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Although the treatment modalities of cancers are developing rapidly, chemotherapy is
still the primary treatment strategy for most solid cancers. The progress in
nanotechnology provides an opportunity to upregulate the tumor suppression
efficacy and decreases the systemic toxicities. As a promising nanoplatform, the
polymer micelles are fascinating nanocarriers for the encapsulation and delivery of
chemotherapeutic agents. The chemical and physical properties of amphiphilic co-
polymers could significantly regulate the performances of the micellar self-assembly and
affect the behaviors of controlled release of drugs. Herein, two amphiphilic Y-shaped
polypeptides are prepared by the ring-opening polymerization of cyclic monomer
L-leucine N-carboxyanhydride (L-Leu NCA) initiated by a dual-amino-ended
macroinitiator poly(ethylene glycol) [mPEG-(NH2)2]. The block co-polypeptides with
PLeu8 and PLeu16 segments could form spontaneously into micelles in an aqueous
solution with hydrodynamic radii of 80.0 ± 6.0 and 69.1 ± 4.8 nm, respectively. The
developed doxorubicin (DOX)-loaded micelles could release the payload in a sustained
pattern and inhibit the growth of xenografted human HepG2 hepatocellular carcinoma
with decreased systemic toxicity. The results demonstrated the great potential of
polypeptide micellar formulations in cancer therapy clinically.
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INTRODUCTION

Chemotherapy is still an essential modality for the treatments of most solid cancers, although a
variety of emerging strategies have been developed in the past few decades (Neoptolemos et al., 2018;
Bukowski et al., 2020; Lu et al., 2020; Zheng et al., 2020; Zhao et al., 2021). However, the low water
solubility, instability, short circulation period, and poor selectivity to tumor tissue of the mainstream
small-molecule chemotherapeutic drugs in the clinic restrict the applicable diseases, reduce the
anticancer efficacy, and even induce severe side effects (Steinbrueck et al., 2020; Zheng et al., 2021).
The development of nanotechnology and the preparation of various organic and inorganic
nanoparticles provide a robust tool for the controlled delivery of small-molecule
chemotherapeutic drugs (Jiang et al., 2019; Sun et al., 2019; Jiang et al., 2020; Kim et al., 2020;
Thomas et al., 2020; Zhang et al., 2020). Among them, the micelles self-assembled from the
amphiphilic polymers are attracting increasing attention in the controlled delivery of
chemotherapeutic drugs because of their controlled sizes, morphologies, stability, stimulus
responsiveness, high drug loading efficiency, and targeted drug delivery behaviors (Zeinali et al.,
2020; Bai et al., 2021; Rajes et al., 2021; Wei et al., 2021).
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The chemical structures and physical properties of amphiphilic
polymers could always significantly regulate the behavior of self-
assembly and the performances of obtained micelles (Danafar et al.,
2018; Saravanakumar et al., 2018; Brega et al., 2019). The length of
hydrophilic and hydrophobic blocks and their ratio are the main
factors regulating the sizes, shape, and stability of the polymer

micelles and even significantly influence their drug loading
properties (Li et al., 2013; Zhang et al., 2013). Typically, longer
hydrophobic polymer moieties correspond to smaller sizes, more
compact cores, upregulated drug loading capability, and more
constant drug release (Hussein and Youssry, 2018).

In addition, the topology of polymers is another critical factor
for changing the behavior of self-assembly of polymers and
properties of micelles (Li et al., 2013; Yang et al., 2017). The
nonlinear amphiphilic polymers, including the graft, Y-shaped,
dumbbell-shaped, and even star ones, always induce more stable
self-assembled micellar nanoparticles compared with the linear
amphiphilic polymers with the same components (Ding et al.,
2011; Li et al., 2012; Li et al., 2013; Yang et al., 2021). Therefore,
the micelles based on the nonlinear amphiphilic polymers
exhibited more promising applications in controlled drug
delivery for cancer therapy (Shi et al., 2018; Perin et al., 2021).

In this study, a kind of Y-shaped amphiphilic block co-polymers
of methoxy poly(ethylene glycol) (mPEG) and poly(L-leucine)
(PLeu) was developed to form spontaneously into micelles and
deliver chemotherapeutic agent doxorubicin (DOX) in a controlled
manner. PLeu was used as a typical polypeptide segment in this
study, and other hydrophobic polypeptides, such as polyglycine,
polyvaline, and polyphenylalanine, could also be used as
components of amphiphilic block co-polymers for effective drug
loading and controlled release. The block co-polypeptides were
prepared by the ring-opening polymerization (ROP) of L-leucine
N-carboxyanhydride (L-Leu NCA) initiated by a dual-amino-ended
macroinitiator poly(ethylene glycol) [mPEG-(NH2)2] (Wang et al.,
2019b; Song et al., 2019; Liu et al., 2020). The co-polymer could form
into spherical micellar nanoparticles, which exhibited excellent drug
encapsulation and release behaviors. The loaded polypeptide
micelles showed fascinating tumor growth inhibition efficacy,

SCHEME 1 | Synthesis route of mPEG-(NH2)2.

