark), and wheat
protein content was determined using 5.7 as the Kjeldahl factor. Total starch content was analyzed
by using the Megazyme kit (K-TSTA-100A 08/19, Megazyme, Bray, Ireland) [20]. The porridge was
prepared by mixing whole wheat flour and water (1:20 w/v), which was then heated at 100 ◦C in a
water bath for 10–15 min, homogenized, cooled and stored at 4 ◦C until ex vivo digested.

2.3. Ex vivo Digestion of Wheat Porridge

Human gastric and duodenal juices were collected according to Ulleberg et al. [21] by aspiration
of self-reported healthy volunteers (n = 20) at Lovisenberg Diaconal Hospital, Norway. All subjects
reported no CeD symptoms and gave their informed consent for inclusion before participation.
The aspiration was approved by the Regional Committees for Medical and Health Research Ethics
(REK 2012/2230 and 2012/2210) in Norway. In short, a flexible three-lumen silicone tube was placed
through the nose or mouth into the gastric antrum and duodenum, using gastroscopic guidance.
An isotonic stimulatory solution (17.5 g/L sucrose, 450 mg/L NaCl, 800 mg/L L-phenylalanine and
575 mg/L L-valine in H2O) was continuously infused (100 mL/h) simultaneously as the gastric and
duodenal fluids were aspirated. The aspirates were pooled and stored at −20 ◦C, then at −80 ◦C [21].

The enzymatic activity of pepsin and trypsin was assayed according to Minekus et al. [22].
Digestion with human GI enzymes was performed according to the standardized INFOGEST consensus
model [22] with some modifications. A porridge aliquot (1 g with approximately 5 mg/mL protein)
was mixed 1:1 (w/v) with salivary fluid (SSF) containing α-amylase (75 U/mL, Sigma Aldrich) and
incubated for 2 min, simulating the oral phase. The gastric digestion phase was performed by adding
simulated gastric fluid (SGF) with human gastric juices (HGJ) (2000 U/mL pepsin activity) to the oral
phase (1:1, v/v) and adjusting the pH to 3.0 by the addition of 1 M HCl. The samples were incubated in
a water bath at 37 ◦C with gentle magnetic stirring for 120 min. The duodenal digestion phase was
done by adding simulated intestinal fluid (SIF) containing human duodenal juice (HDJ) (100 U/mL
trypsin activity) to the gastric sample (1:1 v/v). The pH was adjusted to 7.0 by the addition of 1 M
NaOH and the samples were incubated in a water bath at 37 ◦C for another 120 min with magnetic
stirring, then terminated by adding 5 mM Pefabloc® (Sigma Aldrich, St. Louis, MO, US). The digestion
was performed in parallel and all samples were immediately stored at −20 ◦C until further analysis.
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2.4. Peptide Profile by HPLC-ESI MS/MS

Prior to HPLC-ESI MS/MS analysis, digests (100 µL) were desalted using a C18 spin column
(Thermo Scientific, San Jose, CA, USA), according to the manufacturer’s instructions, eluting with
70% acetonitrile (v/v)/0.1% trifluoroacetic acid (TFA). MS analysis was performed using a Q Exactive
Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, USA), online coupled with an Ultimate
3000 ultra-high-performance liquid chromatography instrument (Thermo Scientific, San Jose, CA, USA).
Purified peptides were diluted in 50 µL of 0.1% (v/v) formic acid solution, loaded through a 5 mm
long, 300 mm internal diameter pre-column (LC Packings, San Jose, CA, USA) and separated by an
EASY-Spray™ PepMap C18 column (2 µm, 15 cm–75 µm; 3 mm particles; 100 Å pore size (Thermo
Scientific, San Jose, CA, USA)). Eluent A was 0.1% formic acid (v/v) in Milli-Q water and eluent B was
0.1% formic acid (v/v) in acetonitrile. The column was equilibrated with 5% eluent B. Peptides were
separated by a 4–40% eluent B gradient over 60 min (300 nL/min). The mass spectrometer operated in
data-dependent mode and all MS1 spectra were acquired in the positive ionization mode by scanning
the 1800–350 m/z range. A maximum of 10 of the most intense MS1 ions were fragmented in MS/MS
mode. The resolving power was set at 70,000 full width at half maximum (FWHM), using automatic
gain control (AGC) target of 1 × 106 ions and 100 ms as a maximum ion injection time (IT) to generate
precursor spectra. MS/MS fragmentation spectra were obtained at a resolving power of 17,500 FWHM
and 10 s dynamic exclusion was used to prevent repeated fragmentation of the most abundant ions.
Ions with one or more than six charges were excluded from fragmentation. Spectra were elaborated
using the Xcalibur Software 3.1 version (Thermo Scientific, San Jose, CA, USA).