SCHEME 2 | Synthesis pathway of mPEG-(PLeu)2.

FIGURE 1 | 1H NMR spectra of mPEG-(NH2)2, mPEG-(PLeu8)2, and
mPEG-(PLeu16)2.
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indicating their great potential for anticancer application clinically
(Deng et al., 2020; Zheng et al., 2021).

MATERIALS AND METHODS

The materials, synthesis of methoxy poly(ethylene glycol)-(poly
(L-leucine))2; characterizations, preparation, and characterization
of DOX-loaded co-polypeptide micelles; and DOX release in vitro
are described in the Supplementary Material in detail.

In Vitro Biocompatibility Toward L929 Cells
and Cytotoxicity Toward HepG2 Cells
The biocompatibility of mPEG-(PLeu)2 against mouse fibroblast
L929 cells and the cytotoxicity of mPEG-(PLeu)2/DOX toward
human hepatocellular carcinoma HepG2 cells were assessed by a
typical methyl thiazolyl tetrazolium (MTT) technique in vitro.
The selected cells were inoculated into tissue culture plates
(TCPs) with 96 wells, with 7,000 cells in a well and dispersed

in 200.0 μl of Dulbecco’s modified Eagle’s medium (DMEM) with
fetal bovine serum (FBS) and antibiotics. At 24 h post-
inoculation, the original incubation DMEM was removed, and
the solutions of mPEG-(PLeu)2 micelles at a concentration from
1.6 to 100.0 μg ml−1 or mPEG-(PLeu)2/DOX at a concentration
from 0.16 to 10.0 μg ml−1 in DMEM was supplemented. In 72 h
post-co-incubation, the cell viability was determined by an MTT
technique. The absorbances of the MTT co-incubated cell
solutions in dimethyl sulfoxide (DMSO) were tested at 490 nm
on a microplate reader (Bio-Rad 680, Bio-Rad Laboratories,
Hercules, CA, USA). The cell viability is assessed in Eq. 1.

Cell viability (%) � ASample

AControl
× 100% (1)

In Eq. 1, ASample and AControl represent the absorbances of the
corresponding groups.

In Vivo Tumor Suppression
The BALB/c nude mice (female, 6 weeks old) were bought from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). The suppression efficacy of tumor growth by
various DOX formulations was evaluated toward the human
HepG2 hepatocellular carcinoma-xenografted BALB/c node
mice (Zhao et al., 2013; Wang et al., 2019a). The tumor-
bearing mouse model was prepared by injecting
subcutaneously 1.0 × 106 HepG2 cells dispersed with 100.0 μl
of 0.01 M of phosphate-buffered saline (PBS) to the right anterior
limb’s armpit in BALB/c nude mice (5 weeks old, ∼25 g). When
the tumor volume reached about 72 mm3, the mice were
stochastically separated into four groups (n � 6). The control
of PBS or various formulations of model chemotherapeutic agent
DOX, including free DOX, mPEG-(PLeu8)2/DOX, or mPEG-
(PLeu16)2/DOX, were administrated by the tail-vein injection to
treat the tumor-bearing mice. The equivalent DOX dosage was set
as 5.0 mg for every kg body weight [mg (kg BW)−1]. The
chemotherapy was given every 4 days. The tumor volume was
assessed every 2 days, and the body weight was detected at the
same frequency.

The tumor volume could be assessed according to Eq. 2.

Tumor volume (mm3) � L ×W2

2
(2)

FIGURE 3 | Rhs of mPEG-(PLeu8)2/DOX and mPEG-(PLeu16)2/DOX. DOX, doxorubicin.

FIGURE 2 | FT-IR spectra of mPEG-(NH2)2, mPEG-(PLeu8)2, and
mPEG-(PLeu16)2. FT-IR, Fourier transform IR.
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The tumor growth rate was calculated according to Eq. 3.