2.5. MS Analysis Spectra Identification

Peptides were identified from the MS/MS spectra using the Proteome Discoverer 2.1 software
(Thermo Scientific, San Jose, CA, USA), based on the Sequest searching algorithm. Searches were
taxonomically restricted to the Triticum database extracted from UniProtKB (downloaded in February
2018). Search parameters were: Met oxidation and pyroglutamic acid for N-terminus Gln as variable
protein modifications; a mass tolerance value of 10 ppm for precursor ions and 0.01 Da for MS/MS
fragments; no proteolytic enzyme selected. The false discovery rate and protein probabilities were
calculated by a target decoy peptide spectrum match (PSM) validator working between 0.01 and 0.05
for strict and relaxed searches, respectively. Data from three replicate LC-MS/MS analyses were merged.
Peptide amount was inferred by the number of PSMs and the relevant ion count.

The T cell epitopes were determined by their native gliadin sequences as they appear prior
to deamidation because tTG2 treatment was not included in the current study. These peptides are
expected to be modified in vivo by lamina propria tTG2 and become immunogenic as tTG2 deamidate
glutamine (Q) to glutamate (E). Only deamidated peptides fit in the HLA-DQ2.5/8 peptide binding
groove and stimulate CeD promoting CD4+ T cells [23,24].

3. Results

Protein content varied from approximately 8.2% to 11%, and all ancestral wheat types showed
values above 10% protein (Table 2). The starch content was in the standard range (55% to 66%) for
all wheat types and the thousand-kernel weight (TKW) varied from 30 to 41 g between the different
wheat types.

Ex vivo digestion of porridge samples with human GI juices produced a complex variety of
gluten protein fragments, which were identified by HPLC-ESI MS/MS and software-based matching.
Overall, 1051–2689 peptides were identified for each sample. An assorted list of non-redundant
unique peptide sequences was generated and used to identify T cell reactive epitopes in the reference
list [19]. Whereas spelt digestion released few peptides, it gradually increased in einkorn (diploid) and
emmer (tetraploid), and further in the common hexaploid wheat varieties Fram, Mirakel and Bastian.
Thus, the latter two varieties had the highest number of unique peptides, of which 144 and 155 were
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T cell epitope-containing immunogenic peptides (IPs), respectively (Figure 1). This is in contrast to
einkorn, spelt and emmer, which released only 38, 45 and 68 IPs, respectively (Figure 1). Thus, digesting
einkorn released considerably less IPs (18% of the peptides) than Bastian (37% of the peptides). Interestingly,
none of the digested wheat types contained intact gliadin-33mer, -26mer or -25mer (Figure 2).

Although few peptides perfectly matched the T cell reactive epitopes in the reference list [19],
the larger peptides contained these IP sequences. Digests of all wheat types contained peptides with
the DQ2.5-glia-γ4c (QQPEQPFPQ), DQ2.5-glia-γ5 (QQPFPQQPQ) and DQ2.5-glia-ω1 (PFPQPQQPF)
epitopes, whereas only the hexaploid (T. aestivum) wheat types, (Fram, Børsum, Bastian and Mirakel)
released peptides with the DQ2.5-glia-α2 (PQPELPYPQ) and DQ2.5-glia-α1b (PYPQPQLPY) epitopes
(Figure 3). In particular, einkorn released fewer IPs with less variation, as only six of the 22 T cell
reactive epitopes were detected. This in contrast to spelt, Bastian and Mirakel, which released eight,
11 and 13 different T cell reactive epitopes, respectively. However, the DQ2.5-hor-2 (PQPQQPFPQ)
and DQ2.5-glia-γ4b (PQPQQQFPQ) epitopes dominated in ancestral wheat digests, as they were only
present in one and two peptides from the common wheat types, respectively.