Tumor growth rate � Tumor volumet
Tumor volume0

(3)

RESULTS AND DISCUSSION

Synthesis and Characterizations of
Methoxy Poly(ethylene
glycol)–(Poly(L-leucine))2
Polypeptides could be prepared by the ROP of amino acid NCA
monomers in a controlled manner (Liu et al., 2020; Lv et al., 2020;

Vrijsen et al., 2020). In this study, the Y-shaped co-polypeptide
mPEG-(PLeu)2 was prepared by the ROP of L-Leu NCA with the
dual-amino-ended mPEG-(NH2)2 as a macroinitiator, as shown in
Schemes 1 and 2. The successful synthesis of macroinitiator mPEG-
(NH2)2 and the co-polypeptide mPEG-(PLeu)2 was demonstrated
through the spectrum results of 1H NMR and Fourier transform IR
(FT-IR). As demonstrated by the results of Figure 1, the appearance
of the peaks at 4.45 ppm is attributed to the backbone proton (d,
–NHCHC(O)–(CH2–)), 1.41 ppm is attributed to the methylene
protons in the side segment (e, –CH2CH(CH3)2), and 0.71 ppm
belonged to the protons of side methyl groups (f, –CH2CH(CH3)2),
which proved the successful preparation of mPEG-(PLeu)2. The
degrees of polymerization (DPs) of PLeu segments were detected to
be 8 and 16 based on the area ratios between the resonance peak at
1.41 ppm and that at 3.64 ppm assigned to the protons in methylene
segment in the backbone of mPEG (b, –CH2CH2O–). Moreover, the
successful preparation of mPEG-(PLeu)2 was further confirmed by
the results of FT-IR, as depicted in Figure 2. The wavenumbers at
1,543 and 1,663 cm−1 should be attributed to the stretching vibration
of C(O)–NH (νC(O)–NH) and C═O (νC═O), respectively, revealing the
formation of the amide bond and the synthesis of PLeu. Moreover,
the stretching vibration signal of C–O–C (νC–O–C) demonstrated the
appearance of mPEG in the co-polypeptides. Therefore, the results
proved the successful synthesis of mPEG-(PLeu8)2 and mPEG-
(PLeu16)2.

Preparation and Detection of
Doxorubicin-Loaded Co-Polypeptide
Micelles In Vitro
The micelles from various amphiphilic polymers or co-polymers
could be effective nanocarriers for the controlled delivery of
anticancer drugs (Ray et al., 2018; Pinyakit et al., 2020). In

FIGURE 4 | Cumulative DOX release from mPEG-(PLeu8)2/DOX and
mPEG-(PLeu16)2/DOX in releasemedium of PBS at pH 7.4. DOX, doxorubicin;
PBS, phosphate-buffered saline.

FIGURE 5 | Cytotoxicity of Y-shaped polypeptide micelle toward
L929 cells.

FIGURE 6 | Cell proliferation inhibition efficacy of free DOX, mPEG-
(PLeu8)2/DOX, and mPEG-(PLeu16)2/DOX toward HepG2 cells. DOX,
doxorubicin.
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this work, the chemotherapeutic agent DOX was encapsulated to
the cores of micelles of mPEG-(PLeu8)2 and mPEG-(PLeu16)2
through nanoprecipitation. The contents of DOX in the micelles
were tested by high-performance liquid chromatography
(HPLC), and the drug-loading content (DLC) of mPEG-
(PLeu8)2, and mPEG-(PLeu16)2 micelles were calculated to be
8.75 and 12.94 wt%. The drug-loading efficiency (DLE) of the
above micelles were assessed to be 47.95 and 74.32 wt%,
respectively. The higher DLC and DLE of mPEG-(PLeu16)2
micelle resulted from the more hydrophobic property of a
longer PLeu block (Chen et al., 2018; Lübtow et al., 2019). As
shown in Figure 3, the hydrophobic radii (Rhs) of DOX-loaded
co-polypeptide micelles mPEG-(PLeu8)2/DOX and mPEG-
(PLeu16)2/DOX were detected to be 80.0 ± 6.0 and 69.1 ±
4.8 nm, respectively. The smaller size of mPEG-(PLeu16)2/DOX

also should be assigned to the more hydrophobic performance of
PLeu16 (Hussein and Youssry, 2018).

The release behaviors of micelles always affected the
therapeutic efficacy of loaded micelles (Wang et al., 2019c).
The sustained drug release profiles of mPEG-(PLeu8)2/DOX
and mPEG-(PLeu16)2/DOX were detected. As depicted in
Figure 4, mPEG-(PLeu8)2/DOX released 58.88% of loaded
DOX in the detected 60 h, while mPEG-(PLeu16)2/DOX
released 35.89%. The more compact and hydrophobic core of
the micelle always induces a higher drug loading capability and
more sustained drug release behavior.

The biocompatibility of materials is a critical factor for
biomedical applications (Ding et al., 2013; Abbina et al., 2017;
Reina et al., 2017). This study detected the biocompatibility of the
prepared co-polypeptide micelles of mPEG-(PLeu8)2 and mPEG-
(PLeu16)2 by an MTT protocol toward L929 cells. As depicted in
Figure 5, both the micelles showed excellent biocompatibility at
the concentration of 100.0 μg ml−1, which was revealed by the
high cell viability at above 80%.

An MTT technique detected the antitumor efficacy of various
DOX formulations toward HepG2 cells in vitro. As demonstrated
by Figure 6, free DOX showed the best inhibition efficiency of cell
proliferation as a benefit of its fastest cell entry speed through
dispersion. The slightly weaker anticancer effect of DOX-loaded
co-polypeptide micelles could be assigned to the slower
endocytosis speed by HepG2 cells. In addition, the better
anticancer effect of mPEG-(PLeu16)2 should be attributed to
the more sustained release profile of the chemotherapeutic
agent in the cells.

Anticancer Efficacy of Doxorubicin-Loaded
Co-Polypeptide Micelles In Vivo
The excellent anticancer efficacy of nanoformulations of
chemotherapeutic drugs is one of the essential properties for
potential clinical application (Ghosh et al., 2021; Zheng et al.,
2021). Herein, the anticancer efficacy of PBS as control, free
DOX, mPEG-(PLeu8)2/DOX, and mPEG-(PLeu16)2/DOX were
detected toward human HepG2 hepatocellular carcinoma-
xenografted BALB/c node murine model.

The tumor-bearing mice were constructed by inoculating
1.0 × 106 HepG2 cells dispersed in 100.0 μl of PBS into the
right anterior limb’s armpit in a BALB/c nude mouse. As the
tumor grew to ∼72 mm3 in volume, the model animals were
divided into four groups (n � 6). On days 1, 4, and 8, the
human HepG2 hepatocellular carcinoma-xenografted mice
were treated with PBS as control, free DOX, mPEG-(PLeu8)2/
DOX, or mPEG-(PLeu16)2/DOX three times. The dosage of
DOX was set at 5.0 mg (kg BW)−1. The tumor volume was
monitored every other day. As shown in Figure 7, the tumor
growth rates calculated based on the data of tumor volumes
decreased to some extent in the groups of mPEG-(PLeu8)2/
DOX and mPEG-(PLeu16)2/DOX, while it increased to about
3.96 and 1.72 in the PBS as control and free DOX groups,
respectively. The best anticancer efficacy should be assigned
to the target release of DOX by the micelles of Y-shaped co-
polypeptides.

FIGURE 8 | Body weight change of human HepG2 hepatocellular
carcinoma-xenografted BALB/c node mouse model during treatment with
PBS as control, free DOX, mPEG-(PLeu8)2/DOX, or mPEG-(PLeu16)2/DOX.
PBS, phosphate-buffered saline; DOX, doxorubicin.

FIGURE 7 | Tumor growth rate of human HepG2 hepatocellular
carcinoma-xenografted BALB/c node mice during treatment with PBS as
control, free DOX, mPEG-(PLeu8)2/DOX, or mPEG-(PLeu16)2/DOX. The data
are represented as mean ± SD (n � 6; ***p < 0.001). PBS, phosphate-
buffered saline; DOX, doxorubicin.
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The safety of nanoformulations of chemotherapeutic drugs is
another critical factor influencing their potential application in a
clinic (Zheng et al., 2021). In this work, the safety of free DOX and
DOX-loaded Y-shaped co-polypeptide micelles was revealed by
the change of body weight of human HepG2 hepatocellular
carcinoma-xenografted mice in the process of treatment. As
shown in Figure 8, the body weight decreased significantly
after the treatment with free DOX, indicating the toxicity of
free DOX in vivo. Fortunately, the body weight of mPEG-
(PLeu8)2/DOX and mPEG-(PLeu16)2/DOX groups was similar
to the body weight of the control group, demonstrating their
excellent safety in vivo. Therefore, the findings confirmed that the
Y-shaped polypeptide micelles exhibited great potential for
controlled delivery of chemotherapeutic drugs in vivo, which
benefited the improved anticancer efficacy and reduced systemic
toxicity.

CONCLUSION

Chemotherapy is still the primary treatment modality for most
solid tumors. To overcome the disadvantages of small-molecule
drugs, including low water solubility, short circulation time, and
low targeting in vivo, a variety of nanocarriers were developed. In
this study, two Y-shaped co-polypeptides were prepared by the
ROP of L-Leu NCA. mPEG-(PLeu)2 could self-assemble into
micelle and effectively encapsulate and release the model
chemotherapeutic drug DOX in a sustained manner. The
DOX-loaded Y-shaped co-polypeptide micelles could
significantly suppress the growth of HepG2 hepatocellular
carcinoma in vitro and in vivo with reduced systemic toxicity.
The results indicated the great potential of the micelles from
nonlinear amphiphilic polymers or co-polymers in cancer
therapy clinically.

In this study, the human HepG2 hepatocellular carcinoma and
DOX are just models to characterize and confirm the advantages
of micelles from nonlinear amphiphilic polymers or co-polymers.
The developed advanced micelles could be used for the controlled

delivery of other therapeutic agents to treat different kinds of
cancers and even other diseases.
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