γ-Gliadins released the highest number of T cell epitope-containing peptides in all wheat types,
as illustrated in Figure 4. Low molecular weight glutenins were the second largest contributor of IPs in
einkorn and emmer;ω-gliadins ranked as the second largest contributor, followed by α-gliadins in the
common hexaploid wheat types. Only Fram and Mirakel released some IPs from high molecular weight
glutenins. In addition, we also observed T cell epitope-containing peptides from wheat secalins in all
wheat types, which are proteins commonly found in rye and most likely identified here by homology.

Table 2. Variations in grams per thousand kernel (TKW), starch and proteins among the different wheat
types (einkorn, emmer and spelt) and the common wheat types (Fram, Børsum, Bastian and Mirakel).

Wheat Sample TKW (g) Protein (%) Starch (%)

Einkorn 30.5 10.3 66.5
Emmer 31.7 11.0 50.0

Spelt 41.1 10.6 60.0
Fram 32.3 8.2 63.1

Børsum 31.9 9.2 55.6
Bastian 33.1 10.2 58.8
Mirakel 38.5 9.1 63.4
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Figure 1. Representation of unique peptides identified in each wheat type and the number of T
cell reactive epitopes in the unique peptides, according to Sollid, Qiao [19]. Putative immunogenic
peptides are presented as a percentage of total unique peptides within each wheat type (identified by
HPLC-ESI MS/MS).
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4. Discussion

This study aimed to characterize CeD-associated T cell epitopes in peptides released
during ex vivo gastrointestinal digestion of three ancestral wheat types (einkorn, emmer and
spelt), and four common Norwegian wheat varieties (Fram, Børsum, Bastian and Mirakel).
Similar to Shan et al. [10], several studies have established that the digestive-resistant 33mer
(LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF), and 25mer (LGQQQPFPPQQPYPQPQPFPSQQPY)
fragments from α-gliadin [25], and the 26mer (FLQPQQPFPQQPQQPYPQQPQQPFPQ) from
γ-gliadin [26] contain most of the T cell reactive epitopes involved in the CeD immune reaction [27].
Surprisingly, these large immunodominant peptides were cleaved into smaller, but still T cell
epitope-containing peptides by the current ex vivo digestive systems. This is in contrast to previous
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in vitro digestion experiments showing that the 33mer, 26mer and 25mer peptides were digestion
resistant. Whereas previous digestive models used bovine or porcine digestive enzymes, the current
experiments were performed with human gastroduodenal aspirates that increase the physiological
relevancy of the model, and therefore more closely mimic in vivo gastrointestinal digestion [28].
However, as we used gastroduodenal aspirates from healthy, apparently non-celiac controls, we cannot
rule out the possibility that celiac patients digest gluten differently due to either genetic variations in
intestinal digestive enzymes or to differences in microbial-assisted gluten digestion.

The digested wheat peptides contained both single and multiple overlapping immunogenic
core sequences. Whereas einkorn released the lowest number of possible Ips, followed by spelt,
Bastian released the highest number of IPs. Although the percentage of IPs to the total number of
peptides did not vary significantly between wheat types with different genomes, the ancestral varieties
generally had a lower percentage of IPs. This is in contrast to Prandi et al. [29], who reported that the
in vitro digestion of old wheat varieties produced more IPs compared to modern varieties. However,
their modern wheat samples included both einkorn and spelt, which in our study were classified as
ancestral, and their old varieties included only tetraploid and hexaploid wheat varieties (T. aestivum L.,
T. turgidum var. durum Desf., T. turgidum var. dicoccum L (emmer)), which makes it difficult to compare
results. Our findings are also in contrast to Malalgoda et al. [30], who observed no differences between
historical and modern wheat cultivars in T cell epitope-containing peptides released after in-gel gliadin
digestion with porcine chymotrypsin. However, this in-gel digestion system with commercial enzymes
does not mimic human gastrointestinal digestion as well as the current ex vivo digestive system does
using human gastroduodenal juices.

The α-gliadin 33mer gene loci is located on chromosome 6D in the hexaploid wheat (AABBDD)
varieties only [31]. Thus, the 33mer sequence is lacking in einkorn (AA) and emmer (AABB) but may
be present in spelt, Fram, Børsum, Bastian and Mirakel (AABBDD). The α-gliadin 33mer pepride
harbors six overlapping T cell epitope sequences: one copy of the DQ2.5-binding gliadin peptide,
glia-α1a (PFPQPQLPY), two copies of the DQ2.5-glia-α1b (PYPQPQLPY) and three copies of the
DQ2.5-glia-α2 (PQPQLPYPQ). Whereas none of these epitopes were detected in the diploid einkorn,
digested emmer and spelt released one peptide with the DQ2.5-glia-α1a epitope. In contrast, these T
cell epitopes were present in many peptides from the hexaploid wheat varieties. In particular, Mirakel,
Bastian and Børsum released several 33mer fragments (Figure 2). The chromosome 6D-derived
gliadins were cleaved at different positions, producing peptides of different lengths with similar or
multiple overlapping epitope sequences. Thus, digestion of these wheat varieties released more T cell
epitope-containing peptides than the diploid and tetraploid wheat types that lack chromosome 6D.

The γ-gliadin-derived 26mer peptide contains two overlapping T cell epitopes, the DQ2.5-glia-γ3,
(QQPQQPYPQ) and the DQ2.5-glia-γ4c (QQPQQPFPQ). Whereas the DQ2.5-glia-γ3 epitope was
absent in einkorn and spelt, it was present in digests from the other hexaploid wheat types and emmer.
Although the DQ2.5-glia-γ4c epitope was the most dominant peptide epitope in all the digested wheat
samples, it occurred in variable quantities, from a moderate amount in einkorn and spelt, to almost
a three-fold increase in the common wheat varieties. The other dominant epitopes, DQ2.5-glia-γ5
(QQPFPQQPQ) and DQ2.5-glia-ω1 (PFPQPQQPF), together with DQ2.5-glia-γ4c, were also present
after complex proteolytic digests of gluten using human monoclonal antibody pull-down techniques
to identify the epitopes [32].

The α-gliadin 25mer peptide was undetected in all samples. However, einkorn,
emmer, Børsum, Bastian and Mirakel, but not spelt or Fram, released a shortened 20mer
(31LGQQQPFPPQQPYPQPQPFPS51) peptide. Several studies have shown that the 13mer

31LGQQQPFPPQQPY43 sequence within the α-gliadin 25mer peptide and the shortened 20mer
peptide detected in this study, activates the innate immune system [33] by upregulating interleukin-15,
cyclooxygenase-2 (COX-2), CD25 and CD83 expression on lamina propria macrophages, monocytes,
and dendritic cells prior to any CD4+ T cell stimulation [34]. More recently, Barone et al. [35] showed
that the 13mer induced altered vesicular trafficking in the colonic epithelial cancer cell line Caco-2. This
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lead to overexpression of trans-presented IL-15/IL5R alpha complex that induced an EGFR-dependent
cell proliferation that may explain the mucosal remodeling in CeD. Thus, innate immune system may
also be involved in this aspect of the CeD pathogenesis.

5. Conclusions

The ex vivo human gastrointestinal digestion of diploid, tetraploid and hexaploid wheat types
produced T cell epitope-containing peptides depending on the genomic asset. Wheat digestion with
human gastrointestinal juices produced a different protein degradation pattern compared to previously
reported studies that used enzymes of porcine or bovine origin. In our study, the immunodominant
peptides (the 33mer and 25mer α-gliadin peptides, and the 26mer γ-gliadin peptide) were not found in
their intact form, but as degraded fragments. The present digestion model did not include mucosal
degradation and absorption. Therefore, the bioaccessibility and the capability of these peptides to reach
the lamina propria and bind tTG2 through deamidation, and thereby acquiring HLA-DQ2.5/8 binding
properties and becoming T cell epitopes, remains to be studied. The results suggested, nevertheless,
that ancestral wheat types may be less CeD toxic compared to the common hexaploid varieties. Whether
more general use of these ancestral wheat variants in genetically predisposed individuals could reduce
CeD needs further assessment, but the incidence of diagnostic CeD in childhood has been linked to the
amount of gluten in the diet [36].
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